Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.983
Filtrar
1.
Opt Lett ; 45(19): 5428-5431, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001920

RESUMO

We show that waveguide sensors can enable a quantitative characterization of coronavirus spike glycoprotein-host-receptor binding-the process whereby coronaviruses enter human cells, causing disease. We demonstrate that such sensors can help quantify and eventually understand kinetic and thermodynamic properties of viruses that control their affinity to targeted cells, which is known to significantly vary in the course of virus evolution, e.g., from SARS-CoV to SARS-CoV-2, making the development of virus-specific drugs and vaccine difficult. With the binding rate constants and thermodynamic parameters as suggested by the latest SARS-CoV-2 research, optical sensors of SARS-CoV-2 spike protein-receptor binding may be within sight.


Assuntos
Betacoronavirus , Técnicas Biossensoriais , Infecções por Coronavirus , Óptica e Fotônica/instrumentação , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sítios de Ligação , Humanos , Ligação Proteica/fisiologia
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4208-4211, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018925

RESUMO

In this paper, a label-free biosensor is developed for monitoring the glucose level in the solution. A wireless passive inductor integrated cavity (IIC)-based biosensor is studied. The proposed IIC consists of a passive spiral inductor integrated cavity resonator for continuous monitoring of capillary blood glucose. The proposed method is based on the cavity perturbation theory, where the solution with different glucose levels perturbs and interacts with the passive IIC-based biosensor. The variation in the effective permittivity εeff and permeability µeff of the cavity resonator due to different glucose levels changes the equivalent capacitance and inductance of the proposed IIC. In turn, the corresponding resonance frequency changes. The in-vitro measurements are performed on deionized water glucose solutions of various glucose concentrations within the range of 75 mg/dL to 250 mg/dL. The results demonstrate that the sensor's resonant frequency increases with the increase in glucose level in the solution with a sensitivity of 32 kHz/mgdL-1.


Assuntos
Técnicas Biossensoriais , Glicemia , Automonitorização da Glicemia , Glucose , Próteses e Implantes
3.
Molecules ; 25(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066278

RESUMO

The global SARS-CoV-2 pandemic started late 2019 and currently continues unabated. The lag-time for developing vaccines means it is of paramount importance to be able to quickly develop and repurpose therapeutic drugs. Protein-based biosensors allow screening to be performed using routine molecular laboratory equipment without a need for expensive chemical reagents. Here we present a biosensor for the 3-chymotrypsin-like cysteine protease from SARS-CoV-2, comprising a FRET-capable pair of fluorescent proteins held in proximity by a protease cleavable linker. We demonstrate the utility of this biosensor for inhibitor discovery by screening 1280 compounds from the Library of Pharmaceutically Active Compounds collection. The screening identified 65 inhibitors, with the 20 most active exhibiting sub-micromolar inhibition of 3CLpro in follow-up EC50 assays. The top hits included several compounds not previously identified as 3CLpro inhibitors, in particular five members of a family of aporphine alkaloids that offer promise as new antiviral drug leads.


Assuntos
Betacoronavirus/efeitos dos fármacos , Técnicas Biossensoriais/métodos , Infecções por Coronavirus/tratamento farmacológico , Transferência Ressonante de Energia de Fluorescência/métodos , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Betacoronavirus/enzimologia , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Cisteína Endopeptidases , Ensaios de Triagem em Larga Escala , Humanos , Pandemias , Pneumonia Viral/virologia
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4008-4011, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018878

RESUMO

Research on biosignal (ExG) analysis is usually performed with expensive systems requiring connection with external computers for data processing. Consumer-grade low-cost wearable systems for bio-potential monitoring and embedded processing have been presented recently, but are not considered suitable for medical-grade analyses. This work presents a detailed quantitative comparative analysis of a recently presented fully-wearable low-power and low-cost platform (BioWolf) for ExG acquisition and embedded processing with two researchgrade acquisition systems, namely, ANTNeuro (EEG) and the Noraxon DTS (EMG). Our preliminary results demonstrate that BioWolf offers competitive performance in terms of electrical properties and classification accuracy. This paper also highlights distinctive features of BioWolf, such as real-time embedded processing, improved wearability, and energy-efficiency, which allows devising new types of experiments and usage scenarios for medical-grade biosignal processing in research and future clinical studies.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Estudos de Viabilidade
5.
Biosens Bioelectron ; 169: 112643, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007615

RESUMO

Detection of antibodies to upper respiratory pathogens is critical to surveillance, assessment of the immune status of individuals, vaccine development, and basic biology. The urgent need for antibody detection tools has proven particularly acute in the COVID-19 era. We report a multiplex label-free antigen microarray on the Arrayed Imaging Reflectometry (AIR) platform for detection of antibodies to SARS-CoV-2, SARS-CoV-1, MERS, three circulating coronavirus strains (HKU1, 229E, OC43) and three strains of influenza. We find that the array is readily able to distinguish uninfected from convalescent COVID-19 subjects, and provides quantitative information about total Ig, as well as IgG- and IgM-specific responses.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Coronavirus/sangue , Coronavirus/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Influenza Humana/sangue , Pneumonia Viral/sangue , Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Desenho de Equipamento , Células HEK293 , Humanos , Influenza Humana/diagnóstico , Influenza Humana/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Vírus da SARS/isolamento & purificação , Sensibilidade e Especificidade
6.
Anal Chem ; 92(19): 13396-13404, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32867467

RESUMO

Rapid, accurate, reliable, and risk-free tracking of pathogenic microorganisms at the single-cell level is critical to achieve efficient source control and prevent outbreaks of microbial infectious diseases. For the first time, we report a promising approach for integrating the concepts of a remarkably large Stokes shift and dual-recognition into a single matrix to develop a pathogenic microorganism stimuli-responsive ratiometric fluorescent nanoprobe with speed, cost efficiency, stability, ultrahigh specificity, and sensitivity. As a proof-of-concept, we selected the Gram-positive bacterium Staphylococcus aureus (S. aureus) as the target analyte model, which easily bound to its recognition aptamer and the broad-spectrum glycopeptide antibiotic vancomycin (Van). To improve the specificity and short sample-to-answer time, we employed classic noncovalent π-π stacking interactions as a driving force to trigger the binding of Van and aptamer dual-functionalized near-infrared (NIR) fluorescent Apt-Van-QDs to the surface of an unreported blue fluorescent π-rich electronic carbon nanoparticles (CNPs), achieving S. aureus stimuli-responsive ratiometric nanoprobe Apt-Van-QDs@CNPs. In the assembly of Apt-Van-QDs@CNPs, the blue CNPs (energy donor) and NIR Apt-Van-QDs (energy acceptor) became close to allow the fluorescence resonance energy transfer (FRET) process, leading to a remarkable blue fluorescence quenching for the CNPs at ∼465 nm and a clear NIR fluorescence enhancement for Apt-Van-QDs at ∼725 nm. In the presence of S. aureus, the FRET process from CNPs to Apt-Van-QDs was disrupted, causing the nanoprobe Apt-Van-QDs@CNPs to display a ratiometric fluorescent response to S. aureus, which exhibited a large Stokes shift of ∼260 nm and rapid sample-to-answer detection time (∼30.0 min). As expected, the nanoprobe Apt-Van-QDs@CNPs showed an ultrahigh specificity for ratiometric fluorescence detection of S. aureus with a good detection limit of 1.0 CFU/mL, allowing the assay at single-cell level. Moreover, we also carried out the precise analysis of S. aureus in actual samples with acceptable results. We believe that this work offers new insight into the rational design of efficient ratiometric nanoprobes for rapid on-site accurate screening of pathogenic microorganisms at the single-cell level in the early stages, especially during the worldwide spread of COVID-19 today.


Assuntos
Bactérias/química , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/síntese química , Nanotecnologia/métodos , Antibacterianos/farmacologia , Aptâmeros de Nucleotídeos , Infecções por Coronavirus/complicações , Infecções por Coronavirus/microbiologia , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Microbiologia de Alimentos/métodos , Humanos , Nanopartículas , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/microbiologia , Sensibilidade e Especificidade , Espectroscopia de Luz Próxima ao Infravermelho , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Vancomicina/farmacologia
7.
Nat Commun ; 11(1): 4880, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978375

RESUMO

Through advanced mechanistic modeling and the generation of large high-quality datasets, machine learning is becoming an integral part of understanding and engineering living systems. Here we show that mechanistic and machine learning models can be combined to enable accurate genotype-to-phenotype predictions. We use a genome-scale model to pinpoint engineering targets, efficient library construction of metabolic pathway designs, and high-throughput biosensor-enabled screening for training diverse machine learning algorithms. From a single data-generation cycle, this enables successful forward engineering of complex aromatic amino acid metabolism in yeast, with the best machine learning-guided design recommendations improving tryptophan titer and productivity by up to 74 and 43%, respectively, compared to the best designs used for algorithm training. Thus, this study highlights the power of combining mechanistic and machine learning models to effectively direct metabolic engineering efforts.


Assuntos
Aprendizado de Máquina , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Triptofano/metabolismo , Algoritmos , Aminoácidos/metabolismo , Fenômenos Bioquímicos , Técnicas Biossensoriais , Genótipo , Redes e Vias Metabólicas , Modelos Biológicos , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
8.
Nat Commun ; 11(1): 4851, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978386

RESUMO

Cell factories converting bio-based precursors to chemicals present an attractive avenue to a sustainable economy, yet screening of genetically diverse strain libraries to identify the best-performing whole-cell biocatalysts is a low-throughput endeavor. For this reason, transcriptional biosensors attract attention as they allow the screening of vast libraries when used in combination with fluorescence-activated cell sorting (FACS). However, broad ligand specificity of transcriptional regulators (TRs) often prohibits the development of such ultra-high-throughput screens. Here, we solve the structure of the TR LysG of Corynebacterium glutamicum, which detects all three basic amino acids. Based on this information, we follow a semi-rational engineering approach using a FACS-based screening/counterscreening strategy to generate an L-lysine insensitive LysG-based biosensor. This biosensor can be used to isolate L-histidine-producing strains by FACS, showing that TR engineering towards a more focused ligand spectrum can expand the scope of application of such metabolite sensors.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/química , Proteínas de Bactérias/química , Técnicas Biossensoriais/métodos , Ligantes , Engenharia Metabólica/métodos , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Cristalografia , Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Lisina/metabolismo , Técnicas Analíticas Microfluídicas , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Termodinâmica
9.
Nat Commun ; 11(1): 4405, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879320

RESUMO

Active biofluid management is central to the realization of wearable bioanalytical platforms that are poised to autonomously provide frequent, real-time, and accurate measures of biomarkers in epidermally-retrievable biofluids (e.g., sweat). Accordingly, here, a programmable epidermal microfluidic valving system is devised, which is capable of biofluid sampling, routing, and compartmentalization for biomarker analysis. At its core, the system is a network of individually-addressable microheater-controlled thermo-responsive hydrogel valves, augmented with a pressure regulation mechanism to accommodate pressure built-up, when interfacing sweat glands. The active biofluid control achieved by this system is harnessed to create unprecedented wearable bioanalytical capabilities at both the sensor level (decoupling the confounding influence of flow rate variability on sensor response) and the system level (facilitating context-based sensor selection/protection). Through integration with a wireless flexible printed circuit board and seamless bilateral communication with consumer electronics (e.g., smartwatch), contextually-relevant (scheduled/on-demand) on-body biomarker data acquisition/display was achieved.


Assuntos
Biomarcadores/análise , Técnicas Analíticas Microfluídicas/métodos , Microfluídica , Técnicas Biossensoriais , Epiderme/química , Humanos , Suor/química , Dispositivos Eletrônicos Vestíveis
10.
Nat Commun ; 11(1): 4482, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901011

RESUMO

Intracellular trafficking governs receptor signaling, pathogenesis, immune responses and fate of nanomedicines. These processes are typically tracked by observing colocalization of fluorescent markers using confocal microscopy. However, this method is low throughput, limited by the resolution of microscopy, and can miss fleeting interactions. To address this, we developed a localization sensor composed of a quenched SNAP-tag substrate (SNAPSwitch) that can be conjugated to biomolecules using click chemistry. SNAPSwitch enables quantitative detection of trafficking to locations of interest within live cells using flow cytometry. Using SNAPSwitch, we followed the trafficking of DNA complexes from endosomes into the cytosol and nucleus. We show that antibodies against the transferrin or hyaluronan receptor are initially sorted into different compartments following endocytosis. In addition, we can resolve which side of the cellular membrane material was located. These results demonstrate SNAPSwitch is a high-throughput and broadly applicable tool to quantitatively track localization of materials in cells.


Assuntos
DNA/metabolismo , Sondas Moleculares/química , Nanopartículas/metabolismo , Proteínas/metabolismo , Animais , Transporte Biológico Ativo , Técnicas Biossensoriais/métodos , Química Click , Citometria de Fluxo , Corantes Fluorescentes , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Técnicas de Sonda Molecular , Sondas Moleculares/metabolismo , Células NIH 3T3
11.
Talanta ; 220: 121392, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32928412

RESUMO

COVID-19 pandemic is a serious global health issue today due to the rapid human to human transmission of SARS-CoV-2, a new type of coronavirus that causes fatal pneumonia. SARS -CoV-2 has a faster rate of transmission than other coronaviruses such as SARS and MERS and until now there are no approved specific drugs or vaccines for treatment. Thus, early diagnosis is crucial to prevent the extensive spread of the disease. The reverse transcription-polymerase chain reaction (RT-PCR) is the most routinely used method until now to detect SARS-CoV-2 infections. However, several other faster and accurate assays are being developed for the diagnosis of COVID-19 aiming to control the spread of infection through the identification of patients and immediate isolation. In this review, we will discuss the various detection methods of the SARS-CoV-2 virus including the recent developments in immunological assays, amplification techniques as well as biosensors.


Assuntos
Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Técnicas Biossensoriais , Diagnóstico Precoce , Humanos , Imunoensaio , Pandemias , Reação em Cadeia da Polimerase
12.
Nat Commun ; 11(1): 4384, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873796

RESUMO

The ability to detect low concentrations of biomarkers in patient samples is one of the cornerstones of modern healthcare. In general, biosensing approaches are based on measuring signals resulting from the interaction of a large ensemble of molecules with the sensor. Here, we report a biosensor platform using DNA origami featuring a central cavity with a target-specific DNA aptamer coupled with a nanopore read-out to enable individual biomarker detection. We show that the modulation of the ion current through the nanopore upon the DNA origami translocation strongly depends on the presence of the biomarker in the cavity. We exploit this to generate a biosensing platform with a limit of detection of 3 nM and capable of the detection of human C-reactive protein (CRP) in clinically relevant fluids. Future development of this approach may enable multiplexed biomarker detection by using ribbons of DNA origami with integrated barcoding.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , DNA/química , Nanoestruturas/química , Imagem Individual de Molécula/instrumentação , Biomarcadores/análise , Proteína C-Reativa/análise , Desenho de Equipamento , Humanos , Limite de Detecção , Nanotecnologia/métodos
13.
J Environ Sci (China) ; 97: 19-24, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32933735

RESUMO

Bisphenol A (BPA) is one of the environmental endocrine disruptors (EDCs), and BPA contamination in environment can cause high risks to human health. Rapid determination of BPA on sites is in high demand in environmental analysis. Taking advantage of aptamers as affinity ligands and fluorescence anisotropy (FA) analysis, we developed a simple and rapid FA assay for BPA by employing a single tetramethylrhodamine (TMR) labeled short 35-mer DNA aptamer against BPA. The assay is based on the BPA-binding induced conformation change of TMR-labeled aptamer and alteration of interaction between TMR and guanine bases, resulting in change of FA signals. We screened the FA change of aptamer probes having TMR label on a specific site of the aptamer upon BPA addition. The aptamer with a TMR label on the 22nd T base showed large FA-decreasing response to BPA and maintained good binding affinity to BPA. By using this TMR-labeled aptamer, we achieved FA detection of BPA with a detection limit of 0.5 µmol/L under the optimized conditions. This assay was selective towards BPA and enabled the detection of BPA spiked in tap water sample, showing the potential applications on water samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Compostos Benzidrílicos , Polarização de Fluorescência , Humanos , Limite de Detecção , Fenóis
14.
Biosens Bioelectron ; 166: 112431, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32862842

RESUMO

Last few decades, viruses are a real menace to human safety. Therefore, the rapid identification of viruses should be one of the best ways to prevent an outbreak and important implications for medical healthcare. The recent outbreak of coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus which belongs to the single-stranded, positive-strand RNA viruses. The pandemic dimension spread of COVID-19 poses a severe threat to the health and lives of seven billion people worldwide. There is a growing urgency worldwide to establish a point-of-care device for the rapid detection of COVID-19 to prevent subsequent secondary spread. Therefore, the need for sensitive, selective, and rapid diagnostic devices plays a vital role in selecting appropriate treatments and to prevent the epidemics. During the last decade, electrochemical biosensors have emerged as reliable analytical devices and represent a new promising tool for the detection of different pathogenic viruses. This review summarizes the state of the art of different virus detection with currently available electrochemical detection methods. Moreover, this review discusses different fabrication techniques, detection principles, and applications of various virus biosensors. Future research also looks at the use of electrochemical biosensors regarding a potential detection kit for the rapid identification of the COVID-19.


Assuntos
Betacoronavirus , Técnicas Biossensoriais/instrumentação , Técnicas de Laboratório Clínico/instrumentação , Infecções por Coronavirus/diagnóstico , Técnicas Eletroquímicas/instrumentação , Pneumonia Viral/diagnóstico , Vírus/isolamento & purificação , Animais , Betacoronavirus/isolamento & purificação , Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Desenho de Equipamento , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Pandemias , Pneumonia Viral/virologia , Testes Imediatos , Vírus/patogenicidade
15.
PLoS One ; 15(9): e0237719, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32886714

RESUMO

PURPOSE: This study sought to assess the performance of the Fitbit Charge HR, a consumer-level multi-sensor activity tracker, to measure physical activity and sleep in children. METHODS: 59 healthy boys and girls aged 9-11 years old wore a Fitbit Charge HR, and accuracy of physical activity measures were evaluated relative to research-grade measures taken during a combination of 14 standardized laboratory- and field-based assessments of sitting, stationary cycling, treadmill walking or jogging, stair walking, outdoor walking, and agility drills. Accuracy of sleep measures were evaluated relative to polysomnography (PSG) in 26 boys and girls during an at-home unattended PSG overnight recording. The primary analyses included assessment of the agreement (biases) between measures using the Bland-Altman method, and epoch-by-epoch (EBE) analyses on a minute-by-minute basis. RESULTS: Fitbit Charge HR underestimated steps (~11.8 steps per minute), heart rate (~3.58 bpm), and metabolic equivalents (~0.55 METs per minute) and overestimated energy expenditure (~0.34 kcal per minute) relative to research-grade measures (p< 0.05). The device showed an overall accuracy of 84.8% for classifying moderate and vigorous physical activity (MVPA) and sedentary and light physical activity (SLPA) (sensitivity MVPA: 85.4%; specificity SLPA: 83.1%). Mean estimates of bias for measuring total sleep time, wake after sleep onset, and heart rate during sleep were 14 min, 9 min, and 1.06 bpm, respectively, with 95.8% sensitivity in classifying sleep and 56.3% specificity in classifying wake epochs. CONCLUSIONS: Fitbit Charge HR had adequate sensitivity in classifying moderate and vigorous intensity physical activity and sleep, but had limitations in detecting wake, and was more accurate in detecting heart rate during sleep than during exercise, in healthy children. Further research is needed to understand potential challenges and limitations of these consumer devices.


Assuntos
Monitores de Aptidão Física , Sono , Técnicas Biossensoriais/instrumentação , Criança , Metabolismo Energético , Exercício Físico , Feminino , Frequência Cardíaca , Humanos , Masculino , Polissonografia
16.
Biosens Bioelectron ; 169: 112642, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979593

RESUMO

The outbreaks of the infectious disease COVID-19 caused by SARS-CoV-2 seriously threatened the life of humans. A rapid, reliable and specific detection method was urgently needed. Herein, we reported a contamination-free visual detection method for SARS-CoV-2 with LAMP and CRISPR/Cas12a technology. CRISPR/Cas12a reagents were pre-added on the inner wall of the tube lid. After LAMP reaction, CRISPR/Cas12a reagents were flowed into the tube and mixed with amplicon solution by hand shaking, which can effectively avoid possible amplicon formed aerosol contamination caused by re-opening the lid after amplification. CRISPR/Cas12a can highly specific recognize target sequence and discriminately cleave single strand DNA probes (5'-6FAM 3'-BHQ1). With smart phone and portable 3D printing instrument, the produced fluorescence can be seen by naked eyes without any dedicated instruments, which is promising in the point-of-care detection. The whole amplification and detection process could be completed within 40 min with high sensitivity of 20 copies RNA of SARS-CoV-2. This reaction had high specificity and could avoid cross-reactivity with other common viruses such as influenza virus. For 7 positive and 3 negative respiratory swab samples provided by Zhejiang Provincial Center for Disease Control and Prevention, our detection results had 100% positive agreement and 100% negative agreement, which demonstrated the accuracy and application prospect of this method.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais/métodos , Infecções por Coronavirus/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia Viral/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Betacoronavirus/genética , Técnicas Biossensoriais/instrumentação , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infecções por Coronavirus/virologia , Desenho de Equipamento , Fluorescência , Humanos , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Pandemias , Pneumonia Viral/virologia , Sensibilidade e Especificidade , Smartphone
17.
Biosens Bioelectron ; 169: 112604, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980805

RESUMO

Virus severely endangers human life and health, and the detection of viruses is essential for the prevention and treatment of associated diseases. Metal-organic framework (MOF), a novel hybrid porous material which is bridged by the metal clusters and organic linkers, has become a promising biosensor platform for virus detection due to its outstanding properties including high surface area, adjustable pore size, easy modification, etc. However, the MOF-based sensing platforms for virus detection are rarely summarized. This review systematically divided the detection platforms into nucleic acid and immunological (antigen and antibody) detection, and the underlying sensing mechanisms were interpreted. The nucleic acid sensing was discussed based on the properties of MOF (such as metal ion, functional group, geometry structure, size, porosity, stability, etc.), revealing the relationship between the sensing performance and properties of MOF. Moreover, antibodies sensing based on the fluorescence detection and antigens sensing based on molecular imprinting or electrochemical immunoassay were highlighted. Furthermore, the remaining challenges and future development of MOF for virus detection were further discussed and proposed. This review will provide valuable references for the construction of sophisticated sensing platform for the detection of viruses, especially the 2019 coronavirus.


Assuntos
Técnicas Biossensoriais/métodos , Estruturas Metalorgânicas/química , Viroses/virologia , Vírus/isolamento & purificação , Animais , Anticorpos Antivirais/análise , Antígenos Virais/análise , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Modelos Moleculares , Impressão Molecular/instrumentação , Impressão Molecular/métodos , Ácidos Nucleicos/análise , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Viroses/diagnóstico
18.
Biosens Bioelectron ; 169: 112617, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998066

RESUMO

The outbreak of coronavirus disease (COVID-19) has caused a significant public health challenge worldwide. A lack of effective methods for screening potential patients, rapidly diagnosing suspected cases, and accurately monitoring of the epidemic in real time to prevent the rapid spread of COVID-19 raises significant difficulties in mitigating the epidemic in many countries. As effective point-of-care diagnosis tools, simple, low-cost and rapid sensors have the potential to greatly accelerate the screening and diagnosis of suspected patients to improve their treatment and care. In particular, there is evidence that multiple pathogens have been detected in sewage, including SARS-CoV-2, providing significant opportunities for the development of advanced sensors for wastewater-based epidemiology that provide an early warning of the pandemic within the population. Sensors could be used to screen potential carriers, provide real-time monitoring and control of the epidemic, and even support targeted drug screening and delivery within the integration of emerging mobile health (mHealth) technology. In this communication, we discuss the feasibility of an integrated point-of-care biosensor system with mobile health for wastewater-based epidemiology (iBMW) for early warning of COVID-19, screening and diagnosis of potential infectors, and improving health care and public health. The iBMW will provide an effective approach to prevent, evaluate and intervene in a fast, affordable and reliable way, thus enabling real-time guidance for the government in providing effective intervention and evaluating the effectiveness of intervention.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Telemedicina/instrumentação , Vigilância Epidemiológica Baseada em Águas Residuárias , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito , Esgotos/virologia
19.
Biosens Bioelectron ; 169: 112572, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916610

RESUMO

Convalescent serum with a high abundance of neutralization IgG is a promising therapeutic agent for rescuing COVID-19 patients in the critical stage. Knowing the concentration of SARS-CoV-2 S1-specific IgG is crucial in selecting appropriate convalescent serum donors. Here, we present a portable microfluidic ELISA technology for rapid (15 min), quantitative, and sensitive detection of anti-SARS-CoV-2 S1 IgG in human serum with only 8 µL sample volume. We first identified a humanized monoclonal IgG that has a high binding affinity and a relatively high specificity towards SARS-CoV-2 S1 protein, which can subsequently serve as the calibration standard of anti-SARS-CoV-2 S1 IgG in serological analyses. We then measured the abundance of anti-SARS-CoV-2 S1 IgG in 16 convalescent COVID-19 patients. Due to the availability of the calibration standard and the large dynamic range of our assay, we were able to identify "qualified donors" for convalescent serum therapy with only one fixed dilution factor (200 ×). Finally, we demonstrated that our technology can sensitively detect SARS-CoV-2 antigens (S1 and N proteins) with pg/mL level sensitivities in 40 min. Overall, our technology can greatly facilitate rapid, sensitive, and quantitative analysis of COVID-19 related markers for therapeutic, diagnostic, epidemiologic, and prognostic purposes.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Infecções por Coronavirus/virologia , Ensaio de Imunoadsorção Enzimática/instrumentação , Imunoglobulina G/sangue , Técnicas Analíticas Microfluídicas/instrumentação , Pneumonia Viral/virologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Antígenos Virais/sangue , Antígenos Virais/imunologia , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/instrumentação , Infecções por Coronavirus/terapia , Ensaio de Imunoadsorção Enzimática/economia , Desenho de Equipamento , Humanos , Imunização Passiva , Imunoglobulina G/imunologia , Limite de Detecção , Medições Luminescentes/economia , Medições Luminescentes/instrumentação , Técnicas Analíticas Microfluídicas/economia , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/terapia , Fatores de Tempo , Adulto Jovem
20.
J Biomed Nanotechnol ; 16(5): 715-720, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919490

RESUMO

Biomedical sensor that sense different molecules with a high refractive index sensitivity is proposed in this work. Plasmonic nanospiral antenna is mounted on a top surface of an optical fiber to reflect the incident optical signal back to the fiber. The reflected signal depends on the nanospiral antenna material, dimensions and the surrounding medium. Using streptavidin molecule, the nanospiral antenna have been simulated based on finite difference time domain method to optimize its dimensions. The optimum dimensions are 10 nm, 55 nm and 40 nm for inner-outer thicknesses and height respectively. The introduced biosensor can detect different molecules based on surface plasmonic resonance, which depends on the shifting of the peak wavelength according to the molecules type. The detected molecules are Streptavidin, Urease, Uricase molecules and Glucose oxidase and Cholesterol oxidase enzymes with a high sensitivity. The maximum refractive index sensitivity is obtained when sensing cholesterol oxidase molecules with 3028 nm/RIU at 3.58 µm peak wavelength. Figure of merit and quality factor are also calculated for all detected molecules. Finally, electric field and optical power, before and after binding, of the reflected signal are illustrated and discussed.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Fibras Ópticas , Refratometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA