Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.454
Filtrar
1.
Nutrients ; 13(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684621

RESUMO

Interventions to decrease inflammation and improve metabolic function hold promise for the prevention of obesity-related diseases. Methylsulfonylmethane (MSM) is a naturally occurring compound that demonstrates antioxidant and anti-inflammatory effects. Improvements in measures of metabolic health have been observed in mouse models of obesity and diabetes following MSM treatment. However, the effects of MSM on obesity-related diseases in humans have not been investigated. Therefore, the purpose of this investigation was to determine whether MSM supplementation improves cardiometabolic health, and markers of inflammation and oxidative status. A randomized, double-blind, placebo-controlled design was utilized with a total of 22 overweight or obese adults completing the study. Participants received either a placebo (white rice flour) or 3 g MSM daily for 16 weeks. Measurements occurred at baseline and after 4, 8, and 16 weeks. Outcome measures included fasting glucose, insulin, blood lipids, blood pressure, body composition, metabolic rate, and markers of inflammation and oxidative status. The primary finding of this work shows that high-density lipoprotein cholesterol was elevated at 8 and 16 weeks of daily MSM consumption compared to baseline, (p = 0.008, p = 0.013). Our findings indicate that MSM supplementation may improve the cholesterol profile by resulting in higher levels of high-density lipoprotein cholesterol.


Assuntos
HDL-Colesterol/sangue , Dimetil Sulfóxido/farmacologia , Obesidade/sangue , Sulfonas/farmacologia , Adulto , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Dieta , Dimetil Sulfóxido/sangue , Exercício Físico , Feminino , Fibrose , Humanos , Inflamação/sangue , Inflamação/patologia , Masculino , Oxirredução , Sulfonas/sangue
2.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500807

RESUMO

A novel class of styryl sulfones were designed and synthesized as CAPE derivatives by our work team, which showed a multi-target neuroprotective effect, including antioxidative and anti-neuroinflammatory properties. However, the underlying mechanisms remain unclear. In the present study, the anti-Parkinson's disease (PD) activity of 10 novel styryl sulfone compounds was screened by the cell viability test and the NO inhibition test in vitro. It was found that 4d exhibited the highest activity against PD among them. In a MPTP-induced mouse model of PD, the biological activity of 4d was validated through suppressing dopamine neurotoxicity, microglial activation, and astrocytes activation. With compound 4d, we conducted the mechanistic studies about anti-inflammatory responses through inhibition of p38 phosphorylation to protect dopaminergic neurons, and antioxidant effects through promoting nuclear factor erythroid 2-related factor 2 (Nrf2). The results revealed that 4d could significantly inhibit 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP+)-induced p38 mitogen-activated protein kinase (MAPK) activation in both in vitro and in vivo PD models, thus inhibiting the NF-κB-mediated neuroinflammation-related apoptosis pathway. Simultaneously, it could promote Nrf2 nuclear transfer, and upregulate the expression of antioxidant phase II detoxification enzymes HO-1 and GCLC, and then reduce oxidative damage.


Assuntos
Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Estirenos/farmacologia , Sulfonas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Células Cultivadas , Inflamação/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estirenos/síntese química , Estirenos/química , Sulfonas/síntese química , Sulfonas/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576160

RESUMO

Collagen XV (Col XV), a basement membrane (BM) component, is highly expressed in adipose tissue, and studies have found that Col XV is related to extracellular matrix (ECM) remodeling involving in adipose tissue fibrosis and inflammation. Furthermore, the ECM is essential for maintaining normal development and tissue function. In this study, we found that Col XV is related to the endoplasmic reticulum stress (ERS) and inflammation of adipose tissue. Moreover, we found that overexpression of Col XV in mice could cause macrophages to infiltrate white adipose tissue (iWAT). At the same time, the expression of the ERS sensor IRE1α (Inositol-Requiring Enzyme-1α) was significantly up-regulated, which intensified the inflammation of adipose tissue and the polarization of M1 macrophages after the overexpression of Col XV in mice. In addition, after overexpression of Col XV, the intracellular Ca2+ concentration was significantly increased. Using focal adhesion kinase (FAK) inhibitor PF573228, we found that PF-573228 inhibited the phosphorylation of FAK and reversed the upward trend of Col XV-induced protein expression levels of IRE1α, C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). After treatment with IRE1α inhibitor STF-083010, the results showed that the expression of adipocyte inflammation-related genes interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) significantly were decreased. Our results demonstrate that Col XV induces ER-stress in adipocytes by activating the Integrinß1/FAK pathway and disrupting the intracellular Ca2+ balance. At the same time, Col XV regulates the inflammation induced by ER stress in adipocytes by promoting IRE1α/XBP1 (X-Box binding protein 1) signaling. Our study provides new ideas for solving the problems of adipose tissue metabolism disorders caused by abnormal accumulation of ECM.


Assuntos
Tecido Adiposo/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Inflamação/metabolismo , Células 3T3-L1 , Animais , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/genética , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Imuno-Histoquímica , Inflamação/genética , Integrina beta1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinolonas/farmacologia , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sulfonas/farmacologia
4.
BMC Cancer ; 21(1): 896, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353313

RESUMO

BACKGROUND: In clear cell renal cell carcinoma, 80% of cases have biallelic inactivation of the VHL gene, leading to constitutive activation of both HIF1α and HIF2α. As HIF2α is the driver of the disease promoting tumour growth and metastasis, drugs targeting HIF2α have been developed. However, resistance is common, therefore new therapies are needed. METHODS: We assessed the effect of the HIF2α antagonist PT2385 in several steps of tumour development and performed RNAseq to identify genes differentially expressed upon treatment. A drug screening was used to identify drugs with antiproliferative effects on VHL-mutated HIF2α-expressing cells and could increase effectiveness of PT2385. RESULTS: PT2385 did not reduce cell proliferation or clonogenicity but, in contrast to the genetic silencing of HIF2α, it reduced in vitro cell invasion. Many HIF-inducible genes were down-regulated upon PT2385 treatment, whereas some genes involved in cell migration or extracellular matrix were up-regulated. HIF2α was associated with resistance to statins, addition to PT2385 did not increase the sensitivity. CONCLUSIONS: this study shows key differences between inhibiting a target versus knockdown, which are potentially targetable.


Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Inativação Gênica , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Reposicionamento de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Humanos , Indanos/farmacologia , Indanos/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Ativação Transcricional , Transcriptoma , Resultado do Tratamento
5.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360994

RESUMO

Cholangiocarcinoma is the first most common cancer of the biliary tract. To date, surgical resection is the only potentially curative option, but it is possible only for a limited percentage of patients, and in any case survival rate is quite low. Moreover, cholangiocarcinoma is often chemotherapy-resistant, and the only drug with a significant benefit for patient's survival is Gemcitabine. It is necessary to find new drugs or combination therapies to treat nonresectable cholangiocarcinoma and improve the overall survival rate of patients. In this work, we evaluate in vitro the antitumoral effects of Rigosertib, a multi-kinase inhibitor in clinical development, against cholangiocarcinoma EGI-1 cell lines. Rigosertib impairs EGI-1 cell viability in a dose- and time-dependent manner, reversibility is dose-dependent, and significant morphological and nuclear alterations occur. Moreover, Rigosertib induces the arrest of the cell cycle in the G2/M phase, increases autophagy, and inhibits proteasome, cell migration, and invasion. Lastly, Rigosertib shows to be a stronger radiosensitizer than Gemcitabine and 5-Fluorouracil. In conclusion, Rigosertib could be a potential therapeutic option, alone or in combination with radiations, for nonresectable patients with cholangiocarcinoma.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Glicina/análogos & derivados , Radiossensibilizantes/farmacologia , Sulfonas/farmacologia , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Fluoruracila/farmacologia , Glicina/farmacologia , Humanos
6.
Molecules ; 26(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34443405

RESUMO

In this study, a new synthetic 1,2,3-triazole-containing disulfone compound was derived from dapsone. Its chemical structure was confirmed using microchemical and analytical data, and it was tested for its in vitro antibacterial potential. Six different pathogenic bacteria were selected. MICs values and ATP levels were determined. Further, toxicity performance was measured using MicroTox Analyzer. In addition, a molecular docking study was performed against two vital enzymes: DNA gyrase and Dihydropteroate synthase. The results of antibacterial abilities showed that the studied synthetic compound had a strong bactericidal effect against all tested bacterial strains, as Gram-negative species were more susceptible to the compound than Gram-positive species. Toxicity results showed that the compound is biocompatible and safe without toxic impact. The molecular docking of the compound showed interactions within the pocket of two enzymes, which are able to stabilize the compound and reveal its antimicrobial activity. Hence, from these results, this study recommends that the established compound could be an outstanding candidate for fighting a broad spectrum of pathogenic bacterial strains, and it might therefore be used for biomedical and pharmaceutical applications.


Assuntos
Antibacterianos/química , Di-Hidropteroato Sintase/antagonistas & inibidores , Sulfonas/química , Triazóis/química , Antibacterianos/farmacologia , DNA Girase/química , DNA Girase/farmacologia , Dapsona/química , Di-Hidropteroato Sintase/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonas/farmacologia , Inibidores da Topoisomerase II/química , Triazóis/farmacologia
7.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445685

RESUMO

This study investigated the possible anti-inflammatory and chondroprotective effects of a combination of celecoxib and prescription-grade glucosamine sulfate (GS) in human osteoarthritic (OA) chondrocytes and their possible mechanism of action. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination with IL-1ß (10 ng/mL) and a specific nuclear factor (NF)-κB inhibitor (BAY-11-7082, 1 µM). Gene expression and release of some pro-inflammatory mediators, metalloproteinases (MMPs), and type II collagen (Col2a1) were evaluated by qRT-PCR and ELISA; apoptosis and mitochondrial superoxide anion production were assessed by cytometry; B-cell lymphoma (BCL)2, antioxidant enzymes, and p50 and p65 NF-κB subunits were analyzed by qRT-PCR. Celecoxib and GS alone or co-incubated with IL-1ß significantly reduced expression and release of cyclooxygenase (COX)-2, prostaglandin (PG)E2, IL-1ß, IL-6, tumor necrosis factor (TNF)-α, and MMPs, while it increased Col2a1, compared to baseline or IL-1ß. Both drugs reduced apoptosis and superoxide production; reduced the expression of superoxide dismutase, catalase, and nuclear factor erythroid; increased BCL2; and limited p50 and p65. Celecoxib and GS combination demonstrated an increased inhibitory effect on IL-1ß than that observed by each single treatment. Drugs effects were potentiated by pre-incubation with BAY-11-7082. Our results demonstrated the synergistic effect of celecoxib and GS on OA chondrocyte metabolism, apoptosis, and oxidative stress through the modulation of the NF-κB pathway, supporting their combined use for the treatment of OA.


Assuntos
Celecoxib/farmacologia , Glucosamina/farmacologia , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Celecoxib/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Quimioterapia Combinada/métodos , Glucosamina/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Nitrilas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia
8.
Mol Pharmacol ; 100(4): 335-347, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34349026

RESUMO

G protein-coupled receptor (GPR) 40 is a free fatty acid receptor mainly expressed in pancreatic ß-cells activated by medium- and long-chain fatty acids and regulating insulin secretion via an increase in cytosolic free calcium ([Ca2+]i). Activation of GPR40 in pancreatic ß-cells may improve glycemic control in type 2 diabetes through enhancement of glucose-stimulated insulin secretion. However, the most clinically advanced GPR40 agonist-TAK-875 (fasiglifam)-was withdrawn from phase III because of its hepatotoxicity resulting from the inhibition of pivotal bile acid transporters. Here, we present a new, potent CPL207280 agonist and compare it with fasiglifam in numerous in vitro and in vivo studies. CPL207280 showed greater potency than fasiglifam in a Ca2+ influx assay with a human GPR40 protein (EC50 = 80 vs. 270 nM, respectively). At the 10 µM concentration, it showed 3.9 times greater enhancement of glucose-stimulated insulin secretion in mouse MIN6 pancreatic ß-cells. In Wistar Han rats and C57BL6 mice challenged with glucose, CPL207280 stimulated 2.5 times greater insulin secretion without causing hypoglycemia at 10 mg/kg compared with fasiglifam. In three diabetic rat models, CPL207280 improved glucose tolerance and increased insulin area under the curve by 212%, 142%, and 347%, respectively. Evaluation of potential off-target activity (Safety47) and selectivity of CPL207280 (at 10 µM) did not show any significant off-target activity. We conclude that CPL207280 is a potent enhancer of glucose-stimulated insulin secretion in animal disease models with no risk of hypoglycemia at therapeutic doses. Therefore, we propose the CPL207280 compound as a compelling candidate for type 2 diabetes treatment. SIGNIFICANCE STATEMENT: GPR40 is a well-known and promising target for diabetes. This study is the first to show the safety and effects of CPL207280, a novel GPR40/free fatty acid receptor 1 agonist, on glucose homeostasis both in vitro and in vivo in different diabetic animal models. Therefore, we propose the CPL207280 compound as a novel, glucose-lowering agent, overcoming the unmet medical needs of patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Benzofuranos/química , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Células CHO , Cricetinae , Cricetulus , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Ratos Zucker , Sulfonas/química , Sulfonas/farmacologia , Sulfonas/uso terapêutico
9.
J Med Chem ; 64(16): 12322-12358, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34378914

RESUMO

Rhodesain is a major cysteine protease of Trypanosoma brucei rhodesiense, a pathogen causing Human African Trypanosomiasis, and a validated drug target. Recently, we reported the development of α-halovinylsulfones as a new class of covalent reversible cysteine protease inhibitors. Here, α-fluorovinylsulfones/-sulfonates were optimized for rhodesain based on molecular modeling approaches. 2d, the most potent and selective inhibitor in the series, shows a single-digit nanomolar affinity and high selectivity toward mammalian cathepsins B and L. Enzymatic dilution assays and MS experiments indicate that 2d is a slow-tight binder (Ki = 3 nM). Furthermore, the nonfluorinated 2d-(H) shows favorable metabolism and biodistribution by accumulation in mice brain tissue after intraperitoneal and oral administration. The highest antitrypanosomal activity was observed for inhibitors with an N-terminal 2,3-dihydrobenzo[b][1,4]dioxine group and a 4-Me-Phe residue in P2 (2e/4e) with nanomolar EC50 values (0.14/0.80 µM). The different mechanisms of reversible and irreversible inhibitors were explained using QM/MM calculations and MD simulations.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Sulfonas/farmacologia , Ácidos Sulfônicos/farmacologia , Tripanossomicidas/farmacologia , Compostos de Vinila/farmacologia , Animais , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/toxicidade , Ensaios Enzimáticos , Feminino , Células HeLa , Humanos , Cinética , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Ligação Proteica , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/metabolismo , Sulfonas/toxicidade , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/metabolismo , Ácidos Sulfônicos/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/metabolismo , Tripanossomicidas/toxicidade , Trypanosoma brucei brucei/efeitos dos fármacos , Compostos de Vinila/síntese química , Compostos de Vinila/metabolismo , Compostos de Vinila/toxicidade
10.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205045

RESUMO

SGLT-2i's exert direct anti-inflammatory and anti-oxidative effects on resting endothelial cells. However, endothelial cells are constantly exposed to mechanical forces such as cyclic stretch. Enhanced stretch increases the production of reactive oxygen species (ROS) and thereby impairs endothelial barrier function. We hypothesized that the SGLT-2i's empagliflozin (EMPA), dapagliflozin (DAPA) and canagliflozin (CANA) exert an anti-oxidative effect and alleviate cyclic stretch-induced endothelial permeability in human coronary artery endothelial cells (HCAECs). HCAECs were pre-incubated with one of the SGLT-2i's (1 µM EMPA, 1 µM DAPA and 3 µM CANA) for 2 h, followed by 10% stretch for 24 h. HCAECs exposed to 5% stretch were considered as control. Involvement of ROS was measured using N-acetyl-l-cysteine (NAC). The sodium-hydrogen exchanger 1 (NHE1) and NADPH oxidases (NOXs) were inhibited by cariporide, or GKT136901, respectively. Cell permeability and ROS were investigated by fluorescence intensity imaging. Cell permeability and ROS production were increased by 10% stretch; EMPA, DAPA and CANA decreased this effect significantly. Cariporide and GKT136901 inhibited stretch-induced ROS production but neither of them further reduced ROS production when combined with EMPA. SGLT-2i's improve the barrier dysfunction of HCAECs under enhanced stretch and this effect might be mediated through scavenging of ROS. Anti-oxidative effect of SGLT-2i's might be partially mediated by inhibition of NHE1 and NOXs.


Assuntos
Células Endoteliais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Transporte de Sódio-Glucose/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Compostos Benzidrílicos/farmacologia , Canagliflozina/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucosídeos/farmacologia , Guanidinas/farmacologia , Humanos , Inflamação/genética , Inflamação/patologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Estresse Oxidativo/genética , Pirazóis/farmacologia , Piridonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Transporte de Sódio-Glucose/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Trocador 1 de Sódio-Hidrogênio/genética , Estresse Mecânico , Sulfonas/farmacologia
11.
Am J Physiol Cell Physiol ; 321(3): C471-C488, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288721

RESUMO

Intestinal NaCl, HCO3-, and fluid absorption are strongly dependent on apical Na+/H+ exchange. The intestine expresses three presumably apical sodium-hydrogen exchanger (NHE) isoforms: NHE2, NHE3, and NHE8. We addressed the role of NHE8 [solute carrier 9A8 (SLC9A8)] and its interplay with NHE2 (SLC9A2) in luminal proton extrusion during acute and chronic enterocyte acidosis and studied the differential effects of NHE8 and NHE2 on enterocyte proliferation. In contrast to NHE3, which was upregulated in differentiated versus undifferentiated colonoids, the expression of NHE2 and NHE8 remained constant during differentiation of colonoids and Caco2Bbe cells. Heterogeneously expressed Flag-tagged rat (r)Nhe8 and human (h)NHE8 translocated to the apical membrane of Caco2Bbe cells. rNhe8 and hNHE8, when expressed in NHE-deficient PS120 fibroblasts showed higher sensitivity to HOE642 compared to NHE2. Lentiviral shRNA knockdown of endogenous NHE2 in Caco2Bbe cells (C2Bbe/shNHE2) resulted in a decreased steady-state intracellular pH (pHi), an increased NHE8 mRNA expression, and augmented NHE8-mediated apical NHE activity. Lentiviral shRNA knockdown of endogenous NHE8 in Caco2Bbe cells (C2Bbe/shNHE8) resulted in a decreased steady-state pHi as well, accompanied by decreased NHE2 mRNA expression and activity, which together contributed to reduced apical NHE activity in the NHE8-knockdown cells. Chronic acidosis increased NHE8 but not NHE2 mRNA expression. Alterations in NHE2 and NHE8 expression/activity affected proliferation, with C2Bbe/shNHE2 cells having lower and C2Bbe/shNHE8 having higher proliferative capacity, accompanied by amplified ERK1/2 signaling pathway and increased EGFR expression in the latter cell line. Thus, both Na+/H+ exchangers have distinct functions during cellular homeostasis by triggering different signaling pathways to regulate cellular proliferation and pHi control.


Assuntos
Colo/metabolismo , Enterócitos/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Colo/citologia , Colo/efeitos dos fármacos , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Guanidinas/farmacologia , Células HT29 , Homeostase/genética , Humanos , Concentração de Íons de Hidrogênio , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/metabolismo , Sulfonas/farmacologia
12.
Am J Physiol Renal Physiol ; 321(2): F225-F235, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229478

RESUMO

Oxygen homeostasis disturbances play a critical role in the pathogenesis of acute kidney injury (AKI). The transcription factor hypoxia-inducible factor-1 (HIF-1) is a master regulator of adaptive responses to hypoxia. Aside from posttranslational hydroxylation, the mechanism of HIF-1 regulation in AKI remains largely unclear. In this study, the mechanism of HIF-α regulation in AKI was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level in ischemia-reperfusion-, unilateral ureteral obstruction-, and sepsis-induced AKI models, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB, which plays a central role in the inflammation response, was involved in the increasing expression of HIF-1α in AKI, as evidenced by pharmacological modulation (NF-κB inhibitor BAY11-7082). Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription, which occurred not only under hypoxic conditions but also under normoxic conditions. Moreover, the induced HIF-1α by inflammation protected against tubular injury in AKI. Thus, our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.NEW & NOTEWORTHY Here, the mechanism of hypoxia-inducible factor-α (HIF-α) regulation in acute kidney injury (AKI) was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB was involved in the increasing expression of HIF-1α in AKI. Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription. Our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.


Assuntos
Injúria Renal Aguda/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , NF-kappa B/metabolismo , Injúria Renal Aguda/genética , Animais , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/genética , Inflamação/metabolismo , Rim/efeitos dos fármacos , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Nitrilas/farmacologia , Sulfonas/farmacologia
13.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073890

RESUMO

The breast cancer resistance protein (BCRP) is an important efflux transporter in the blood-brain barrier (BBB), protecting the brain from a wide range of substances. In this study, we investigated if BCRP function is affected by bisphenol A (BPA), a high production volume chemical used in common consumer products, as well as by bisphenol F (BPF) and bisphenol S (BPS), which are used to substitute BPA. We employed a transwell-based in vitro cell model of iPSC-derived brain microvascular endothelial cells, where BCRP function was assessed by measuring the intracellular accumulation of its substrate Hoechst 33342. Additionally, we used in silico modelling to predict if the bisphenols could directly interact with BCRP. Our results showed that BPA significantly inhibits the transport function of BCRP. Additionally, BPA was predicted to bind to the cavity that is targeted by known BCRP inhibitors. Taken together, our findings demonstrate that BPA inhibits BCRP function in vitro, probably by direct interaction with the transporter. This effect might contribute to BPA's known impact on neurodevelopment.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Compostos Benzidrílicos/farmacologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Fenóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Compostos Benzidrílicos/química , Compostos Benzidrílicos/toxicidade , Benzimidazóis/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Expressão Gênica , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fenóis/química , Fenóis/toxicidade , Ligação Proteica , Sulfonas/química , Sulfonas/farmacologia , Sulfonas/toxicidade
14.
Psychopharmacology (Berl) ; 238(8): 2133-2146, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34173034

RESUMO

RATIONALE: Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive dysfunction and memory impairment. G protein-coupled receptor 40 (GPR40) is expressed in brain in addition to periphery and is associated with cognitive function such as space orientation, memory, and learning. However, the effects and mechanisms of GPR40 agonist in improving the AD progression remain largely unknown. OBJECTIVES: The present study aimed to investigate the therapeutic effects and mechanisms of a potent and selective GPR40 agonist TAK-875 on the APPswe/PS1dE9 mice. RESULTS: The results showed that intracerebroventricular administration of TAK-875 significantly rescued cognitive deficits in APPswe/PS1dE9 mice, and these effects may be mediated by the regulation of phospholipase C/protein kinase C signaling pathway, which enhanced α-secretase ADAM10 activity, promoted amyloid precursor protein non-amyloidogenic processing pathway, and reduced ß-amyloid production. CONCLUSIONS: These results suggest that GPR40 may be a potential therapeutic target for AD, and GPR40 agonists may become promising AD drugs in the future.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Benzofuranos/uso terapêutico , Encéfalo/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Sulfonas/uso terapêutico , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Benzofuranos/farmacologia , Encéfalo/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Humanos , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Receptores Acoplados a Proteínas G/metabolismo , Sulfonas/farmacologia
15.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068941

RESUMO

Diabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo. Proximal tubular epithelial cells and diabetic DBA/2J mice were treated with NSC697923 and/or ramipril. K63-Ub protein accumulation along with α-SMA, collagen I and III, FSP-1, vimentin, p16INK4A expression, SA-α Gal staining, Sirius Red, and PAS staining were measured. Finally, we measured the urinary albumin to creatinine ratio (uACR), and urinary miR-27b-3p expression in mice. NSC697923, both alone and in association with ramipril, in vitro and in vivo inhibited hyperglycemia-induced epithelial to mesenchymal transition by significantly reducing K63-Ub proteins, α-SMA, collagen I, vimentin, FSP-1 expression, and collagen III along with tubulointerstitial and glomerular fibrosis. Treated mice also showed recovery of urinary miR-27b-3p and restored expression of p16INK4A. Moreover, NSC697923 in combination with ramipril demonstrated a trend in the reduction of uACR. In conclusion, we suggest that selective inhibition of K63-Ub, when combined with the conventional treatment with ACE inhibitors, might represent a novel treatment strategy to prevent the progression of fibrosis and proteinuria in diabetic nephropathy and we propose miR-27b-3p as a biomarker of treatment efficacy.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/prevenção & controle , Fibrose/prevenção & controle , Lisina/química , Nitrofuranos/farmacologia , Ramipril/farmacologia , Sulfonas/farmacologia , Ubiquitinação , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Quimioterapia Combinada , Feminino , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Camundongos , Camundongos Endogâmicos DBA
16.
Molecules ; 26(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069070

RESUMO

A series of novel thiochromanone derivatives containing a sulfonyl hydrazone moiety were designed and synthesized. Their structures were determined by 1H-NMR, 13C-NMR, and HRMS. Bioassay results showed that most of the target compounds revealed moderate to good antibacterial activities against Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicolaby, and Xanthomonas axonopodis pv. citri. Compound 4i had the best inhibitory activity against Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicolaby, and Xanthomonas axonopodis pv. citri, with the EC50 values of 8.67, 12.65, and 10.62 µg/mL, which were superior to those of Bismerthiazol and Thiodiazole-copper. Meanwhile, bioassay results showed that all of the target compounds proved to have lower antifungal activities against Sclerotinia sclerotiorum, Fusarium oxysporum, Gibberella zeae, Rhizoctonia solani, Verticillium dahlia, and Botrytis cinerea than those of Carbendazim.


Assuntos
Cromanos/síntese química , Cromanos/farmacologia , Hidrazonas/síntese química , Hidrazonas/farmacologia , Sulfonas/síntese química , Sulfonas/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Cromanos/química , Fungos/efeitos dos fármacos , Hidrazonas/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Xanthomonas/efeitos dos fármacos
17.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G185-G199, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132108

RESUMO

Recent studies in our lab have shown that the KV7 channel activator, flupirtine, inhibits colonic epithelial Cl- secretion through effects on submucosal neurons of the enteric nervous system (ENS). We hypothesized that flupirtine would also stimulate Na+ absorption as a result of reduced secretory ENS input to the epithelium. To test this hypothesis, unidirectional 22Na+ fluxes were measured under voltage-clamped conditions. Pharmacological approaches using an Ussing-style recording chamber combined with immunofluorescence microscopy techniques were used to determine the effect of flupirtine on active Na+ transport in the rat colon. Flupirtine stimulated electroneutral Na+ absorption in partially seromuscular-stripped colonic tissues, while simultaneously inhibiting short-circuit current (ISC; i.e., Cl- secretion). Both of these effects were attenuated by pretreatment with the ENS inhibitor, tetrodotoxin. The Na+/H+ exchanger isoform 3 (NHE-3)-selective inhibitor, S3226, significantly inhibited flupirtine-stimulated Na+ absorption, whereas the NHE-2-selective inhibitor HOE-694 did not. NHE-3 localization near the apical membranes of surface epithelial cells was also more apparent in flupirtine-treated colon versus control. Flupirtine did not alter epithelial Na+ channel (ENaC)-mediated Na+ absorption in distal colonic tissues obtained from hyperaldosteronaemic rats and had no effect in the normal ileum but did stimulate Na+ absorption in the proximal colon. Finally, the parallel effects of flupirtine on ISC (Cl- secretion) and Na+ absorption were significantly correlated with each other. Together, these data indicate that flupirtine stimulates NHE-3-dependent Na+ absorption, likely as a result of reduced stimulatory input to the colonic epithelium by submucosal ENS neurons.NEW & NOTEWORTHY We present a novel mechanism regarding regulation of epithelial ion transport by enteric neurons. Activation of neuronal KV7 K+ channels markedly stimulates Na+ absorption and inhibits Cl- secretion across the colonic epithelium. This may be useful in developing new treatments for diarrheal disorders, such as irritable bowel syndrome with diarrhea (IBS-D).


Assuntos
Aminopiridinas/farmacologia , Colo/metabolismo , Sistema Nervoso Entérico/metabolismo , Absorção Intestinal , Sódio/metabolismo , Animais , Colo/efeitos dos fármacos , Canais Epiteliais de Sódio/metabolismo , Guanidinas/farmacologia , Masculino , Moduladores de Transporte de Membrana/farmacologia , Metacrilatos/farmacologia , Ratos , Ratos Sprague-Dawley , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/metabolismo , Sulfonas/farmacologia
18.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128478

RESUMO

Therapies targeting VEGF have proven only modestly effective for the treatment of proliferative sickle cell retinopathy (PSR), the leading cause of blindness in patients with sickle cell disease. Here, we shift our attention upstream from the genes that promote retinal neovascularization (NV) to the transcription factors that regulate their expression. We demonstrated increased expression of HIF-1α and HIF-2α in the ischemic inner retina of PSR eyes. Although both HIFs participated in promoting VEGF expression by hypoxic retinal Müller cells, HIF-1 alone was sufficient to promote retinal NV in mice, suggesting that therapies targeting only HIF-2 would not be adequate to prevent PSR. Nonetheless, administration of a HIF-2-specific inhibitor currently in clinical trials (PT2385) inhibited NV in the oxygen-induced retinopathy (OIR) mouse model. To unravel these discordant observations, we examined the expression of HIFs in OIR mice and demonstrated rapid but transient accumulation of HIF-1α but delayed and sustained accumulation of HIF-2α; simultaneous expression of HIF-1α and HIF-2α was not observed. Staggered HIF expression was corroborated in hypoxic adult mouse retinal explants but not in human retinal organoids, suggesting that this phenomenon may be unique to mice. Using pharmacological inhibition or an in vivo nanoparticle-mediated RNAi approach, we demonstrated that inhibiting either HIF was effective for preventing NV in OIR mice. Collectively, these results explain why inhibition of either HIF-1α or HIF-2α is equally effective for preventing retinal NV in mice but suggest that therapies targeting both HIFs will be necessary to prevent NV in patients with PSR.


Assuntos
Anemia Falciforme/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Anemia Falciforme/complicações , Anemia Falciforme/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Modelos Animais de Doenças , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Indanos/farmacologia , Camundongos , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/genética , Sulfonas/farmacologia
19.
BMC Cancer ; 21(1): 493, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941107

RESUMO

BACKGROUND: Glioblastoma (GBM) is the deadliest and the most common primary brain tumor in adults. The invasiveness and proliferation of GBM cells can be decreased through the inhibition of Wnt/ß-catenin pathway. In this regard, celecoxib is a promising agent, but other COXIBs and 2,5-dimethylcelecoxib (2,5-DMC) await elucidation. Thus, the aim of this study was to analyze the impact of celecoxib, 2,5-DMC, etori-, rofe-, and valdecoxib on GBM cell viability and the activity of Wnt/ß-catenin pathway. In addition, the combination of the compounds with temozolomide (TMZ) was also evaluated. Cell cycle distribution and apoptosis, MGMT methylation level, COX-2 and PGE2 EP4 protein levels were also determined in order to better understand the molecular mechanisms exerted by these compounds and to find out which of them can serve best in GBM therapy. METHODS: Celecoxib, 2,5-DMC, etori-, rofe- and valdecoxib were evaluated using three commercially available and two patient-derived GBM cell lines. Cell viability was analyzed using MTT assay, whereas alterations in MGMT methylation level were determined using MS-HRM method. The impact of COXIBs, in the presence and absence of TMZ, on Wnt pathway was measured on the basis of the expression of ß-catenin target genes. Cell cycle distribution and apoptosis analysis were performed using flow cytometry. COX-2 and PGE2 EP4 receptor expression were evaluated using Western blot analysis. RESULTS: Wnt/ß-catenin pathway was attenuated by COXIBs and 2,5-DMC irrespective of the COX-2 expression profile of the treated cells, their MGMT methylation status, or radio/chemoresistance. Celecoxib and 2,5-DMC were the most cytotoxic. Cell cycle distribution was altered, and apoptosis was induced after the treatment with celecoxib, 2,5-DMC, etori- and valdecoxib in T98G cell line. COXIBs and 2,5-DMC did not influence MGMT methylation status, but inhibited COX-2/PGE2/EP4 pathway. CONCLUSIONS: Not only celecoxib, but also 2,5-DMC, etori-, rofe- and valdecoxib should be further investigated as potential good anti-GBM therapeutics.


Assuntos
Neoplasias Encefálicas/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Glioblastoma/metabolismo , Proteínas de Neoplasias/efeitos dos fármacos , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Idoso , Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Celecoxib/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Metilases de Modificação do DNA/efeitos dos fármacos , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/metabolismo , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Etoricoxib/farmacologia , Feminino , Glioblastoma/tratamento farmacológico , Humanos , Isoxazóis/farmacologia , Lactonas/farmacologia , Masculino , Metilação , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Receptores de Prostaglandina E Subtipo EP4/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Sulfonas/farmacologia , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/efeitos dos fármacos , beta Catenina/metabolismo
20.
Biomed Res Int ; 2021: 5598869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954183

RESUMO

Objective: Acute kidney injury (AKI) is a common and severe complication in critically ill patients, often caused by renal ischemia-reperfusion (RIR). Previous studies have confirmed that lung injury, rather than renal injury, is one of the leading causes of AKI-induced death. The pathophysiological mechanisms of acute lung injury (ALI) resulting from AKI are very complex and remain unclear. In the present study, we aimed to explore the protective effects and potential mechanism of sodium hydrosulfide (NaHS) on lung injury in RIR mice. Methods: The RIR model was established in wild-type and Nrf2-/- mice. Different groups of mice were treated with NaHS and MCC950. Lung tissues were harvested to detect lung injury, mitochondrial function, cell apoptosis, the NLRP3 inflammasome, and Nrf2 pathway-related molecules. Results: RIR led to a deterioration in lung histology, the wet/dry weight ratio, PaO2/FiO2, and mitochondrial function, in addition to stimulating the activation of the NLRP3 and Nrf2 pathways. MCC950 alleviated mitochondrial dysfunction, lung apoptosis, and histology injury in the lungs after RIR. NaHS treatment markedly improved the lung histological scores, the wet/dry weight ratio, bronchoalveolar lavage fluid (BALF) cell counts, BALF neutrophil counts, BALF neutrophil elastase activity, BALF protein concentration, PaO2/FiO2, mitochondrial morphology, the red/green fluorescence intensity that indicates changes in mitochondrial membrane potential, respiratory control rate (RCR), ATP, reactive oxygen species (ROS) release, and cell apoptosis via Nrf2-mediated NLRP3 pathway inhibition. Conclusion: NaHS protected against RIR-induced lung injury, mitochondrial dysfunction, and inflammation, which is associated with Nrf2 activation-mediated NLRP3 pathway inhibition.


Assuntos
Injúria Renal Aguda , Lesão Pulmonar Aguda , Traumatismo por Reperfusão , Transdução de Sinais/efeitos dos fármacos , Sulfetos/farmacologia , Injúria Renal Aguda/complicações , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Modelos Animais de Doenças , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inflamassomos/efeitos dos fármacos , Rim/química , Rim/efeitos dos fármacos , Pulmão/química , Pulmão/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...