Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.164
Filtrar
1.
Anticancer Res ; 40(1): 161-168, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892564

RESUMO

BACKGROUND: Arming of an oncolytic adenovirus (OAd) by inserting expression cassettes of therapeutic transgenes into the OAd genome is a promising approach to enhance the therapeutic effects of an OAd. Ideally, this approach would simultaneously promote the replication of an OAd in tumor cells and transgene product-mediated antitumor effects by expressing therapeutic transgenes. We previously demonstrated that knockdown of cullin 4A (CUL4A), which is an E3 ubiquitin ligase, significantly promoted adenovirus replication by increasing the c-JUN protein level. In addition, previous studies reported that CUL4A was highly expressed in various types of tumor, and was involved in tumor growth and metastasis. MATERIALS AND METHODS: In this study, we developed a novel OAd expressing a short-hairpin RNA (shRNA) against CUL4A (OAd-shCUL4A). RESULTS: OAd-shCUL4 mediated higher levels of cytotoxic effects on various types of human tumor cell than a conventional OAd. Higher levels of OAd genome copy numbers were found in the tumor cells for OAd-shCUL4A, compared with a conventional OAd. CONCLUSION: OAd-shCUL4A showed efficient antitumor effects by both enhancing OAd replication and inhibiting tumor cell growth.


Assuntos
Adenoviridae/genética , Proteínas Culina/genética , Vetores Genéticos/genética , Vírus Oncolíticos/genética , RNA Interferente Pequeno/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Terapia Viral Oncolítica , Interferência de RNA , Transdução Genética
2.
Anticancer Res ; 40(1): 177-190, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892566

RESUMO

BACKGROUND/AIM: The chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) regulates cancer cell proliferation and invasion via complex molecular mechanisms. We aimed to investigate whether COUP-TFII modulates proliferation and invasion of the colorectal adenocarcinoma cell line HT-29. MATERIALS AND METHODS: HT-29 cells were stably tranfected with COUP-TFII shRNA plasmid to knock-down COUP-TFII (COUP-TFII shRNA-HT-29 cells). Cell proliferation, colony formation assay, invasion assay, microarray assays and western blot analyses were performed. RESULTS: Cell proliferation and invasion were significantly enhanced in COUP-TFII shRNA-HT-29 cells. The protein levels of forkhead box C1 (FOXC1), p-Akt, p-glycogen synthase kinase-3ß (p-GSK-3ß), and ß-catenin, which are known to be involved in cell proliferation and invasion, were significantly increased in COUP-TFII shRNA-HT-29 cells. Akt inhibitor IV and dominant negative (DN)-Akt expression vector transfection reversed the increased proliferation and invasion, which was accompanied by decreased protein levels of p-Akt, p-GSK-3ß, ß-catenin and FOXC1. CONCLUSION: COUP-TFII knock-down promoted proliferation and invasion via activation of Akt/GSK-3ß/ß-catenin and up-regulation of FOXC1. Further studies on the molecular mechanism of interaction between ß-catenin and FOXC1 expression may reveal novel target molecules for metastatic colorectal cancer therapy.


Assuntos
Fator II de Transcrição COUP/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator II de Transcrição COUP/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , RNA Interferente Pequeno/genética
3.
Biosci Biotechnol Biochem ; 84(1): 111-117, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31512553

RESUMO

Slow skeletal muscle troponin T (TNNT1) has been reported to be correlated with several cancers, but there are no evidences proving that TNNT1 is required in colon adenocarcinoma (COAD). TNNT1 expression in COAD tissues and its prognostic significance were acquired from TCGA database. The proliferative, migratory, and invasive abilities of COAD cells were detected by CCK-8 and transwell assays, respectively. Correlations between TNNT1 and epithelial-mesenchymal transition (EMT)-related markers were determined using western blotting and Pearson's analysis. Our results stated that TNNT1 expression was high-regulated in COAD tissues, which was related with unfavorable prognosis of COAD patients. Functional analyses suggested that TNNT1 promoted the cellular behaviors. Moreover, aberrant expression of TNNT1 affected the expression level of EMT-related proteins. And TNNT1 was negatively linked with E-cadherin. In conclusion, our findings indicated that TNNT1 may promote the progression of COAD, mediating EMT process, and thus shed a novel light on COAD therapeutic treatments.


Assuntos
Adenocarcinoma/patologia , Movimento Celular , Proliferação de Células , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal , Troponina T/genética , Troponina T/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Bases de Dados Genéticas , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Invasividade Neoplásica , Prognóstico , Transfecção
4.
Gut ; 69(1): 177-186, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954949

RESUMO

OBJECTIVE: Increased de novo fatty acid (FA) synthesis and cholesterol biosynthesis have been independently described in many tumour types, including hepatocellular carcinoma (HCC). DESIGN: We investigated the functional contribution of fatty acid synthase (Fasn)-mediated de novo FA synthesis in a murine HCC model induced by loss of Pten and overexpression of c-Met (sgPten/c-Met) using liver-specific Fasn knockout mice. Expression arrays and lipidomic analysis were performed to characterise the global gene expression and lipid profiles, respectively, of sgPten/c-Met HCC from wild-type and Fasn knockout mice. Human HCC cell lines were used for in vitro studies. RESULTS: Ablation of Fasn significantly delayed sgPten/c-Met-driven hepatocarcinogenesis in mice. However, eventually, HCC emerged in Fasn knockout mice. Comparative genomic and lipidomic analyses revealed the upregulation of genes involved in cholesterol biosynthesis, as well as decreased triglyceride levels and increased cholesterol esters, in HCC from these mice. Mechanistically, loss of Fasn promoted nuclear localisation and activation of sterol regulatory element binding protein 2 (Srebp2), which triggered cholesterogenesis. Blocking cholesterol synthesis via the dominant negative form of Srebp2 (dnSrebp2) completely prevented sgPten/c-Met-driven hepatocarcinogenesis in Fasn knockout mice. Similarly, silencing of FASN resulted in increased SREBP2 activation and hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase (HMGCR) expression in human HCC cell lines. Concomitant inhibition of FASN-mediated FA synthesis and HMGCR-driven cholesterol production was highly detrimental for HCC cell growth in culture. CONCLUSION: Our study uncovers a novel functional crosstalk between aberrant lipogenesis and cholesterol biosynthesis pathways in hepatocarcinogenesis, whose concomitant inhibition might represent a therapeutic option for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Colesterol/biossíntese , Ácido Graxo Sintase Tipo I/metabolismo , Ácidos Graxos/biossíntese , Neoplasias Hepáticas/metabolismo , Animais , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Ácido Graxo Sintase Tipo I/genética , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Genômica , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Transcriptoma
5.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 54(12): 841-846, 2019 Dec 09.
Artigo em Chinês | MEDLINE | ID: mdl-31874485

RESUMO

Objective: To investigate the effect of PR domain zinc finger protein 9 (PRDM9), one of the histone methylated transferases, on osteogenic differentiation ability of periodontal ligament mesenchymal stem cells (PDLSC). Methods: PDLSC with PRDM9 gene knocked down by PRDM9 shRNA using recombinant lentiviral vector were allocated into the PRDM9sh group, and the transfected shRNA was as the control group. The gene expression efficiency was evaluated by reverse transcription polymerase chain reaction (RT-PCR). Alkaline phosphatase activity (ALP), alizarin red staining, mineralization and osteocalcin, which belongs to osteogenic differentiation markers detected by RT-PCR and Western blotting to detect the osteogenic differentiation ability of stem cells from periodontal ligaments in vitro. In vivo, PRDM9sh and control group cells was transplanted into the dorsal dermal to explore the osteogenesis. The area percentage of new osteogenic tissue was calculated by image pro software and statistically analyzed. Results: RT-PCR results showed that the relative expression of PRDM9 gene in PRDM9sh (0.460±0.017) was significantly lower than that in control group (1.000±0.107) (P<0.05). The results of ALP activity determined at 5 days postinduction in a significant decrease in PRDM9sh cells (0.762±0.063) compared with control group (1.225±0.058) (P<0.01). Alizarin red staining induced by osteogenesis at 2 weeks and 3 weeks showed that the staining of PRDM9sh was significantly lighter than that in control group. Quantitative calcium analysis results showed that the calcium ion concentration induced by osteogenesis at 2 weeks and 3 weeks [(0.071±0.004), (0.075±0.001)] in PRDM9sh was significantly lower than that in control group at 2 weeks and 3 weeks [(0.282±0.006), (0.485+0.004)] (P<0.01). RT-PCR results showed that the relative expression of osteocalcin mRNA in PRDM9sh (1.059±0.148) was significantly lower than that in control group at 2 weeks (2.542±0.190) (P<0.01). Western blotting results showed that osteocalcin expression in PRDM9sh was significantly lower than that in control group at 1 and 2 weeks after osteogenesis induction. Animal transplantation experiments results indicated that PRDM9 significantly inhibited the osteogenesis of PDLSC in vivo, and the proportion of osteogenic area calculated showed that the osteogenic capacity of PRDM9sh [(3.8±2.41)%] was significantly lower than that in control group [(24.54±7.06)%](P<0.05). Conclusions: Depletion of PRDM9 repressed the osteogenic differentiation of stem cells from periodontal ligament in vitro and in vivo.


Assuntos
Diferenciação Celular , Histona-Lisina N-Metiltransferase/genética , Osteogênese , Ligamento Periodontal/citologia , Células-Tronco/citologia , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes
6.
Yi Chuan ; 41(12): 1119-1128, 2019 Dec 20.
Artigo em Chinês | MEDLINE | ID: mdl-31857283

RESUMO

Porcine skeletal muscle development is a complex biological process, and differentiation of skeletal muscle satellite cells is an important part of skeletal muscle development. In recent years, it has been found that lncRNA plays an important role in the differentiation of skeletal muscle satellite cells. Here we investigate the effect of lncRNA TCONS_00815878 on the differentiation of porcine skeletal muscle satellite cells. We first used qRT-PCR to detect the expression levels of TCONS_00815878 in six tissues (heart, spleen, lung, kidney, back muscles and leg muscles) of Yorkshire piglets within seven days of birth. At the same time, the expression levels of TCONS_00815878 at five different time points from the embryonic stage to the postnatal stage (35 d, 45 d, 55 d of embryos, and 7 d, 200 d of postpartum leg muscles) were examined. The expression of the differentiation marker genes MyoD, MyoG and MyHC was examined by knocking down TCONS_00815878 in porcine skeletal muscle satellite cells using antisense oligonucleotides (ASO). The target gene of TCONS_00815878 was predicted by bioinformatics analysis, and the function and pathway of its target gene were predicted online using DAVID software. The results showed that TCONS_00815878 had the highest expression level in pig myocardium and leg muscles. Within seven days after birth, TCONS_00815878 increased in the muscle tissue of pigs, and reached the peak of expression level on the 7th day. During the process of proliferation and differentiation of porcine skeletal muscle satellite cells, the expression level of TCONS_00815878 increased during the differentiation stage and peaked at 30 h of differentiation. After knocking down TCONS_00815878, the expression levels of MyoD, MyoG and MyHC were decreased, but the expression level of MyoD was significantly decreased (P<0.05). In addition, functional predictions revealed that the target gene of TCONS_00815878 is enriched in multiple biological processes, such as glycolysis and pyruvate metabolism, related to skeletal muscle satellite cell differentiation. This study speculates that lncRNA TCONS_00815878 may promote the differentiation of porcine skeletal muscle satellite cells.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético , RNA Longo não Codificante , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Desenvolvimento Muscular , Músculo Esquelético/citologia , RNA Longo não Codificante/genética , Células Satélites de Músculo Esquelético/citologia , Suínos
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 35(9): 817-822, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31750824

RESUMO

Objective To investigate the role of RAD51 in cell proliferation, migration and chemosensitivity to temozolomide (TMZ) using U251 glioma cell line, and to clarify the underlying molecular mechanism. Methods TCGA database was utilized to analyze the expression changes of RAD51 in gliomas. RAD51 was over-expressed or knocked down in U251 glioma cells via lentivirus infection, or its activity was inhibited by small molecule inhibitors. Cell proliferation and migration ability were examined by CCK-8 assay, colony formation assay, and scratch wound-healing assay; CCK-8 assay and flow cytometry were performed to assess the effect of RAD51 on the sensitivity of glioma cells upon the treatment of temozolomide. Western blotting was used to determine the alteration of P53. Results The expression of RAD51 significantly increased in glioma tissues. RAD51 enhanced the proliferation and migration ability of U251 glioma cells; knockdown of RAD51 enhanced the sensitivity of U251 glioma cells to temozolomide. Over-expression of RAD51 increased the expression of P53, whereas knockdown of RAD51 decreased the expression of P53. Conclusion RAD51 plays an oncogene function in glioma cells. RAD51 over-expression enhances the proliferation and migration of glioma cells. RAD51 knockdown increases the sensitivity of glioma cells to temozolomide.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Glioblastoma/patologia , Rad51 Recombinase/metabolismo , Temozolomida/farmacologia , Apoptose , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos
8.
Zhonghua Zhong Liu Za Zhi ; 41(11): 813-819, 2019 Nov 23.
Artigo em Chinês | MEDLINE | ID: mdl-31770847

RESUMO

Objective: To investigate the effects of heme oxygenase-1 (HO-1) knockdown on proliferation, invasion and migration of lung adenocarcinoma A549 cells and explore the mechanism. Methods: The expression levels of HO-1 mRNA in human bronchial epithelial cells (HBECs) and human lung cancer cell lines (A549, H1299, H358 and H1993) were detected by real-time quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry (IHC) was used to detect the expression level of HO-1 in human lung adenocarcinoma specimens. The HO-1 short hairpin RNA (shRNA) was transfected into A549 cells by RNA interference technique. HO-1 stably deleted A549 cells were selected (HO-1 shRNA group) and verified by RT-qPCR and western blot. HO-1 shRNA A549 cells and control shRNA A549 cells were treated with the inducer of autophagy Torin1 or its inhibitor Bafilomycin A1 (Baf A1), respectively. The expressions of autophagic markers LC3B and p62 were determined by western blot. The proliferation, invasion and migration abilities of each group of A549 cells were assessed by cell counting, Transwell and wound healing assays, respectively. Results: The expressions of HO-1 mRNA in lung cancer cell lines (A549, H1299, H358 and H1993) were significantly higher than that of HBECs, and HO-1 upregulated in human lung adenocarcinoma. The expression of p62 protein and the ratio of LC3B-Ⅱ/ LC3B-Ⅰ in no treatment group, Torin1 treatment group and Baf A1 treatment group were significantly higher than those of the corresponding control group (P<0.05). After 11 days of culture, the number of cells in HO-1 shRNA group were 41.8%, 30.4% and 14.0% of the corresponding control group, respectively. The number of lower chamber cells in HO-1 shRNA group were (35.7±2.1), (27.0±1.0) and (38.0±1.0)/field, respectively, which were lower than (66.0±9.2), (39.3±1.2) and (43.0±2.6)/field of the corresponding control group, respectively (P<0.05). The migration distances of HO-1 shRNA group were (7.47±0.91) mm, (4.23±0.82) mm and (5.42±0.24) mm, which were lower than (10.07±1.26) mm, (7.14±0.07) mm and (12.04±0.80) mm of the corresponding control groups, respectively (P<0.05). Conclusion: Knockdown of HO-1 inhibits the proliferation, invasion and migration of A549 cells by impeding autophagy.


Assuntos
Adenocarcinoma de Pulmão/patologia , Autofagia , Heme Oxigenase-1/genética , Neoplasias Pulmonares/patologia , Células A549 , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Invasividade Neoplásica , RNA Interferente Pequeno
9.
Plant Mol Biol ; 101(4-5): 507-516, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31617145

RESUMO

KEY MESSAGE: MMDH2 gene negatively regulates Cd tolerance by modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling, thus, affecting the expression of PDR8. The molecular mechanism by which plants respond to stress caused by cadmium (Cd), one of the most toxic heavy metals to plants, is not well understood. Here, we show that MMDH2, a gene encoding mitochondrial malate dehydrogenase, is involved in Cd stress tolerance in Arabidopsis. The expression of MMDH2 was repressed by Cd stress. The mmdh2 knockdown mutants showed enhanced Cd tolerance, while the MMDH2-overexpressing lines were sensitive to Cd. Under normal and Cd stress conditions, lower H2O2 levels were detected in mmdh2 mutant plants than in wild-type plants. In contrast, higher H2O2 levels were found in MMDH2-overexpressing lines, and they were negatively correlated with malondialdehyde levels. In addition, the expression of the PDR8, a gene encoding a Cd efflux pump, increased and decreased in the mmdh2 mutant and MMDH2-overexpressing lines, in association with lower and higher Cd concentrations, respectively. These results suggest that the MMDH2 gene negatively regulates Cd tolerance by modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling, thus, affecting the expression of PDR8.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cádmio/metabolismo , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência , Estresse Fisiológico
10.
Neoplasma ; 66(6): 896-907, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31607129

RESUMO

Malic enzyme 3 (ME3) aberrant expression contributes to the development of human malignancies. ME3 expression was higher in pancreatic cancer tissues than that in non-tumor tissues, and patients with higher ME3 levels had significantly shorter survival than those with lower levels analyzed by of Badea and TCGA databases. Further, the abilities of proliferation, migration and invasion in pancreatic cancer cells were inhibited by ME3 knockdown and were promoted by ME3 overexpression. Meanwhile, ME3 can promote EMT in pancreatic cancer cells possibly by regulation of TGF-ß/Smad2/3 signaling pathway. In conclusion, ME3 is extensively involved in carcinogenesis of pancreatic cancer and may become a new candidate target for diagnosis, treatment and prognosis of pancreatic cancer.


Assuntos
Transição Epitelial-Mesenquimal , Malato Desidrogenase (NADP+)/metabolismo , Neoplasias Pancreáticas/enzimologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Malato Desidrogenase (NADP+)/genética , Invasividade Neoplásica , Neoplasias Pancreáticas/patologia
11.
Neoplasma ; 66(6): 918-929, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31607134

RESUMO

Protein arginine methyltransferase 1 (PRMT1) is dysregulated in a number of human cancers. Herein, we report that PRMT1 expression is directly associated with epithelial-mesenchymal transition (EMT) in hepatic carcinoma cells. Firstly, we find that PRMT1 expression is higher in hepatic carcinoma tissues than that in normal liver tissues at both mRNA and protein levels, and higher expression of PRMT1 correlates with poor survival in liver tumors. The data in vitro reveals that PRMT1 knockdown inhibits the abilities of proliferation, migration and invasion, while PRMT1 overexpression promotes the above behaviors in hepatic carcinoma cells. Further studies indicate that PRMT1 knockdown remarkably decreases the expression of mesenchymal markers including Vimentin, Snail and N-cadherin, and upregulates expression of epithelial markers E-cadherin. Conversely, PRMT1 overexpression results in the opposite effects. Additionally, we identified that PRMT1 knockdown resulted in downregulation of TGF-ß1, p-Smad2 and p-Smad3, while PRMT1 overexpression activated TGF-ß1, p-Smad2 and p-Smad3. These findings suggest that PRMT1 promotes EMT in hepatic carcinoma cells probably via TGF-ß1/Smad pathway, and might represent a novel anti-liver cancer strategy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/patologia , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
Phytopathology ; 109(11): 1949-1956, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31573422

RESUMO

The pine wood nematode Bursaphelenchus xylophilus is a destructive species affecting pine trees worldwide; however, the underlying mechanism leading to pathogenesis remains unclear. In this study, a B. xylophilus gene encoding thaumatin-like protein-1 (Bx-tlp-1) was silenced by RNA interference to clarify the relationship between the Bx-tlp-1 gene and pathogenicity. The in vitro knockdown of Bx-tlp-1 with double-stranded RNA (dsRNA) decreased B. xylophilus reproduction and pathogenicity. Treatments with dsRNA targeting Bx-tlp-1 decreased expression by 90%, with the silencing effect maintained even in the F3 offspring. Pine trees inoculated with B. xylophilus treated with Bx-tlp-1 dsRNA decreased the symptom of wilting, and the disease severity index was 56.7 at 30 days after inoculation. Additionally, analyses of the cavitation of intact pine stem samples by X-ray microtomography revealed that the xylem cavitation area of pine trees inoculated with B. xylophilus treated with Bx-tlp-1 dsRNA was 0.46 mm2 at 30 days after inoculation. Results from this study indicated that the silencing of Bx-tlp-1 has effects on B. xylophilus fitness. The data presented here provide the foundation for future analyses of Bx-tlp-1 functions related to B. xylophilus pathogenicity.


Assuntos
Pinus , Tylenchida , Virulência , Animais , Técnicas de Silenciamento de Genes , Pinus/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , RNA de Cadeia Dupla , Tylenchida/genética , Tylenchida/patogenicidade , Virulência/genética
13.
Med Oncol ; 36(11): 95, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31637536

RESUMO

Ovarian cancer is one of the most lethal gynecological cancers; owning to its late detection and chemoresistance, understanding the pathogenesis of this malignant tumor is much critical. Previous studies have reported that ubiquitin-specific peptidase 39 (USP39) is generally overexpressed in a variety of cancers, including hepatocellular carcinoma, gastric cancer and so forth. Furthermore, USP39 is proved to be associated with the proliferation of malignant tumors. However, the function and mechanism of USP39 in ovarian cancer have not been elucidated. In the present study, we observed that USP39 was frequently overexpressed in human ovarian cancer and was highly correlated with TNM stage. Suppression of USP39 markedly inhibited the growth and migration of ovarian cancer cell lines HO-8910 and SKOV3 and induced cell cycle G2/M arrest. Moreover, knockdown of USP39 inhibited ovarian tumor growth in a xenograft model. In addition, our findings indicated that cell cycle arrest induced by USP39 knockdown might be involved in p53/p21 signaling pathway. Furthermore, we found that the depletion of USP39 inhibited the migration of ovarian cancer cells via blocking epithelial-mesenchymal transition. Taken together, these results suggest that USP39 may play vital roles in the genesis and progression and may serve as a potential biomarker for diagnosis and therapeutic target of ovarian cancer.


Assuntos
Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Técnicas de Silenciamento de Genes , Células HEK293 , Xenoenxertos , Humanos , Imuno-Histoquímica , Pontos de Checagem da Fase M do Ciclo Celular , Camundongos , Camundongos Nus , Estadiamento de Neoplasias , Neoplasias Ovarianas/enzimologia , Transdução de Sinais , Proteases Específicas de Ubiquitina/biossíntese , Proteases Específicas de Ubiquitina/genética
14.
Plant Mol Biol ; 101(4-5): 471-486, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31552586

RESUMO

KEY MESSAGE: Subgroup IVc basic helix-loop-helix transcription factors OsbHLH058 and OsbHLH059 positively regulate major iron deficiency responses in rice in a similar but distinct manner, putatively under partial control by OsHRZs. Under low iron availability, plants transcriptionally induce the expression of genes involved in iron uptake and translocation. OsHRZ1 and OsHRZ2 ubiquitin ligases negatively regulate this iron deficiency response in rice. The basic helix-loop-helix (bHLH) transcription factor OsbHLH060 interacts with OsHRZ1, and positively regulates iron deficiency-inducible genes. However, the functions of three other subgroup IVc bHLH transcription factors in rice, OsbHLH057, OsbHLH058, and OsbHLH059, have not yet been characterized. In the present study, we investigated the functions of OsbHLH058 and OsbHLH059 related to iron deficiency response. OsbHLH058 expression was repressed under iron deficiency, whereas the expression of OsbHLH057 and OsbHLH060 was moderately induced. Yeast two-hybrid analysis indicated that OsbHLH058 interacts with OsHRZ1 and OsHRZ2 more strongly than OsbHLH060, whereas OsbHLH059 showed no interaction. An in vitro ubiquitination assay detected no OsbHLH058 and OsbHLH060 ubiquitination by OsHRZ1 and OsHRZ2. Transgenic rice lines overexpressing OsbHLH058 showed tolerance for iron deficiency and higher iron concentration in seeds. These lines also showed enhanced expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron-sufficient conditions. Conversely, OsbHLH058 knockdown lines showed susceptibility to iron deficiency and reduced expression of many iron deficiency-inducible genes. OsbHLH059 knockdown lines were also susceptible to iron deficiency, and formed characteristic brownish regions in iron-deficient new leaves. OsbHLH059 knockdown lines also showed reduced expression of many iron deficiency-inducible genes. These results indicate that OsbHLH058 and OsbHLH059 positively regulate major iron deficiency responses in a similar but distinct manner, and that this function may be partially controlled by OsHRZs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/deficiência , Oryza/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Oryza/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/fisiologia
15.
Genes Dev ; 33(19-20): 1367-1380, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31488578

RESUMO

Fat storage in adult mammals is a highly regulated process that involves the mobilization of adipocyte progenitor cells (APCs) that differentiate to produce new adipocytes. Here we report a role for the broadly conserved miR-26 family of microRNAs (miR-26a-1, miR-26a-2, and miR-26b) as major regulators of APC differentiation and adipose tissue mass. Deletion of all miR-26-encoding loci in mice resulted in a dramatic expansion of adipose tissue in adult animals fed normal chow. Conversely, transgenic overexpression of miR-26a protected mice from high-fat diet-induced obesity. These effects were attributable to a cell-autonomous function of miR-26 as a potent inhibitor of APC differentiation. miR-26 blocks adipogenesis, at least in part, by repressing expression of Fbxl19, a conserved miR-26 target without a previously known role in adipocyte biology that encodes a component of SCF-type E3 ubiquitin ligase complexes. These findings have therefore revealed a novel pathway that plays a critical role in regulating adipose tissue formation in vivo and suggest new potential therapeutic targets for obesity and related disorders.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , MicroRNAs/metabolismo , Obesidade/genética , Células-Tronco/citologia , Animais , Dieta Hiperlipídica , Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , MicroRNAs/genética
16.
Zhonghua Wai Ke Za Zhi ; 57(9): 691-697, 2019 Sep 01.
Artigo em Chinês | MEDLINE | ID: mdl-31474062

RESUMO

Objectives: To examine the expression of the long coding RNA GSTM3TV2 in pancreatic cancer tissues and to examine its role and mechanism in chemoresistance of pancreatic cancer cells. Methods: The expression of lncRNA GSTM3TV2 in 15 pancreatic cancer specimens and corresponding adjacent to cancer tissue samples diagnosed by Department of Pathology, Peking Union Medical College Hospital was detected by real-time PCR.And the expressions of GSTM3TV2 in pancreatic cancer cell AsPC-1, BxPC-3, MIAPaCa-2, PanC-1, SU86.86, T3M4, and chemoresistant cells AsPC-1/GR and MIAPaCa-2/GR, and human pancreatic nestin-expressing cells hTERT-HPNE were detected. Pancreatic cancer cell lines were transfected with GSTM3TV2-pcDNA3.1(+)in order to get cells with GSTM3TV2 overexpression.GSTM3TV2-siRNA was transfected into pancreatic cancer cells to knock down GSTM3TV2. The cell chemoresistance was measured by CCK-8 and flow cytometry assay when incubated with nab-paclitaxel. At the same time, subcutaneous xenograft tumor models were established in nude mice to observe the effect of GSTM3TV2 on chemoresistance of tumor growth in nude mice.Western blot assay was also performed to detect the molecular mechanism of chemoresistance of GSTM3TV2. Results: Comparing toadjacent tissues(0.084±0.019), GSTM3TV2 expression was significantly upregulated in the pancreatic cancer tissues(0.493±0.084) (t=5.146, P<0.05). GSTM3TV2 expression were higher in the chemotherapy resistance pancreatic cancer cells AsPC-1/GR(210.799±19.788) and MIAPaCa-2/GR(122.408±23.419) than that in the AsPC-1(3.793±0.615) and the MIAPaCa-2(5.179±1.095)(t=21.800,P<0.05;t=-18.490,P<0.05). The results of in vivo experiments showed that the volume of subcutaneously transplanted tumors in the overexpressing GSTM3TV2 group ((1 059.609±102.498)mm(3)) was significantly larger than that in the control group((566.414±81.087) mm(3)) by treated with nab-paclitaxel(t=4.230,P<0.05).Meanwhile, GSTM3TV2 could promote the expression of Cyclin D1, CDK6, Cyclin E1, Vimentin, N-cadherin, ZEB1, Snail and Slug; but decrease cleaved caspase-3, cleaved PARP in pancreatic cancer cells. Conclusions: The expression level of GSTM3TV2 in pancreatic canceris higher than that in paired adjacent tissues. GSTM3TV2 may act as an oncogene to promote chemoresistance in pancreatic cancer through regulation of cell proliferation, apoptosis, and epithelial-mesenchymal transition.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Glutationa Transferase/genética , Oncogenes/genética , Neoplasias Pancreáticas/genética , RNA não Traduzido/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Life Sci ; 235: 116829, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31484042

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a severe liver disease, which influences the health of people worldwide. However, the specific mechanism of the disease remains unknown, and effective treatments are still lacking. It was reported that Nuclear enriched abundant transcript 1 (NEAT1) obviously was up-regulated in NAFLD model. But the role and underlying mechanism of NEAT1 in NAFLD is unclear. METHODS: HepG2 cells were treated by free fatty acids (FFA) and C57BL/6J mice were treated by high-fat diet to establish NAFLD in vitro and in vivo models, respectively. Cell transfection was applied to regulate the expression of NEAT1, ROCK1, and miR-146a-5p. Western blotting and qRT-PCR were used for measuring expression of protein and mRNA level, respectively. Dual luciferase assay was used to detect the target relationship. Oil Red O staining was used to measure the lipid accumulation. HE staining was used for observing pathological feature of liver tissues. RESULTS: High levels of NEAT1 and ROCK1, and low level of miR-146a-5p were identified in NAFLD models. NEAT1 could target miR-146a-5p to promote ROCK1 expression. Knockdown of NEAT1, overexpression of miR-146a-5p and knockdown of ROCK1 inhibited lipid accumulation through activating AMPK pathway. CONCLUSION: NEAT1 may regulate NAFLD through miR-146a-5p targeting ROCK1, and further affect AMPK/SREBP pathway. This study may provide a new thought for the treatment of NAFLD.


Assuntos
Metabolismo dos Lipídeos , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Longo não Codificante/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Linhagem Celular Tumoral , Dieta Hiperlipídica , Regulação para Baixo , Ácidos Graxos não Esterificados/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Transdução de Sinais , Transfecção , Regulação para Cima
18.
Cancer Sci ; 110(10): 3122-3131, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31369178

RESUMO

Delta-like 3 (DLL3) is a member of the Delta/Serrate/Lag2 (DSL) group of Notch receptor ligands. Five DSL ligands are known in mammals, among which DLL3 has a unique structure. In the last few years, DLL3 has attracted attention as a novel molecular targeting gene in neuroendocrine carcinoma of the lung due to its high expression. However, the expression pattern and functions of DLL3 in the gastrointestinal tract and gastrointestinal neuroendocrine carcinoma remain unclear. In this study, we examined the expression and role of DLL3 in the gastrointestinal tract, as well as in gastrointestinal neuroendocrine carcinoma. Immunohistochemical staining of the human normal gastrointestinal tract revealed that DLL3 localized in neuroendocrine cells. DLL3 showed intense staining in chromogranin A-positive gastric cancer specimens. Real-time quantitative RT-PCR and western blotting analyses showed considerable upregulation of DLL3 in gastrointestinal neuroendocrine carcinoma cell lines. Immuno-electron microscopy demonstrated abundant expression of DLL3 in neurosecretory granules in these cells. Furthermore, gene silencing of DLL3 caused significant growth inhibition through the induction of intrinsic apoptosis. Our findings suggest that DLL3 is expressed in neuroendocrine cells of the gastrointestinal tract and that it has a pivotal role in gastrointestinal neuroendocrine carcinoma cells. Based on these findings, further investigations are required to achieve a breakthrough in developing therapeutic strategies for gastrointestinal neuroendocrine carcinoma.


Assuntos
Carcinoma Neuroendócrino/metabolismo , Neoplasias Gastrointestinais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células Neuroendócrinas/metabolismo , Idoso , Apoptose , Carcinoma Neuroendócrino/genética , Linhagem Celular Tumoral , Neoplasias Gastrointestinais/genética , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Regulação para Cima
19.
Exp Appl Acarol ; 78(4): 505-520, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31375950

RESUMO

Phytoseiulus persimilis is one of the most important biological control agents of spider mites. Multiple studies have been conducted on factors affecting its reproduction, but limited research on related molecular mechanisms has been carried out. In this study, RNA interference of three genes, ribosomal protein L11 (RpL11), ribosomal protein S2 (RpS2), and transformer-2 (tra-2), to newly emerged females were performed through oral delivery of double-stranded RNA, and knockdown of target genes was verified using qRT-PCR analysis. When RpL11 or RpS2 was interfered, 42 and 30% P. persimilis individuals either laid no egg or had no egg hatched, whereas the remaining females had their oviposition duration reduced by 31.8 and 49.9%, fecundity reduced by 48.1 and 67.8%, and egg hatching rate reduced by 20.4 and 22.4%, respectively. In addition, offspring sex ratios were significantly male biased especially at low fecundities. When tra-2 was interfered, no significant difference in fecundity was detected, but egg hatching rate reduced by 30.6%. This study verified the possibility of RNA interference in Phytoseiidae through oral delivery, and indicated that RpL11 and RpS2 are involved in egg formation, whereas tra-2 is involved in embryo development in P. persimilis. Phytoseiid mites have different sex determination pathways compared to insects. The present study provides data and evidence at molecular biological level for future research on reproduction and sex determination of phytoseiid mites.


Assuntos
Proteínas de Artrópodes/genética , Ácaros/fisiologia , Interferência de RNA , Animais , Proteínas de Artrópodes/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Ácaros/genética , Reprodução/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
20.
Cancer Sci ; 110(11): 3476-3485, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31454442

RESUMO

Octamer transcription factor 1 (OCT1) is an androgen receptor (AR)-interacting partner and regulates the expression of target genes in prostate cancer cells. However, the function of OCT1 in castration-resistant prostate cancer (CRPC) is not fully understood. In the present study, we used 22Rv1 cells as AR-positive CRPC model cells to analyze the role of OCT1 in CRPC. We showed that OCT1 knockdown suppressed cell proliferation and migration of 22Rv1 cells. Using microarray analysis, we identified four AR and OCT1-target genes, disks large-associated protein 5 (DLGAP5), kinesin family member 15 (KIF15), non-SMC condensin I complex subunit G (NCAPG), and NDC80 kinetochore complex component (NUF2) in 22Rv1 cells. We observed that knockdown of DLGAP5 and NUF2 suppresses growth and migration of 22Rv1 cells. Furthermore, immunohistochemical analysis showed that positive expression of DLGAP5 in prostate cancer specimens is related to poor cancer-specific survival rates of patients. Notably, enhanced expression of DLGAP5 was observed in CRPC tissues of patients. Thus, our findings suggest that these four genes regulated by the AR/OCT1 complex could have an important role in CRPC progression.


Assuntos
Proteínas de Ciclo Celular/genética , Cinesina/genética , Proteínas de Neoplasias/genética , Fator 1 de Transcrição de Octâmero/fisiologia , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Idoso , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas do Citoesqueleto , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Masculino , Análise em Microsséries , Proteínas Nucleares/genética , Fator 1 de Transcrição de Octâmero/genética , Neoplasias de Próstata Resistentes à Castração/mortalidade , Receptores Androgênicos/metabolismo , Taxa de Sobrevida , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA