Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.584
Filtrar
1.
N Engl J Med ; 382(5): 416-426, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31995687

RESUMO

BACKGROUND: Acute kidney injury is common, with a major effect on morbidity and health care utilization. Soluble urokinase plasminogen activator receptor (suPAR) is a signaling glycoprotein thought to be involved in the pathogenesis of kidney disease. We investigated whether a high level of suPAR predisposed patients to acute kidney injury in multiple clinical contexts, and we used experimental models to identify mechanisms by which suPAR acts and to assess it as a therapeutic target. METHODS: We measured plasma levels of suPAR preprocedurally in patients who underwent coronary angiography and patients who underwent cardiac surgery and at the time of admission to the intensive care unit in critically ill patients. We assessed the risk of acute kidney injury at 7 days as the primary outcome and acute kidney injury or death at 90 days as a secondary outcome, according to quartile of suPAR level. In experimental studies, we used a monoclonal antibody to urokinase plasminogen activator receptor (uPAR) as a therapeutic strategy to attenuate acute kidney injury in transgenic mice receiving contrast material. We also assessed cellular bioenergetics and generation of reactive oxygen species in human kidney proximal tubular (HK-2) cells that were exposed to recombinant suPAR. RESULTS: The suPAR level was assessed in 3827 patients who were undergoing coronary angiography, 250 who were undergoing cardiac surgery, and 692 who were critically ill. Acute kidney injury developed in 318 patients (8%) who had undergone coronary angiography. The highest suPAR quartile (vs. the lowest) had an adjusted odds ratio of 2.66 (95% confidence interval [CI], 1.77 to 3.99) for acute kidney injury and 2.29 (95% CI, 1.71 to 3.06) for acute kidney injury or death at 90 days. Findings were similar in the surgical and critically ill cohorts. The suPAR-overexpressing mice that were given contrast material had greater functional and histologic evidence of acute kidney injury than wild-type mice. The suPAR-treated HK-2 cells showed heightened energetic demand and mitochondrial superoxide generation. Pretreatment with a uPAR monoclonal antibody attenuated kidney injury in suPAR-overexpressing mice and normalized bioenergetic changes in HK-2 cells. CONCLUSIONS: High suPAR levels were associated with acute kidney injury in various clinical and experimental contexts. (Funded by the National Institutes of Health and others.).


Assuntos
Lesão Renal Aguda/sangue , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Angiografia Coronária/efeitos adversos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Lesão Renal Aguda/etiologia , Lesão Renal Aguda/prevenção & controle , Idoso , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Biomarcadores/sangue , Estado Terminal , Modelos Animais de Doenças , Feminino , Humanos , Unidades de Terapia Intensiva , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Razão de Chances , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/etiologia , Medição de Risco/métodos , Ativador de Plasminogênio Tipo Uroquinase/farmacologia
3.
Biochemistry (Mosc) ; 84(12): 1502-1512, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31870254

RESUMO

Autophagy plays an important role in the pathogenesis of acute kidney injury (AKI). Although autophagy activation was shown to be associated with an increased lifespan and beneficial effects in various pathologies, the impact of autophagy activators, particularly, rapamycin and its analogues on AKI remains obscure. In our study, we explored the effects of rapamycin treatment in in vivo and in vitro models of ischemic and cisplatin-induced AKI. The impact of rapamycin on the kidney function after renal ischemia/reperfusion (I/R) or exposure to the nephrotoxic agent cisplatin was assessed by quantifying blood urea nitrogen and serum creatinine and evaluating the content of neutrophil gelatinase-associated lipocalin, a novel biomarker of AKI. In vitro experiments were performed on the primary culture of renal tubular cells (RTCs) that were subjected to oxygen-glucose deprivation (OGD) or incubated with cisplatin under various rapamycin treatment protocols. Cell viability and proliferation were estimated by the MTT assay and real-time cell analysis using an RTCA iCELLigence system. Although rapamycin inhibited mTOR (mammalian target of rapamycin) signaling, it failed to enhance the autophagy and to ameliorate the severity of AKI caused by ischemia or cisplatin-induced nephrotoxicity. Experiments with RTCs demonstrated that rapamycin exhibited the anti-proliferative effect in primary RTCs cultures but did not protect renal cells exposed to OGD or cisplatin. Our study revealed for the first time that the mTOR inhibitor rapamycin did not prevent AKI caused by renal I/R or cisplatin-induced nephrotoxicity and, therefore, cannot be considered as an ideal mimetic of the autophagy-associated nephroprotective mechanisms (e.g., those induced by caloric restriction), as it had been suggested earlier. The protective action of such approaches like caloric restriction might not be limited to mTOR inhibition and can proceed through more complex mechanisms involving alternative autophagy-related targets. Thus, the use of rapamycin and its analogues for the treatment of various AKI forms requires further studies in order to understand potential protective or adverse effects of these compounds in different contexts.


Assuntos
Lesão Renal Aguda/induzido quimicamente , Lesão Renal Aguda/prevenção & controle , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Isquemia/prevenção & controle , Sirolimo/farmacologia , Lesão Renal Aguda/metabolismo , Animais , Células Cultivadas , Glucose/metabolismo , Isquemia/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Masculino , Oxigênio/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Serina-Treonina Quinases TOR/metabolismo
4.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514290

RESUMO

In salt-sensitive hypertension, reactive oxygen species (ROS) play a major role in the progression of renal disease partly through the activation of the mineralocorticoid receptor (MR). We have previously demonstrated that urinary vanin-1 is an early biomarker of oxidative renal tubular injury. However, it remains unknown whether urinary vanin-1 might reflect the treatment effect. The objective of this study was to clarify the treatment effect for renal tubular damage in Dahl salt-sensitive (DS) rats. DS rats (six weeks old) were given one of the following for four weeks: high-salt diet (8% NaCl), high-salt diet plus a superoxide dismutase mimetic, tempol (3 mmol/L in drinking water), high-salt diet plus eplerenone (100 mg/kg/day), and normal-salt diet (0.3% NaCl). After four-week treatment, blood pressure was measured and kidney tissues were evaluated. ROS were assessed by measurements of malondialdehyde and by immunostaining for 4-hydroxy-2-nonenal. A high-salt intake for four weeks caused ROS and histological renal tubular damages in DS rats, both of which were suppressed by tempol and eplerenone. Proteinuria and urinary N-acetyl-ß-D-glucosaminidase exhibited a significant decrease in DS rats receiving a high-salt diet plus eplerenone, but not tempol. In contrast, urinary vanin-1 significantly decreased in DS rats receiving a high-salt diet plus eplerenone as well as tempol. Consistent with these findings, immunohistochemical analysis revealed that vanin-1 was localized in the renal proximal tubules but not the glomeruli in DS rats receiving a high-salt diet, with the strength attenuated by tempol or eplerenone treatment. In conclusion, these results suggest that urinary vanin-1 is a potentially sensitive biomarker for ameliorating renal tubular damage in salt-sensitive hypertension.


Assuntos
Amidoidrolases/metabolismo , Túbulos Renais/patologia , Estresse Oxidativo , Amidoidrolases/urina , Animais , Biomarcadores/sangue , Biomarcadores/urina , Pressão Sanguínea/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Eplerenona/farmacologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/fisiopatologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Endogâmicos Dahl , Marcadores de Spin , Sístole/efeitos dos fármacos
5.
Kidney Blood Press Res ; 44(4): 777-791, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31408871

RESUMO

BACKGROUND: M2 macrophages have important roles in diseases such as tumours, cardiovascular diseases and renal diseases. This study aimed to determine the effects and protective mechanism of M2 macrophages against oxidative stress injury and apoptosis induced by calcium oxalate crystals (CaOx) in renal tubular epithelial cells (HK-2) under coculture conditions. METHODS: THP-1 cells were induced to differentiate into M2 macrophages by using phorbol-12-myristate-13-acetate, IL-4 and IL-13. Morphological features were observed by microscopy. Phenotypic markers were identified by reverse transcription-polymerase chain reaction, Western blot and enzyme-linked immunosorbent assay (ELISA). HK-2 cells were treated with 0.5 mg/mL CaOx crystals and co-cultured with M2 macrophages or apocynin. The viability of HK-2 cells was detected by CCK-8 assay. The lactate dehydrogenase (LDH) activity of HK-2 cells was analysed using a microplate reader. The apoptosis of HK-2 cells was examined by flow cytometry and Hoechst 33258 staining. Reactive oxygen species (ROS) expression and mitochondrial membrane potential in HK-2 cells were detected by a fluorescence microplate reader. Western blot analysis was conducted to detect the expression of p47phox, Bcl-2, cleaved caspase-3, cytochrome c, p38 MAPK, phospho-p38 MAPK, Akt and phospho-Akt. RESULTS: The results of morphology, reverse transcription-polymerase chain reaction, Western blot and ELISA showed that THP-1 cells were successfully polarised to M2 macrophages. The results of co-culture suggested that M2 macrophages or apocynin significantly increased the cell viability and decreased the LDH activity and apoptosis rate after HK-2 cells were challenged with CaOx crystals. The expression of the p47phox protein and the concentration of ROS were reduced, the release of mitochondrial membrane potential and the expression of the Bcl-2 protein were upregulated and the protein expression of cleaved caspase-3 and cytochrome c was downregulated. The expression of the phosphorylated form of p38 MAPK increased. Under coculture conditions with M2 macrophages, the Akt protein of HK-2 cells treated with CaOx crystals was dephosphorylated, but the phosphorylated form of Akt was not reduced by apocynin. CONCLUSIONS: M2 macrophages reduced the oxidative stress injury and apoptosis of HK-2 cells by downregulating the activation of NADPH oxidase, reducing the production of ROS, inhibiting the phosphorylation of p38 MAPK and enhancing the phosphorylation of Akt. We have revealed one of the possible mechanisms by which M2 macrophages reduce the formation of kidney stones.


Assuntos
Apoptose/efeitos dos fármacos , Oxalato de Cálcio/farmacologia , Túbulos Renais/efeitos dos fármacos , Macrófagos/fisiologia , Estresse Oxidativo , Acetofenonas/farmacologia , Antioxidantes/farmacologia , Linhagem Celular , Técnicas de Cocultura , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Cálculos Renais , Túbulos Renais/lesões , Túbulos Renais/patologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
J Diabetes Res ; 2019: 2510105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467925

RESUMO

Background: Epithelial-to-mesenchymal transition (EMT) is thought to play a significant role in the advancement to chronic kidney disease and contributes to the deposition of extracellular matrix proteins and renal fibrosis relating to diabetic nephropathy. Method: We studied the effect of Nrf2-HO-1 signaling on high-glucose- (HG-) induced EMT in normal human tubular epithelial cells, that is, HK2 cells. In short, we treated HK2 cells with HG and sulforaphane (SFN) as an Nrf2 activator. EMT was evaluated by the expression activity of the epithelial marker E-cadherin and mesenchymal markers such as vimentin and fibronectin. Results: Exposure of HK2 cells to HG (60 mM) activated the expression of vimentin and fibronectin but decreased E-cadherin. Treatment of HK2 cells with SFN caused HG-induced attenuation in EMT markers with activated Nrf2-HO-1. We found that SFN decreased HG-induced production of reactive oxygen species (ROS), phosphorylation of PI3K/Akt at serine 473, and inhibitory phosphorylation of serine/threonine kinase glycogen synthase kinase-3ß (GSK-3ß) at serine 9. Subsequently, these signaling led to the downregulation of the Snail-1 transcriptional factor and the recovery of E-cadherin. Conclusion: The present study suggests that Nrf2-HO-1 signaling has an inhibitory role in the regulation of EMT through the modulation of ROS-mediated PI3K/Akt/GSK-3ß activity, highlighting Nrf2-HO-1 and GSK-3ß as potential therapeutic targets in diabetic nephropathy.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucose/farmacologia , Heme Oxigenase-1/fisiologia , Túbulos Renais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/fisiologia , Espécies Reativas de Oxigênio/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Túbulos Renais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
Curr Top Med Chem ; 19(22): 2058-2068, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31400266

RESUMO

BACKGROUND: Envenomation caused by Bothrops alternatus is common in Southern Brazil. Acute Kidney Injury occurs after Bothrops snakebite and more information is necessaryrequired to understand its mechanism. OBJECTIVE: The objective was to evaluate the effect of Bothrops alternatus venom (BaV) on renal cells and rat isolated kidney function. METHODS: Wistar rats (n = 6, weighing 260-320 g) were perfused with a Krebs-Henseleit solution containing 6 g 100 mL-1 of bovine serum albumin. After 30 minutes, the kidneys were perfused with BaV to a final concentration of 1 and 3 µgmL-1; and subsequently were evaluated for Perfusion Pressure (PP), Renal Vascular Resistance (RVR), Urinary Flow (UF), Glomerular Filtration Rate (GFR), and percentage of electrolyte tubular transport. Renal histological analysis, cytokine release, oxidative stress and cytotoxicity in renal proximal tubular cells were assessed. RESULTS: BaV reduced PP, RVR, GFR, UF, total and proximal sodium transport (%TNa+), and chloride (%TCl-) in the isolated kidney perfusion model. Histological analysis of perfused kidneys disclosed the presence of proteinaceous material in the glomeruli and renal tubules, vacuolar tubular epithelial cell degeneration, Bowman's capsule degeneration, swelling of glomerular epithelial cells, glomerular atrophy and degeneration, and the presence of intratubular protein. Cytokine release (TNF-α, IL-1ß, IL-10) and oxidative stress were increased in the kidneys. The viability of LLC-MK2 cells (IC50: 221.3 µg/mL) was decreased by BaV and necrosis was involved in cell death. CONCLUSION: These findings indicate that BaV modifies functional parameters in an isolated perfused kidney model and has cytotoxic effects on renal lineage cells.


Assuntos
Citocinas/biossíntese , Túbulos Renais/efeitos dos fármacos , Venenos de Serpentes/farmacologia , Animais , Bothrops , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Taxa de Filtração Glomerular , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Macaca mulatta , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 20(15)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390839

RESUMO

Despite the wide use of angiotensin II receptor blockers in the treatment of Alport syndrome (AS), the mechanism as to how angiotensin II receptor blockers prevent interstitial fibrosis remains unclear. Here, we report that treatment of olmesartan effectively targets the feedback loop between the renin-angiotensin system (RAS) and transforming growth factor ß (TGFß) signals in tubular epithelial cells and preserves renal angiotensin-converting enzyme 2 (ACE2) expression in the kidney of Col4a3-/- mice, a murine model of experimental AS. Morphology analyses revealed amelioration of kidney fibrosis in Col4a3-/- mice by olmesartan treatment. Upregulation of TGFß and activation of its downstream in Col4a3-/- mice were attenuated by olmesartan in Col4a3-/- mice. Intriguingly, TGFß expression was preferentially upregulated in damaged tubular epithelial cells in Col4a3-/- mice. Concurrent upregulation of TNFα-converting enzyme and downregulation of ACE2 suggested RAS activation in Col4a3-/- mice, which was prevented by olmesartan. Mechanistically, olmesartan suppressed TGFß-induced RAS activation in tubular epithelial cells in vitro. Collectively, we concluded that olmesartan effectively suppresses the progression of tubulointerstitial fibrosis in AS by interrupting RAS-TGFß feedback loop to counterbalance intrarenal RAS activation.


Assuntos
Anti-Hipertensivos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Tetrazóis/farmacologia , Fator de Crescimento Transformador beta/genética , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Biópsia , Modelos Animais de Doenças , Fibrose , Túbulos Renais/patologia , Camundongos , Camundongos Knockout , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Resultado do Tratamento , Proteínas ras/genética , Proteínas ras/metabolismo
9.
PLoS Negl Trop Dis ; 13(7): e0007567, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31295336

RESUMO

Invasive fungal infections (IFI) is a worldwide serious health problem and Amphotericin B (AmB) has been considered the drug of choice for IFI treatment. Despite its efficacy, clinical use of AmB has been associated with renal toxicity. Some lines of evidence have shown that an extemporaneous lipid emulsion preparation of AmB (AmB/LE) was able to attenuate nephrotoxicity, presenting similar benefits at a lower cost. Studies have been demonstrating that hypovitaminosis D may hasten the progression of kidney disease and reflect on a worse prognosis in cases of drug-induced nephrotoxicity. In view of the high worldwide incidence of hypovitaminosis D, the aim of this study was to investigate whether vitamin D deficiency may induce AmB/LE-related nephrotoxicity. Wistar rats were divided into four groups: control, received a standard diet for 34 days; AmB/LE, received a standard diet for 34 days and AmB/LE (5 mg/kg/day) intraperitoneally in the last 4 days; VDD, received a vitamin D-free diet for 34 days; and VDD+AmB/LE, received a vitamin D-free diet for 34 days and AmB/LE as described. At the end of the protocol, animals were euthanized and blood, urine and renal tissue samples were collected in order to evaluate AmB/LE effects on renal function and morphology. Association of AmB/LE and vitamin D deficiency led to diminished glomerular filtration rate and increased tubular injury, evidenced by reduced renal protein expression of NaPi-IIa and TRPM6 leading to hyperphosphaturia / hypermagnesuria. VDD+AmB/LE rats also presented alterations in the PTH-Klotho-FGF-23 signaling axis, urinary concentrating defect and hypertension, probably due to an inappropriate activation of the renin-angiotensin-aldosterone system. Hence, it is important to monitor vitamin D levels in AmB/LE treated patients, since vitamin D deficiency induces AmB/LE nephrotoxicity.


Assuntos
Anfotericina B/efeitos adversos , Antifúngicos/efeitos adversos , Rim/efeitos dos fármacos , Deficiência de Vitamina D/complicações , Animais , Testes de Função Renal , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Ratos Wistar , Fatores de Risco
10.
Life Sci ; 233: 116666, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325427

RESUMO

AIM: Pirfenidone (PFD) has been used as medication for idiopathic pulmonary fibrosis due to its ability in reducing lung fibrosis. However, the underlying mode of action in renal fibrosis during chronic renal allograft dysfunction (CRAD) requires further investigation. Therefore, the present study was conducted to explore the effects of PFD on renal injury induced by CRAD. MAIN METHODS: Initially, the CRAD rat model was established, followed by the intragastric administration of PFD to the rats. Urine and blood samples were collected and tested against indicators of renal functions. The renal tissues were microscopically observed to determine the changes in pathological morphology. The anti-inflammatory, anti-fibrotic and anti-oxidant properties of PFD were explored in the setting of CRAD. KEY FINDINGS: The success rate of model establishment was 92.31%, which was reflected by weight loss, appetite loss, faded fur, and retarded reaction, with the symptoms found to exacerbate with time. PFD treatment could improve renal function, ameliorate inflammation and renal fibrosis as well as promote the anti-oxidant ability of renal allograft, indicating its potential role as an effective therapeutic agent for CRAD. SIGNIFICANCE: In conclusion, PFD was found to have renoprotective effects on renal injury induced by CRAD, which resulted in the alleviation of inflammation and renal fibrosis, providing novelty for CRAD clinical treatment.


Assuntos
Fibrose/prevenção & controle , Rejeição de Enxerto/prevenção & controle , Transplante de Rim/efeitos adversos , Túbulos Renais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Piridonas/farmacologia , Insuficiência Renal Crônica/cirurgia , Aloenxertos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Doença Crônica , Fibrose/etiologia , Rejeição de Enxerto/etiologia , Túbulos Renais/patologia , Masculino , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew
11.
Ren Fail ; 41(1): 481-488, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31169440

RESUMO

Background: Renal interstitial fibrosis is a common pathway of chronic kidney disease to end-stage renal disease, which is characterized by an imbalance between the synthesis and degradation of the collagen-rich extracellular matrix (ECM). While, discoidin domain receptor 2 (DDR2) can be activated when it binds to some types of collagen. Therefore, we hypothesized that DDR2 may be a major player in renal interstitial fibrosis. Methods: Renal histologic analysis, real-time PCR analyses and hydroxyproline assay were performed in DDR2-deficient mice and wild-type mice after unilateral ureteral obstruction; C57 mice were randomly divided into sham operation group (Sham group, n = 4), renal interstitial fibrosis model group (UUO group, n = 4), and calcium dobesilate treatment group (CDT group, n = 4), preparation of renal interstitial fibrosis model by unilateral ureteral obstruction (UUO), CDT Group was treated with calcium dobesilate orally, Sham group and UUO group were given double distilled water, HE staining, Masson staining, real-time quantitative PCR were detected after 14 days of UUO in mice to observe the renal interstitial fibrosis degree. Results: DDR2 expression was dramatically increased in the obstructed kidney; In contrast to wild-type mice that developed severe interstitial fibrosis, the DDR2-deficient mice displayed only moderate fibrotic changes; Compared with the UUO group, the degree of renal interstitial fibrosis in CDT group was relieved after operation 14 day. Conclusion: DDR2 might play an important role in the development of RIF; Calcium dobesilate can affect the expression of DDR2 and improve the renal interstitial fibrosis in mice.


Assuntos
Receptor com Domínio Discoidina 2/metabolismo , Túbulos Renais/patologia , Insuficiência Renal Crônica/patologia , Administração Oral , Animais , Dobesilato de Cálcio/administração & dosagem , Receptor com Domínio Discoidina 2/genética , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Humanos , Túbulos Renais/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/tratamento farmacológico , Deleção de Sequência , Índice de Gravidade de Doença , Obstrução Ureteral/complicações
12.
Food Funct ; 10(6): 3782-3797, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31180394

RESUMO

Quercetin is the most ubiquitous flavonoid in fruits, herbs, vegetables and products made from them. It shows the potential to inhibit the progression of kidney fibrosis and the epithelial to mesenchymal transition (EMT) of the renal tubular system, but the molecular mechanism behind this is still not known. In our study, we explored the effect of quercetin treatment on extracellular matrix (ECM) deposition and stimulation of the EMT in vitro and in vivo and tried to deduce the mechanisms regulating these effects. In rats having unilateral ureter obstruction (UUO), quercetin treatment significantly prevented renal function decline. Quercetin reduced the TGF-ß1 expression and inhibited the epithelial cell to mesenchymal cell phenotypic switch, as well as ECM deposition in rats with UUO. In cultured epithelial cells of the renal tubular region (NRK-52E), quercetin markedly ameliorated the EMT and ECM synthesis induced by TGF-ß1. Activation of the Hedgehog pathway was closely related to EMT induction. Quercetin effectively suppressed the hyperactive Hedgehog pathway in NRK-52E cells treated with TGF-ß1 and in kidney obstructed rats, which reduced the EMT, ECM deposition and cellular proliferation. Moreover, we examined certain transcriptional factors (slug, snail, ZEB-1 and twist) that govern the E-cadherin expression at the level of transcription. The results unveiled that the four transcriptional factors were highly repressed in NRK-52E cells treated with TGF-ß1 and also in obstructed kidneys by quercetin-mediated inhibition. Therefore, these outcomes indicate that quercetin could alleviate fibrosis and the EMT in vitro and in vivo by inhibiting the activation of Hedgehog signaling and could act as a therapeutic agent for patients having several kinds of renal fibrotic diseases.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Nefropatias/tratamento farmacológico , Túbulos Renais/metabolismo , Quercetina/administração & dosagem , Animais , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrose , Proteínas Hedgehog/genética , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/fisiopatologia , Túbulos Renais/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
13.
J Recept Signal Transduct Res ; 39(1): 73-79, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31184240

RESUMO

Terfenadine, an antihistamine used for the treatment of allergic conditions, affected Ca2+-related physiological responses in various models. However, the effect of terfenadine on cytosolic free Ca2+ levels ([Ca2+]i) and its related physiology in renal tubular cells is unknown. This study examined whether terfenadine altered Ca2+ signaling and caused cytotoxicity in Madin-Darby canine kidney (MDCK) renal tubular cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Cell viability was measured by the fluorescent reagent 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] water soluble tetrazolium-1 (WST-1) assay. Terfenadine at concentrations of 100-1000 µM induced [Ca2+]i rises concentration dependently. The response was reduced by approximately 35% by removing extracellular Ca2+. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) partly inhibited terfenadine-evoked [Ca2+]i rises. Conversely, treatment with terfenadine abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 inhibited 95% of terfenadine-induced Ca2+ release. Terfenadine-induced Ca2+ entry was supported by Mn2+-caused quenching of fura-2 fluorescence. Terfenadine-induced Ca2+ entry was partly inhibited by an activator of protein kinase C (PKC), phorbol 12-myristate 13 acetate (PMA) and by three modulators of store-operated Ca2+ channels (nifedipine, econazole, and SKF96365). Terfenadine at 200-300 µM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Together, in MDCK cells, terfenadine induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Furthermore, terfenadine caused cell death that was not triggered by preceding [Ca2+]i rises.


Assuntos
Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H1 não Sedativos/farmacologia , Túbulos Renais/patologia , Terfenadina/farmacologia , Animais , Sobrevivência Celular , Cães , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Células Madin Darby de Rim Canino
14.
Phytother Res ; 33(8): 2023-2033, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31215078

RESUMO

Unilateral ureteral obstruction (UUO) causes severe renal tubulointerstitial fibrosis. Because of many pharmacologic properties of thymoquinone (TQ), in this study, the effects of TQ against kidney fibrosis and dysfunction were investigated in rats with UUO. Forty male Wistar rats were divided into five groups: Sham operated, UUO, and the animals with UUO treated with losartan, captopril, or TQ. Collagen IV and transforming growth factor (TGF)-ß1 expressions, interstitial fibrosis, histological changes, and kidney function were assessed. UUO markedly increased renal expression of TGF-ß1 and collagen I and induced interstitial fibrosis (p < .001). Losartan, captopril, or TQ significantly downregulated the expression of these fibrotic markers and interstitial fibrosis (p < .01-p < .001). In UUO group, serum levels of urea and creatinine and protein excretion rate significantly increased, but glomerular filtration rate (GFR) and urine osmolarity showed a significant decrease (p < .001-p < .05). Administration of captopril and TQ caused no significant change in serum urea and protein excretion rate. Unlike losartan and captopril, TQ caused no significant alteration in GFR compared with Day 1. Losartan caused significant increases in serum urea and creatinine but significant decrease in urine osmolarity. TQ could be regarded as a potent therapeutic agent for treatment of UUO-induced kidney fibrosis and dysfunction.


Assuntos
Benzoquinonas/uso terapêutico , Fibrose/tratamento farmacológico , Nefropatias/tratamento farmacológico , Túbulos Renais/efeitos dos fármacos , Rim/efeitos dos fármacos , Obstrução Ureteral/tratamento farmacológico , Animais , Benzoquinonas/farmacologia , Rim/patologia , Nefropatias/patologia , Testes de Função Renal/métodos , Masculino , Ratos , Ratos Wistar
15.
Cells ; 8(6)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31212930

RESUMO

Vinyl chloride (VC) is a noninfective occupational risk factor. It is found in industrial chemicals, volatile organic compounds, cigarette smoke ingredients, etc. It is a kind of toxic gas that causes many diseases. VC exposure causes an increased risk of liver fibrosis and can result in angiosarcoma of the liver. Previous studies have shown that high-doses of VC exposure in mice resulted in acute death with marked tubular necrosis of the renal cortex. In this study, we assessed the nephrotoxicity of VC in vitro and in vivo. As a result, we demonstrated that VC induced fibrosis-associated protein expression, such as connective tissue growth factor (CTGF), plasminogen activator inhibitor-1 (PAI-1) and collagen 1, and autophagy-associated protein expression, such as Beclin 1 and LC3-II, in kidney cells. The beclin1 siRNA experiments found that autophagy inhibited VC-induced fibrosis. Blood urea nitrogen (BUN) and creatinine levels were increased after VC treatment. Furthermore, VC caused glomerulosclerosis and tubular injury in mouse kidney tissues. Kidney tissue sections showed that VC induced fibrosis and autophagy in mouse kidney tissues. In summary, the results of VC-induced fibrosis suggest that autophagy plays an important role in kidney damage. VC may cause nephrotoxicity, and the results illustrate the importance of considering the toxicological hazards of VC in kidney cells.


Assuntos
Autofagia/efeitos dos fármacos , Rim/patologia , Cloreto de Vinil/toxicidade , Animais , Biomarcadores/metabolismo , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Creatinina , Fibrose , Humanos , Rim/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/lesões , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos BALB C , Modelos Biológicos
16.
Eur J Pharmacol ; 855: 1-9, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31047876

RESUMO

Acute Kidney Injury (AKI) is associated with high morbidity and mortality. Ischemia and reperfusion (I/R) are events that lead to AKI through hypoxia, reactive oxygen species (ROS) production, oxidative stress and apoptosis. We aimed to evaluate the mechanism of nephroprotection mediated by Bisabolol in human tubular kidney cells after injury by I/R in vitro. HK2 cells were exposed to I/R and treated with Bisabolol. Cell viability was accessed by MTT assay. Cells were submitted to flow cytometry to evaluate necrotic/apoptotic cells, reactive oxygen species production and mitochondrial transmembrane depolarization. TBARS and GSH were used as parameters of redox balance. Also, KIM-1 supernatant levels were measured. In order to identify an interaction between bisabolol and NOX4, molecular docking and enzymatic assays were performed. Expression of isoform NOX4 on treated cells was examined by western-blot. Finally, cells were visualized by scanning electron microscopy. Bisabolol improved cell viability and prevented cell death by apoptosis, indicated also by the decreased levels of KIM-1. It was observed a decrease on reactive oxygen species production and mitochondrial depolarization, with antioxidant regulation by increased GSH and decreased lipid peroxidation. It was also demonstrated that bisabolol treatment can inhibit NOX4. Finally, SEM images showed that bisabolol reduced I/R-induced cell damage. Bisabolol treatment protects HK2 cells against oxidative damage occasioned by I/R. This effect is related to inhibition of apoptosis, decrease on KIM-1 release, reactive oxygen species accumulation and mitochondrial dysfunction. Bisabolol inhibited NOX4 activity in the tubular cells, impairing reactive oxygen species synthesis.


Assuntos
Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , NADPH Oxidases/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Glutationa/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Túbulos Renais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
17.
Toxicol Lett ; 311: 27-36, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039415

RESUMO

Methotrexate (MTX) is a derivate of folic acid, commonly used as an anchor drug for the treatment and management of malignant diseases and autoimmune disorders. However, nephrotoxicity is an important drawback of MTX therapy. Unfortunately, there are not enough studies reporting the nature of the renal failure induced by MTX. Thus, the aim of this study was to evaluate the time course of renal handling of water and electrolytes in male Wistar rats, after the exposure to a unique dose of MTX (80 mg/kg b.w.). Experiments were carried out at day 2, day 4, day 8 and day 14 after MTX administration. Several parameters of kidney function related to water and electrolytes handling were evaluated. Renal expression and urinary excretion of aquaporin-2 (AQP2) and Na-K-2Cl-cotransporter (NKCC2) were determined by Western blotting. MTX produced alterations on water handling on the second day after treatment, showing a significant increase in solute free water reabsorption which might be mediated by the increased expression of AQP2 in apical membranes. On the other hand, MTX produced alterations on electrolytes handling on the fourth day after treatment, showing a significant decrease of sodium chloride excretion, mediated at least in part, by the increase renal expression of NKCC2. These results provide valuable information to clinical practice in order to be able to find therapeutic targets that diminish adverse effects and health deterioration. Moreover, MTX treatment altered AQP2 and NKCC2 urinary excretion allowing postulating these transporters as potential biomarkers of MTX induced nephrotoxicity.


Assuntos
Aquaporina 2/metabolismo , Eletrólitos/metabolismo , Nefropatias/induzido quimicamente , Túbulos Renais/efeitos dos fármacos , Metotrexato/toxicidade , Reabsorção Renal/efeitos dos fármacos , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Água/metabolismo , Animais , Biomarcadores/metabolismo , Cloretos/metabolismo , Nefropatias/metabolismo , Túbulos Renais/metabolismo , Masculino , Potássio/metabolismo , Ratos Wistar , Sódio/metabolismo , Fatores de Tempo , Urodinâmica/efeitos dos fármacos
18.
Biomed Pharmacother ; 115: 108914, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31071510

RESUMO

Uncoupling protein 2 (UCP2), an anion transporter, modulates the production of mitochondrial reactive oxygen species (ROS) and plays an important role in protecting against cell apoptosis. However, the role of UCP2 in sepsis-associated AKI remains unclear. In the present study, we investigated the role of UCP2 in LPS-induced AKI in vitro and in vivo. UCP2 expression was increased in tubular epithelial cells (TECs) treated with LPS. Accordingly, UCP2 expression was distinctly upregulated in renal tissues from the animals with LPS-induced AKI. Furthermore, UCP2 silencing dramatically aggravated LPS-induced apoptosis, accompanied by increased ROS production in renal tubular epithelial cell. Additionally, the inhibition of UCP2 by genipin, a specific UCP2 inhibitor, exacerbated the kidney injury of animals with LPS-induced AKI. Moreover, NAC (N-acetylcysteine), a potent ROS scavenger, obviously suppressed apoptosis induced by UCP2 silencing, which suggests that the increased ROS levels were associated with tubular epithelial cell apoptosis induced by UCP2 silencing. Therefore, UCP2 exerts a protective effect on the LPS-induced apoptosis of tubular epithelial cells by reducing excess ROS production. In conclusion, our findings highlight the renoprotective actions of UCP2 on inhibiting the production of apoptotic factors and oxidative stress to improve tubular cell survival in the LPS-induced AKI model.


Assuntos
Lesão Renal Aguda/patologia , Apoptose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/metabolismo , Lesão Renal Aguda/induzido quimicamente , Lesão Renal Aguda/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Túbulos Renais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Proteína Desacopladora 2/genética , Regulação para Cima
19.
Molecules ; 24(10)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117291

RESUMO

Obcordata A (OA) is a polyoxypregnane glycoside derived from the Dai medicine Aspidopterys obcordata vines. This study aims to investigate the efficacy of OA on renal tubular epithelial cells exposed to calcium oxalate crystals. We incubated renal tubular cells with 28 µg·cm2 calcium oxalate crystals for 24 h with and without OA, GKT137831, phorbol-12-myristate-13-acetate (PMA), and tocopherol. The MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, microscopic examination, flow cytometry, and immunofluorescence staining revealed that calcium oxalate crystals decreased cell viability and elevated reactive oxygen species (ROS) levels. OA, GKT137831, and tocopherol protected cells and decreased ROS levels. However, OA did not exhibit direct DPPH scavenging ability. In addition, immunoblotting illustrated that OA inhibited the NOX4 (nicotinamide adenine dinucleotide phosphate oxidases 4) expression and downregulated the protein expression in the NOX4/ROS/p38 MAPK (p38 mitogen-activated protein kinase) pathway. The findings suggest that the cytoprotective and antioxidant effects of OA can be blocked by the NOX4 agonist PMA. In conclusion, OA could be used as a NOX4 inhibitor to prevent kidney stones.


Assuntos
Antioxidantes/farmacologia , Túbulos Renais/efeitos dos fármacos , NADPH Oxidase 4/genética , Saponinas/farmacologia , Animais , Antioxidantes/química , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Oxalato de Cálcio/química , Oxalato de Cálcio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Humanos , Cálculos Renais/tratamento farmacológico , Cálculos Renais/genética , Cálculos Renais/patologia , Túbulos Renais/patologia , Malpighiaceae/química , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ésteres de Forbol/farmacologia , Picratos/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Espécies Reativas de Oxigênio/química , Saponinas/química , Tocoferóis/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
20.
Toxicon ; 165: 40-46, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31034846

RESUMO

The hump-nosed pit viper Hypnale hypnale is responsible for a high number of snakebite cases in southwestern India and Sri Lanka. Although most patients only develop local signs and symptoms of envenoming, there is a growing body of evidence indicating that these envenomings may be associated with systemic alterations, including acute kidney injury. In this study we evaluated the renal toxicity of H. hypnale venom by using a perfused isolated rat kidney system and by assessing cytotoxicity in two different renal tubular cell lines in culture. The venom caused alterations in several renal functional parameters, such as reduction on perfusion pressure, renal vascular resistance, and sodium and chloride tubular transport, whereas glomerular filtration rate and urinary flow initially decreased and then increased after venom perfusion. In addition, this venom was cytotoxic to proximal and distal renal tubular cells in culture, with predominance of necrosis over apoptosis. Moreover, the venom affected the mitochondrial membrane potential and induced an increment in reactive oxygen species in these cells. Taken together, our results demonstrate a nephrotoxic activity of H. hypnale venom in these experimental models, in agreement with clinical observations.


Assuntos
Venenos de Crotalídeos/toxicidade , Rim/efeitos dos fármacos , Animais , Linhagem Celular , Técnicas In Vitro , Túbulos Renais/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Sri Lanka
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA