Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Food Microbiol ; 101: 103890, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579849

RESUMO

Seroprevalence data for Toxoplasma gondii and Hepatitis E virus (HEV) in wild boar (Sus scrofa), roe deer (Capreolus capreolus), red deer (Cervus elaphus), mouflon (Ovis aries/musimon) and chamois (Rupicapra rupicapra) hunted/culled in northern Italy were used to fit seroprevalence distributions describing the exposure and co-exposure of the species to the two pathogens. The higher proportion of T. gondii and HEV seropositive animals was observed in wild boars with point estimate seroprevalence of 49% (N = 331) and 15% (N = 326) respectively. Data allowed comparisons by area (pre-Alpine Vs Alpine environment) for roe deer, red deer and mouflons. Contrasts between the distributions describing the uncertainty in seroprevalence suggest roe deer, red deer and mouflons have higher probability of being seropositive to T. gondii in pre-Alps. When considering HEV, few seropositive animals were detected and contrasts were symmetrically centred to zero for roe deer and red deer; mouflons shown higher probability of being seropositive in Alpine environment. HEV seropositive animals also included chamois (P = 5.1%, N = 97) in the Alpine districts, confirming circulation of HEV in remote areas. Evidence of HEV and T. gondii co-exposure was limited except for wild boars where it was observed in 30 samples representing 60% of the overall HEV-positive samples. Seroprevalence data of single infection and co-infection are extremely useful to investigate circulation of zoonotic pathogens in wild animals and estimate the foodborne risk of human exposure, however, these type of data do not directly translate into the presence/absence of the pathogen in seropositive and seronegative animals. At benefit of future development of quantitative risk assessments aiming at estimating the risk of human infection/co-infection via consumption of game meat, we developed and made available an online application that allows estimating the probability of the pathogen(s) being present as a function of seroprevalence data.


Assuntos
Cervos , Vírus da Hepatite E , Sus scrofa , Toxoplasma , Toxoplasmose Animal , Animais , Animais Selvagens , Coinfecção/veterinária , Cervos/parasitologia , Cervos/virologia , Doenças Transmitidas por Alimentos , Humanos , Itália , Carne/parasitologia , Carne/virologia , Estudos Soroepidemiológicos , Sus scrofa/parasitologia , Sus scrofa/virologia , Toxoplasmose Animal/epidemiologia
2.
Arch Virol ; 166(9): 2591-2596, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34244861

RESUMO

Between 2016 and 2018, the prevalence of porcine kobuvirus (PKoV) and porcine astrovirus (PAstV) in Korean wild boars (n = 845) was 28.0% and 10.7%, respectively. Coinfection by both viruses was detected in 5.1% of boars. Phylogenetic analysis revealed that 134 PKoV isolates belonged to diverse lineages within the species Aichivirus C; however, one strain (WKoV16CN-8627) clustered with bovine kobuvirus (Aichivirus B). Forty-seven PAstVs belonged to lineage PAstV4, and only one strain (WAst17JN-10931) was a novel addition to lineage PAstV2. The two viruses were more prevalent in boars weighing ≤ 60 kg than in boars weighing > 61 kg.


Assuntos
Kobuvirus/classificação , Kobuvirus/isolamento & purificação , Mamastrovirus/classificação , Mamastrovirus/isolamento & purificação , Filogenia , Sus scrofa/virologia , Animais , Infecções por Astroviridae/epidemiologia , Infecções por Astroviridae/virologia , Bovinos , DNA Viral , Diarreia/virologia , Fezes/virologia , Genótipo , Kobuvirus/genética , Mamastrovirus/genética , Prevalência , República da Coreia/epidemiologia , Análise de Sequência de DNA , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia
3.
Anim Genet ; 52(5): 744-748, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34309053

RESUMO

Alternative polyadenylation (APA) is a widespread post-transcriptional regulation mechanism that increases the biological complexity of transcriptome and proteome. However, it is unclear whether APA regulation plays a role in genetic resistance to porcine reproductive and respiratory syndrome virus (PRRSV). Here, we reported genome-wide APA regulation of porcine alveolar macrophages in PRRSV-resistant Tongcheng (TC) pigs and PRRSV-susceptible Large White (LW) pigs upon PRRSV infection. Using 3' mRNA sequencing strategy, we detected 75 981 high-quality APA sites in porcine alveolar macrophages of TC and LW pigs. Furthermore, 1202 and 1089 differentially expressed APA sites, as well as 79 and 117 untranslated region-APA switching genes were identified in TC pigs and LW pigs upon PRRSV infection respectively. The APA events in TC pigs and LW pigs were involved in different biological pathways, while APA events in TC pigs are directly associated with the immune response to PRRSV infection. In addition, we identified genetic variations affecting polyadenylation signal between TC pigs and LW pigs. These findings would provide helpful information on APA regulation for further understanding of genetic resistance to PRRSV.


Assuntos
Poliadenilação , Síndrome Respiratória e Reprodutiva Suína/genética , Sus scrofa/genética , Animais , Cruzamento , Regulação da Expressão Gênica , Macrófagos Alveolares/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína , Sus scrofa/virologia , Suínos
4.
Arch Virol ; 166(8): 2249-2254, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33999261

RESUMO

Porcine parvovirus 1 (PPV1) is a major cause of reproductive failure in pigs. To date, six additional porcine parvoviruses (PPV2-PPV7) have been identified. In this study, we detected 11 PPV1 strains, five PPV3 strains, three PPV4 strains, six PPV5 strains, five PPV6 strains, and one PPV7 strain in Korean wild boars. PPV1, -3, and -5, and PPV6 from Korean wild boars harbor conserved motifs within the Ca2+ binding loop and the catalytic center of the PLA1 motif. Intra-species recombination among PPV7 strains was also identified. Genetic characterization revealed that PPV1 from Korean wild boars may be similar to virulent PPV strains.


Assuntos
DNA Viral/genética , Infecções por Parvoviridae/virologia , Parvovirus Suíno/classificação , Sus scrofa/virologia , Substituição de Aminoácidos , Animais , Feminino , Técnicas de Genotipagem , Masculino , Parvovirus Suíno/genética , Parvovirus Suíno/isolamento & purificação , Filogenia , República da Coreia , Suínos
5.
Zoonoses Public Health ; 68(5): 503-515, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33987931

RESUMO

Swine influenza A viruses (S-IAV) circulate in wild boar populations worldwide. Subtypes primarily reflect those actually present within the respective pig industry. Accordingly, infections with swine H1N1, H1N2 and H3N2 have been reported for several regions of Germany. As pigs are susceptible not only to S-IAV but also to avian and human influenza A viruses, it is necessary to consider the possibility that new reassortant viruses with pandemic potential may arise in these new hosts. Therefore, in this study the impact of recent IAV epidemics on antibody prevalences in Bavarian wild boar was assessed. Important events considered were the H1N1pdm09 pandemic, which affected humans and swine, and the highly pathogenic avian influenza (HPAI) H5N8 panzootic in 2016 and 2017, affecting wild and domestic birds. IAV seroprevalences were determined analysing 1,396 samples from before and after the H5N8 panzootic, from various regions in Bavaria, a large administrative region in the South of Germany. Taken together, seroprevalences varied markedly from 1.44% to 12.59%, relative to region and time. However, no discrete correlation was found to population density either in wild boar or in pigs. Antibodies against H1N1 were the most prevalent. In addition, antibodies were detected reacting against H1N2 and against H1pdmNx reassortant viruses, already known to circulate in domestic pigs in Bavaria and notably also against the avian influenza A virus H5N8; the latter in samples taken in 2017. These results confirm the exposure of wild boar to IAV of diverse origin and the increasing variability of S-IAV present in the field. The necessity for continuous IAV surveillance not only of domestic swine but also of wildlife is emphasized.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Influenza A , Infecções por Orthomyxoviridae/veterinária , Sus scrofa/virologia , Animais , Anticorpos Antivirais/classificação , Especificidade de Anticorpos , Alemanha/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Estudos Soroepidemiológicos
6.
Vet Microbiol ; 258: 109128, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34058522

RESUMO

Although RNA viruses exhibit extensive sequence diversity, the mutation rate must be limited to ensure protein functions that maintain the viral life cycle. Here, we compared the whole genome sequences of 150 isolates of classical swine fever virus (CSFV), obtained from a single epidemic that occurred in Japan during 2018-2020. After the detection of the first case, the disease spread among both farm pigs and wild boars and caused severe impact on the pig industry. To evaluate the diversification of the CSFV genome that eliminated mutations negatively affecting viral transmission, the substitution sets inherited by at least two isolates were separately evaluated as shared single nucleotide variants (SNVs) or shared single amino acid variants (SAVs). Comparisons of 12 protein-coding regions indicated that the percentages of SNVs and SAVs in the multifunctional nonstructural protein NS3 were the lowest, and shared SAVs were not detected in another nonstructural protein, NS4A. This demonstrated purifying negative selection suppressing changes in the protein sequences of NS3 and NS4A during virus transmission in the field. In contrast, a high possibility of nonsynonymous substitution among shared SNVs was detected only in genes encoding the secreted protein Erns and the nonstructural protein NS2, suggesting positive selection during the epidemic. Mapping of shared SAVs to the three-dimensional structure of Erns revealed that shared SAVs were not present in the substrate-binding sites but were instead localized to the peripheral region of the protein. These data will support efforts toward the development of diagnostic methods, recombinant vaccines, and antiviral agents targeting conserved and indispensable viral genes.


Assuntos
Vírus da Febre Suína Clássica/genética , Peste Suína Clássica/virologia , Variação Genética , Sequência de Aminoácidos , Animais , Peste Suína Clássica/epidemiologia , Regulação Viral da Expressão Gênica , Japão/epidemiologia , Modelos Moleculares , Conformação Proteica , Sus scrofa/virologia , Suínos , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Arch Virol ; 166(6): 1671-1680, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33839921

RESUMO

Mammalian orthoreoviruses (MRVs) have been identified in various mammalian species, including humans, bats, and pigs. However, isolation and complete genome sequences of MRVs from wild boars have not yet been reported. In this study, we isolated, sequenced, and analyzed an MRV from a free-living wild boar in Japan using the porcine-sapelovirus-resistant cell line N1380. Complete and empty virus particles were obtained from the N1380 cell culture supernatants, and complete genome sequences were obtained from complete virus particles. Sequence analysis revealed that the isolated MRV, named TY-14, could be classified as MRV3 and had a close genetic relationship to an MRV2 isolate from a lion in a Japanese zoo (L2, L3, and M3 genes) and a human MRV2 isolate from Japan (S2 gene). Phylogenetic analysis showed that TY-14 clustered only with bat MRVs in the M1 phylogenetic tree but formed a cluster with several animal MRVs in the M2 and S3 phylogenetic trees and branched independently in the L1, S1, and S4 phylogenetic trees, suggesting a genetic relationship to viruses of unknown origin. Recombination events were identified in the M2 gene. These results suggest that TY-14 was generated by reassortment and recombination events involving MRVs circulating in Japan, viruses from bats, and other viruses of unknown origin.


Assuntos
Fezes/virologia , Orthoreovirus/genética , Orthoreovirus/isolamento & purificação , Infecções por Reoviridae/veterinária , Sus scrofa/virologia , Animais , Linhagem Celular , Japão , Orthoreovirus/classificação , Vírus Reordenados/genética , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/virologia , Suínos
8.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669073

RESUMO

African swine fever (ASF) is a contagious viral hemorrhagic disease of domestic pigs and wild boars. The disease is notifiable to the World Organisation for Animal Health (OIE) and is responsible for high mortality and serious economic losses. PCR and real-time PCR (qPCR) are the OIE-recommended standard methods for the direct detection of African swine fever virus (ASFV) DNA. The aim of our work was the simplification and standardization of the molecular diagnostic workflow in the lab. For validation of this "easy lab" workflow, different sample materials from animal trials were collected and analyzed (EDTA blood, serum, oral swabs, chewing ropes, and tissue samples) to identify the optimal sample material for diagnostics in live animals. Based on our data, the EDTA blood samples or bloody tissue samples represent the best specimens for ASFV detection in the early and late phases of infection. The application of prefilled ready-to-use reagents for nucleic acid extraction or the use of a Tissue Lysis Reagent (TLR) delivers simple and reliable alternatives for the release of the ASFV nucleic acids. For the qPCR detection of ASFV, different published and commercial kits were compared. Here, a lyophilized commercial kit shows the best results mainly based on the increased template input. The good results of the "easy lab" strategy could be confirmed by the ASFV detection in field samples from wild boars collected from the 2020 ASFV outbreak in Germany. Appropriate internal control systems for extraction and PCR are key features of the "easy lab" concept and reduce the risk of false-negative and false-positive results. In addition, the use of easy-to-handle machines and software reduces training efforts and the misinterpretation of results. The PCR diagnostics based on the "easy lab" strategy can realize a high sensitivity and specificity comparable to the standard PCR methods and should be especially usable for labs with limited experiences and resources.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/diagnóstico , DNA Viral/genética , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sus scrofa/virologia , Suínos/virologia , Febre Suína Africana/sangue , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Animais , DNA Viral/isolamento & purificação , Surtos de Doenças/veterinária , Alemanha , Padrões de Referência , Sensibilidade e Especificidade
9.
J Wildl Dis ; 57(1): 168-171, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33635970

RESUMO

Serum samples obtained from 474 wild boars (Sus scrofa) were collected from June 2017 to September 2018 from various areas of northern and southern Poland. Serum samples were examined by enzyme-linked immunosorbent assay. However, West Nile virus (WNV) antibodies were not detected. Previous studies on WNV in Poland have focused on experimental evidence and the presence of WNV antibodies in wild birds, horses, and humans, indicating a need for more surveys of domestic and wild mammals in Poland.


Assuntos
Sus scrofa/virologia , Doenças dos Suínos/virologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Polônia/epidemiologia , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia
10.
Prev Vet Med ; 188: 105281, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33530012

RESUMO

Pigs (Sus scrofa) may be important surveillance targets for risk assessment and risk-based control planning against emerging zoonoses. Pigs have high contact rates with humans and other animals, transmit similar pathogens as humans including CoVs, and serve as reservoirs and intermediate hosts for notable human pandemics. Wild and domestic pigs both interface with humans and each other but have unique ecologies that demand different surveillance strategies. Three fundamental questions shape any surveillance program: where, when, and how can surveillance be conducted to optimize the surveillance objective? Using theory of mechanisms of zoonotic spillover and data on risk factors, we propose a framework for determining where surveillance might begin initially to maximize a detection in each host species at their interface. We illustrate the utility of the framework using data from the United States. We then discuss variables to consider in refining when and how to conduct surveillance. Recent advances in accounting for opportunistic sampling designs and in translating serology samples into infection times provide promising directions for extracting spatio-temporal estimates of disease risk from typical surveillance data. Such robust estimates of population-level disease risk allow surveillance plans to be updated in space and time based on new information (adaptive surveillance) thus optimizing allocation of surveillance resources to maximize the quality of risk assessment insight.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Vigilância em Saúde Pública/métodos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Zoonoses/epidemiologia , Animais , Animais Selvagens/virologia , Coronavirus/isolamento & purificação , Reservatórios de Doenças/virologia , Humanos , Sus scrofa/virologia , Suínos/virologia , Zoonoses/transmissão
11.
Viruses ; 13(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535675

RESUMO

Hepatitis E virus (HEV), a major cause of viral hepatitis worldwide, is considered an emerging foodborne zoonosis in Europe. Pigs (Sus scrofa domestica) and wild boars (S. scrofa) are recognized as important HEV reservoirs. Additionally, HEV infection and exposure have been described in cervids. In Norway, HEV has been identified in pigs and humans; however, little is known regarding its presence in wild ungulates in the country. We used a species-independent double-antigen sandwich ELISA to detect antibodies against HEV in the sera of 715 wild ungulates from Norway, including 164 moose (Alces alces), 186 wild Eurasian tundra reindeer (Rangifer tarandus tarandus), 177 red deer (Cervus elaphus), 86 European roe deer (Capreolus capreolus), and 102 muskoxen (Ovibos moschatus). The overall seroprevalence was 12.3% (88/715). Wild reindeer had the highest seropositivity (23.1%, 43/186), followed by moose (19.5%, 32/164), muskoxen (5.9%, 6/102), and red deer (4%, 7/177). All roe deer were negative. According to our results, HEV is circulating in wild ungulates in Norway. The high seroprevalence observed in wild reindeer and moose indicates that these species may be potential reservoirs of HEV. To the authors' knowledge, this is the first report of HEV exposure in reindeer from Europe and in muskoxen worldwide.


Assuntos
Animais Selvagens/sangue , Anticorpos Antivirais/sangue , Vírus da Hepatite E/imunologia , Hepatite E/veterinária , Ruminantes/sangue , Animais , Animais Selvagens/virologia , Cervos/sangue , Cervos/virologia , Hepatite E/sangue , Hepatite E/epidemiologia , Vírus da Hepatite E/classificação , Vírus da Hepatite E/genética , Noruega/epidemiologia , Rena/sangue , Rena/virologia , Ruminantes/virologia , Estudos Soroepidemiológicos , Sus scrofa/sangue , Sus scrofa/virologia , Suínos , Doenças dos Suínos/sangue
12.
Food Environ Virol ; 13(2): 146-153, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33630244

RESUMO

Hepatitis E virus (HEV) is the causative agent of hepatitis E, an emerging public health infection which has an increasing incidence across Europe. Because of the apparent lack of species barriers, HEV was characterized as a zoonotic agent. Swine are recognized as the main reservoir, but HEV is also found in wild animals such as ungulates, lagomorphs, and bats. Our work aimed at detecting the HEV presence in wild fauna in two hunting areas of Northern Italy (Parma and Sondrio areas) with different environmental and anthropic characteristics to investigate its possible role as reservoir. Liver samples were collected from wild boars, red deer, roe deer and chamois, and viral identification was carried out by One-Step RT Real-time PCR. Positive samples were genotyped, and phylogenetic analysis was performed. The virus was found only in the wild boar population, with different prevalence and subtypes in the two areas (14% HEV3a and 1.2% close to HEV3f in Parma and Sondrio, respectively). Wild ruminants seem otherwise to pose a marginal risk. Given the high pig farm density in the Parma area, and expansion of the wild boar population, continuous monitoring of the strains circulating in wildlife is crucial.


Assuntos
Animais Selvagens/virologia , Reservatórios de Doenças/virologia , Variação Genética , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Hepatite E/virologia , Zoonoses Virais/virologia , Animais , Cervos/virologia , Hepatite E/transmissão , Vírus da Hepatite E/classificação , Itália , Filogenia , Rupicapra/virologia , Sus scrofa/virologia , Zoonoses Virais/transmissão
13.
Braz J Microbiol ; 52(2): 1037-1042, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33638128

RESUMO

Bovine viral diarrhea virus (BVDV) is a major pathogen in cattle herds. Considering the epidemiological importance of pestiviruses and the process of wild boar invasion in Brazil, this study aimed to investigate the presence of BVDV in free-living boars. Forty-nine free-living wild boars were collected by exotic wildlife controller agents in 2017 and 2018. The presence of BVDV antibodies was evaluated in 42 serum samples using the virus neutralization test, and the detection of BVDV RNA was performed from the 5'UTR genomic region by RT-PCR assay in 49 lung tissue samples followed by sequencing of amplicons. BVDV neutralizing antibodies in serum were not identified in any of the evaluated samples. However, 3/49 (6.12%) lung samples were positive for BVDV RNA and classified one as BVDV-1a and two as 1d subgenotype. This report identified BVDV RNA in free-living wild boars and these results should be considered in BVDV control programs, especially in extensive beef cattle rearing systems.


Assuntos
Animais Selvagens/virologia , Vírus da Diarreia Viral Bovina Tipo 1/isolamento & purificação , Sus scrofa/virologia , Regiões 5' não Traduzidas/genética , Animais , Anticorpos Antivirais/sangue , Brasil , Vírus da Diarreia Viral Bovina Tipo 1/classificação , Vírus da Diarreia Viral Bovina Tipo 1/genética , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Genótipo , Pulmão/virologia , Infecções por Pestivirus/veterinária , Infecções por Pestivirus/virologia , Filogenia , RNA Viral/genética , Suínos , Doenças dos Suínos/virologia
14.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33443221

RESUMO

Reston virus (RESTV), an ebolavirus, causes clinical disease in macaques but has yet only been associated with rare asymptomatic infections in humans. Its 2008 emergence in pigs in the Philippines raised concerns about food safety, pathogenicity, and zoonotic potential, questions that are still unanswered. Until today, the virulence of RESTV for pigs has remained elusive, with unclear pathogenicity in naturally infected animals and only one experimental study demonstrating susceptibility and evidence for shedding but no disease. Here we show that combined oropharyngeal and nasal infection of young (3- to 7-wk-old) Yorkshire cross pigs with RESTV resulted in severe respiratory disease, with most animals reaching humane endpoint within a week. RESTV-infected pigs developed severe cyanosis, tachypnea, and acute interstitial pneumonia, with RESTV shedding from oronasal mucosal membranes. Our studies indicate that RESTV should be considered a livestock pathogen with zoonotic potential.


Assuntos
Ebolavirus/imunologia , Insuficiência Respiratória/virologia , Doenças dos Suínos/virologia , Animais , Anticorpos Antivirais/imunologia , Causalidade , Vírus de DNA/patogenicidade , Surtos de Doenças/prevenção & controle , Ebolavirus/metabolismo , Ebolavirus/patogenicidade , Filipinas/epidemiologia , Insuficiência Respiratória/veterinária , Sus scrofa/virologia , Suínos/virologia , Doenças dos Suínos/epidemiologia , Eliminação de Partículas Virais/imunologia
15.
Arch Virol ; 166(3): 871-879, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33495899

RESUMO

African swine fever (ASF), caused by African swine fever virus (ASFV), was first reported in Kenya in 1921, but an effective vaccine or antiviral drug is still not available for ASFV control. Rapid and effective diagnostics are key steps in managing ASF. We generated two monoclonal antibodies (MAbs) against the ASFV phosphoprotein P30 and designated these as 3H7A7 and 6H9A10. Epitope mapping revealed that MAb 3H7A7 and 6H9A10 recognized aa 144-154 and aa 12-18 of P30, respectively. A signal-amplified sandwich colloidal gold test strip for rapid detection of ASFV was developed based using these MAbs. Sensitivity and specificity analysis showed that the detection limit of the strip was 2.16 ng of P30. The strip only reacted with ASFV and did not react with other common porcine viruses. In detection tests using 153 clinical field samples including sera, plasma, anticoagulant-treated blood, and tissue, the strip had 95.42% concordance with real-time PCR. The new MAbs specific for P30 and the rapid colloidal gold test strip helped to reveal novel B cell epitopes in P30 and provide an efficient diagnostic test for on-site clinical detection of ASF.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/diagnóstico , Anticorpos Monoclonais/imunologia , Antígenos Virais/imunologia , Fosfoproteínas/imunologia , Proteínas Virais/imunologia , Febre Suína Africana/virologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Coloide de Ouro/química , Camundongos , Sensibilidade e Especificidade , Coloração e Rotulagem , Sus scrofa/virologia , Suínos
16.
Arch Virol ; 166(3): 779-788, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33433693

RESUMO

Ungulate protoparvovirus 1, also known as porcine parvovirus 1 (PPV1), is considered to be one of the major causes of reproductive failure in pig breeding herds. Other parvoviruses have also been identified in pigs, including ungulate tetraparvovirus 3, or PPV2, ungulate tetraparvovirus 2, or PPV3, and ungulate copiparvovirus 2, or PPV4, but their significance for pigs is unknown. In the present study, the prevalence of PPV1-4 was investigated using a total of 231 lung and serum samples collected from slaughterhouses in 13 provinces throughout Vietnam. The overall prevalence was 54.5% (126/231) for PPV1, 28.0% (65/231) for PPV2, 17.7% (41/231) for PPV3, and 7.8% (18/231) for PPV4. While PPV1 and PPV2 were found in 11 provinces, PPV4 was detected in only three provinces. Co-circulation of PPV1, PPV2 and PPV3 was frequently observed, with PPV1/PPV2 coinfection predominating, with 20.8% (48/231). All four PPVs were detected together in only one sample from Thua Thien Hue. Three nearly complete PPV4 genome sequences of 5,453 nt were determined and deposited in the GenBank database. Alignment and comparison of the three genome sequences showed 99.5-99.6% nucleotide sequence identity, and the deduced amino acid sequences of open reading frames 1-3 were 99.6-99.9% identical to each other, 98.9-99.3% identical to those of other Vietnamese strains and 99.4-99.7% identical to those of Chinese strains). Phylogenetic analysis further confirmed a close relationship between Vietnamese and Chinese PPV4 strains. These results are the first to report the prevalence of PPV1, PPV2, PPV3, and PPV4 and nearly complete genomic sequences of PPV4 in pigs from slaughterhouses in Vietnam.


Assuntos
Infecções por Parvoviridae/epidemiologia , Parvovirinae/classificação , Parvovirinae/genética , Doenças dos Suínos/epidemiologia , Matadouros , Sequência de Aminoácidos/genética , Animais , DNA Viral/genética , Genoma/genética , Genoma Viral/genética , Infecções por Parvoviridae/patologia , Parvovirinae/isolamento & purificação , Análise de Sequência de DNA , Sus scrofa/virologia , Suínos , Doenças dos Suínos/virologia , Vietnã/epidemiologia
17.
Arch Virol ; 166(3): 885-890, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33454861

RESUMO

African swine fever (ASF) is a highly infectious disease of pigs caused by African swine fever virus (ASFV). In order to identify potential genetic variations among ASFV strains circulating in Vietnam, 26 ASFV isolates from organs and blood samples collected from domestic pigs from 23 different provinces of northern, central and southern Vietnam during 2019-2020 ASF outbreaks were genetically characterized. Nucleotide sequences were determined for a portion of the B646L (p72) gene, the complete E183L (p54) gene, the variable region of EP402R (CD2v), the central variable region (CVR) of pB602L, and a tandem repeat sequence (TRS) between the I73R and I329L genes. Analysis of the partial B646L (p72) and EP402R (CD2v) gene sequences and the full-length E183L (p54) gene sequence showed that all 26 ASFV isolates belonged to genotype II and serotype VIII and that they were identical to the strain Georgia/2007/1 and all ASFV strains sequenced in China. The TRS between the I73R and I329L genes contained a 10-nucleotide insertion that was observed in the Chinese ASFV strain CN201801 isolated from domestic pigs in 2018, but not in the Georgia/2007/1 and China/Jilin/2018/boar strains isolated from wild boar in China. This is the first intra-epidemic genome analysis reported for the ASFV strains circulating in Vietnam.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Variação Genética/genética , Genoma Viral/genética , Vírus da Febre Suína Africana/isolamento & purificação , Sequência de Aminoácidos/genética , Animais , DNA Viral/genética , Mutagênese Insercional/genética , Análise de Sequência de DNA , Sus scrofa/virologia , Suínos , Sequências de Repetição em Tandem/genética , Vietnã/epidemiologia
18.
J Zoo Wildl Med ; 51(4): 981-984, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33480578

RESUMO

The control and elimination of pseudorabies (PR) is one of the most important goals in the pig industry. After the first PR outbreak in Korea in 1986, all pigs infected with PR virus (PRV) were removed, and a vaccination program for pigs was implemented. No PR has occurred in Korea since 2010, and vaccination was discontinued after 2013. Information on the seroprevalence of PRV in pigs, including wild boars (Sus scrofa), is important for evaluating the PR status in a country. In this study, 2.65% (28/1057) of the wild boars tested had antibodies against PRV in 2018, indicating that PRV has been circulating continuously in the wild boar population in Korea. Effective means should be implemented to prevent the transmission of PRV between wild and domestic pigs, because the wild boar is a potential reservoir host for PRV.


Assuntos
Anticorpos Antivirais/sangue , Herpesvirus Suídeo 1/imunologia , Sus scrofa/virologia , Animais , Testes de Neutralização , Pseudorraiva/epidemiologia , Pseudorraiva/virologia , República da Coreia/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia
19.
Arch Virol ; 166(2): 613-617, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33389103

RESUMO

To investigate the viral communities in diarrhoeal faeces of Tibetan pigs, 146 diarrhoeic samples were collected from 16 pigs farms on the Tibetan plateau. Nineteen viruses belonging to eleven viral taxonomic families were identified in a pooled library. Metagenomics analysis revealed that the viruses were mainly small linear and circular DNA viruses. Furthermore, sequences of 10 NS1 genes and two complete genomes of PBuVs were obtained by PCR amplification. Sequence comparisons and phylogenetic analysis showed that the PBuVs from Tibetan pigs displayed more abundant genetic diversity than those from domestic pigs. This is the first description of the faecal viral community in Tibetan pigs associated with diarrhoea.


Assuntos
Vírus de DNA/genética , Diarreia/virologia , Variação Genética/genética , Sus scrofa/virologia , Doenças dos Suínos/virologia , Animais , China , Fezes/virologia , Genoma Viral/genética , Metagenômica/métodos , Filogenia , Suínos , Tibet
20.
Virol J ; 18(1): 23, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478547

RESUMO

BACKGROUND: African swine fever (ASF), a highly contagious hemorrhagic disease, affects domestic pigs in the Democratic Republic of Congo (DRC) where regular outbreaks are reported leading to high mortality rates approaching 100% in the affected regions. No study on the characteristics of the complete genome of strains responsible for ASF outbreaks in the South Kivu province of DRC is available, limited a better understanding of molecular evolution and spread of this virus within the country. The present study aimed at determining the complete genome sequence of ASFV strains genotype X involved in 2018-2019 ASF disease outbreaks in South Kivu province of DRC. MATERIALS AND METHODS: Genomic DNA of a spleen sample from an ASFV genotype X-positive domestic pig in Uvira, during the 2018-2019 outbreaks in South Kivu, was sequenced using the Illumina HiSeq X platform. Obtained trimmed reads using Geneious Prime 2020.0.4 were blasted against a pig reference genome then contigs were generated from the unmapped reads enriched in ASFV DNA using Spades implemented in Geneious 2020.0.4. The assembly of the complete genome sequence of ASFV was achieved from the longest overlapping contigs. The new genome was annotated with the genome annotation transfer utility (GATU) software and the CLC Genomics Workbench 8 software was further used to search for any ORFs that failed to be identified by GATU. Subsequent analyses of the newly determined Uvira ASFV genotype X genome were done using BLAST for databases search, CLUSTAL W for multiple sequences alignments and MEGA X for phylogeny. RESULTS: 42 Gbp paired-end reads of 150 bp long were obtained containing about 0.1% of ASFV DNA. The assembled Uvira ASFV genome, termed Uvira B53, was 180,916 bp long that could be assembled in 2 contigs. The Uvira B53genome had a GC content of 38.5%, encoded 168 open reading frames (ORFs) and had 98.8% nucleotide identity with the reference ASFV genotype X Kenya 1950. The phylogenetic relationship with selected representative genomes clustered the Uvira B53 strain together with ASFV genotype X reported to date (Kenya 1950 and Ken05/Tk1). Multiple genome sequences comparison with the two reference ASFV genotype X strains showed that 130 of the 168 ORFs were fully conserved in the Uvira B53. The other 38 ORFs were divergent mainly due to SNPs and indels (deletions and insertions). Most of 46 multigene family (MGF) genes identified were affected by various genetic variations. However, 8 MGF ORFs present in Kenya 1950 and Ken05/Tk1 were absent from the Uvira B53 genome including three members of MGF 360, four of MGF 110 and one of MGF 100 while one MGF ORF (MGF 360-1L) at the left end of the genome was truncated in Uvira B53. Moreover, ORFs DP96R and p285L were also absent in the Uvira B53 genome. In contrast, the ORF MGF 110-5L present in Uvira B53 and Ken05/Tk1 was missing in Kenya 1950. The analysis of the intergenic region between the I73R and I329L genes also revealed sequence variations between the three genotype X strains mainly characterized by a deletion of 69 bp in Uvira B53 and 36 bp in Kenya 1950, compared to Ken05/Tk1. Assessment of the CD2v (EP402R) antigen unveiled the presence of SNPs and indels particularly in the PPPKPY tandem repeat region between selected variants representing the eight serogroups reported to date. Uvira B53 had identical CD2v variable region to the Uganda (KM609361) strain, the only other ASFV serogroup 7 reported to date. CONCLUSION: We report the first complete genome sequence of an African swine fever virus (ASFV) p72 genotype X and CD2v serogroup 7, termed Uvira B53. This study provides additional insights on genetic characteristics and evolution of ASFV useful for tracing the geographical spread of ASF and essential for improved design of control and management strategies against ASF.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Genoma Viral , Genótipo , Sus scrofa/virologia , Sequenciamento Completo do Genoma , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/classificação , Animais , DNA Viral/genética , República Democrática do Congo , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA , Sorogrupo , Suínos , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...