Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.830
Filtrar
1.
Phytomedicine ; 80: 153393, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33120292

RESUMO

BACKGROUND: Sarcopenia progresses in chronic kidney disease (CKD) and is positively correlated with mortality in end-stage kidney disease patients. Circulating irisin, an exercise-induced myokine, gradually decreases during CKD stage progression. Irisin inhibits the progression of kidney fibrosis, which is the final common outcome of CKD. Our preliminary study with C2C12 cells showed that Dojuksan, a herbal decoction, increases the expression of PGC1α (a regulator of irisin) and FNDC5 (a precursor of irisin). HYPOTHESIS: Dojuksan may increase circulating irisin and prevent the progression of kidney fibrosis. STUDY DESIGN AND METHODS: Unilateral ureteral obstruction (UUO) was performed on seven-week-old male C57BL/6 mice to induce kidney tubulointerstitial fibrosis. Dojuksan (50, 100, or 200 mg/kg/day) or losartan (1.5 mg/kg/day), a standard clinical treatment for CKD, was administered orally one day prior to surgery and continued for seven days thereafter. To determine the role of irisin released from muscles, TGFß-stimulated murine proximal tubular epithelial cells (mProx24 cells) were treated with conditioned media (CM) from Dojuksan-treated C2C12 muscle cells transfected with FNDC5 siRNA. RESULTS: UUO mice exhibited muscle wasting along with progressive kidney injury. Similar to losartan, Dojuksan ameliorated kidney inflammation and fibrosis in UUO mice. Dojuksan, but not losartan, increased plasma irisin concentration in UUO mice. Dojuksan significantly increased basal FNDC5 expression and inhibited TNFα-induced and indoxyl sulfate-induced FNDC5 down-regulation in C2C12 cells. The TGFß-induced collagen I (COL1) up-regulation in mProx24 cells was effectively inhibited by CM from C2C12 cells after Dojuksan treatment. Moreover, irisin inhibited TGFß-induced COL1 in mProx24 cells, which was not affected by CM from C2C12 cells transfected with FNDC5 siRNA. CONCLUSION: Dojuksan ameliorates kidney fibrosis through irisin-mediated muscle-kidney crosstalk, suggesting that Dojuksan may be used as an alternative therapeutic agent against CKD.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fibronectinas/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Músculo Esquelético/metabolismo , Animais , Linhagem Celular , Colágeno Tipo I/metabolismo , Fibronectinas/genética , Fibrose , Nefropatias/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Losartan/farmacologia , Masculino , Medicina Tradicional Chinesa , Medicina Tradicional Coreana , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/fisiopatologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Obstrução Ureteral/patologia
2.
Nephrol Nurs J ; 47(6): 553-572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33377756

RESUMO

Loop diuretic medications work by inhibiting sodium reabsorption in the renal tubules. The net effect is increasing in urinary sodium and water excretion. Loop diuretics are routinely used for many clinical indications, and nephrology practitioners are well informed in the management of their use in daily practice. This article highlights key information on the most commonly used loop diuretics (e.g., furosemide and torsemide) and provides important clinical features related to pharmacokinetics properties, dosing consideration, route of administration, side effects, and other considerations for practitioners.


Assuntos
Diuréticos/metabolismo , Diuréticos/uso terapêutico , Falência Renal Crônica/tratamento farmacológico , Túbulos Renais/metabolismo , Nefrologia , Guias de Prática Clínica como Assunto , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico , Diuréticos/efeitos adversos , Humanos , Testes de Função Renal , Inibidores de Simportadores de Cloreto de Sódio e Potássio/efeitos adversos
3.
Toxicol Appl Pharmacol ; 409: 115322, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33171189

RESUMO

Diabetic nephropathy is the leading cause of renal failure worldwide. Elevated inflammatory signaling has been shown to lead to deterioration of renal function in human and experimental diabetes. We recently developed a salviadione derivative (compound 15a) that prevented microbial lipopolysaccharide-induced inflammatory responses, which are largely driven by nuclear factor-κB (NF-κB). In the present study, we have tested the hypothesis that 15a will protect kidneys from diabetes-induced dysfunction by suppressing NF-κB activation and inflammatory signaling. Treatment of diabetic mice with 15a inhibited diabetes-induced renal fibrosis, NF-κB activation, and upregulation of proinflammatory cytokines. Histologically, kidney specimens from diabetic mice treated with 15a were indistinguishable from non-diabetic controls. We confirmed our findings in cultured renal tubular epithelial cells exposed to high levels of glucose. In these cultured cells, 15a pretreatment prevented high glucose-induced NF-κB activation and expression of inflammatory cytokines. These protective effects were also reflected in reduced levels of proteins involved in matrix expansion. Overall, our studies show that a salviadione derivative, 15a, is effective in suppressing diabetes-induced NF-κB activation and inflammatory signaling.


Assuntos
Anti-Inflamatórios/farmacologia , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/tratamento farmacológico , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Glucose/metabolismo , Inflamação/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Transdução de Sinais/efeitos dos fármacos
4.
Eur Heart J ; 41(48): 4580-4588, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33206176

RESUMO

AIMS: Angiotensin-converting enzyme 2 (ACE2) is the cellular entry point for severe acute respiratory syndrome coronavirus (SARS-CoV-2)-the cause of coronavirus disease 2019 (COVID-19). However, the effect of renin-angiotensin system (RAS)-inhibition on ACE2 expression in human tissues of key relevance to blood pressure regulation and COVID-19 infection has not previously been reported. METHODS AND RESULTS: We examined how hypertension, its major metabolic co-phenotypes, and antihypertensive medications relate to ACE2 renal expression using information from up to 436 patients whose kidney transcriptomes were characterized by RNA-sequencing. We further validated some of the key observations in other human tissues and/or a controlled experimental model. Our data reveal increasing expression of ACE2 with age in both human lungs and the kidney. We show no association between renal expression of ACE2 and either hypertension or common types of RAS inhibiting drugs. We demonstrate that renal abundance of ACE2 is positively associated with a biochemical index of kidney function and show a strong enrichment for genes responsible for kidney health and disease in ACE2 co-expression analysis. CONCLUSION: Our results indicate that neither hypertension nor antihypertensive treatment is likely to alter the expression of the key entry receptor for SARS-CoV-2 in the human kidney. Our data further suggest that in the absence of SARS-CoV-2 infection, kidney ACE2 is most likely nephro-protective but the age-related increase in its expression within lungs and kidneys may be relevant to the risk of SARS-CoV-2 infection.


Assuntos
/genética , Anti-Hipertensivos/farmacologia , Hipertensão , Túbulos Renais/metabolismo , Pulmão/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Antagonistas Adrenérgicos beta/farmacologia , Adulto , Fatores Etários , Idoso , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Diuréticos/farmacologia , Feminino , Perfilação da Expressão Gênica , Taxa de Filtração Glomerular , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Túbulos Renais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos SHR , Análise de Sequência de RNA , Fatores Sexuais , Transcriptoma/efeitos dos fármacos
5.
Am J Physiol Renal Physiol ; 319(6): F1125-F1134, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135476

RESUMO

Renal interstitial fibrosis (RIF) is characterized by excessive extracellular matrix deposition and involves epithelial-mesenchymal transition (EMT). The lncRNA taurine-upregulated gene 1 (TUG1) participates in EMT in several cancers; however, the effect and underlying mechanism of TUG1 in RIF-related EMT remain unclear. Here, we explored the mechanisms by which TUG1 modulates RIF. An in vivo model of renal fibrosis was established by unilateral ureteral obstruction in Balb/c mice. Human renal proximal tubular epithelial (HK-2) cells treated with transforming growth factor (TGF)-ß1 were used to induce the in vitro model. Morphological changes and TUG1 expression were assessed. HK-2 cells were transfected with siRNA to silence TUG1. Western blot analysis, immunofluorescence staining, cell proliferation, and migration assays were performed to examine TGF-ß1-induced changes in EMT markers and EMT-like cell behaviors. TUG1 and ß-catenin (CTNNB1) levels were significantly upregulated, whereas miR-141-3p was significantly downregulated, during EMT in vitro and in vivo. TUG1 knockdown or miR-141-3p overexpression supported the epithelioid morphology of HK-2 cells while enhancing the downregulation of E-cadherin and upregulation of vimentin, α-smooth muscle actin, and ß-catenin levels in TGF-ß1-treated HK-2 cells. TUG1 knockdown promoted the proliferation and decreased the migration of HK-2 cells and enhanced the downregulation of miR-141-3p levels in TGF-ß1-treated HK-2 cells. TUG1 directly targeted miR-141-3p, and miR-141-3p was directly bound to CTNNB1. Downregulation of miR-141-3p inhibited TUG1 silencing-induced suppression of EMT. In conclusion, TUG1 promotes EMT in TGF-ß1-induced HK-2 cells via upregulation of ß-catenin levels by sponging miR-141-3p, suggesting a novel therapeutic candidate for RIF.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Nefropatias/metabolismo , Túbulos Renais/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Células Epiteliais/patologia , Fibrose , Humanos , Nefropatias/etiologia , Nefropatias/genética , Nefropatias/patologia , Túbulos Renais/patologia , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Interferência de RNA , RNA Longo não Codificante/genética , Transdução de Sinais , Obstrução Ureteral/complicações , beta Catenina/genética
6.
Proc Natl Acad Sci U S A ; 117(42): 26470-26481, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33004624

RESUMO

The diversity and near universal expression of G protein-coupled receptors (GPCR) reflects their involvement in most physiological processes. The GPCR superfamily is the largest in the human genome, and GPCRs are common pharmaceutical targets. Therefore, uncovering the function of understudied GPCRs provides a wealth of untapped therapeutic potential. We previously identified an adhesion-class GPCR, Gpr116, as one of the most abundant GPCRs in the kidney. Here, we show that Gpr116 is highly expressed in specialized acid-secreting A-intercalated cells (A-ICs) in the kidney using both imaging and functional studies, and we demonstrate in situ receptor activation using a synthetic agonist peptide unique to Gpr116. Kidney-specific knockout (KO) of Gpr116 caused a significant reduction in urine pH (i.e., acidification) accompanied by an increase in blood pH and a decrease in pCO2 compared to WT littermates. Additionally, immunogold electron microscopy shows a greater accumulation of V-ATPase proton pumps at the apical surface of A-ICs in KO mice compared to controls. Furthermore, pretreatment of split-open collecting ducts with the synthetic agonist peptide significantly inhibits proton flux in ICs. These data suggest a tonic inhibitory role for Gpr116 in the regulation of V-ATPase trafficking and urinary acidification. Thus, the absence of Gpr116 results in a primary excretion of acid in KO mouse urine, leading to mild metabolic alkalosis ("renal tubular alkalosis"). In conclusion, we have uncovered a significant role for Gpr116 in kidney physiology, which may further inform studies in other organ systems that express this GPCR, such as the lung, testes, and small intestine.


Assuntos
Rim/metabolismo , Receptores Acoplados a Proteínas-G/metabolismo , Animais , Fenômenos Bioquímicos , Transporte Biológico , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Feminino , Homeostase , Humanos , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Knockout
7.
Am J Physiol Renal Physiol ; 319(5): F920-F929, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044867

RESUMO

Acute kidney injury (AKI) is a common clinical syndrome associated with adverse short- and long-term sequelae. Renal tubular epithelial cell (RTEC) dysfunction and cell death are among the key pathological features of AKI. Diverse systemic and localized stress conditions such as sepsis, rhabdomyolysis, cardiac surgery, and nephrotoxic drugs can trigger RTEC dysfunction. Through an unbiased RNA inhibition screen, we recently identified cyclin-dependent kinase-like 5 (Cdkl5), also known as serine/threonine kinase-9, as a critical regulator of RTEC dysfunction associated with nephrotoxic and ischemia-associated AKI. In the present study, we examined the role of Cdkl5 in rhabdomyolysis-associated AKI. Using activation-specific antibodies and kinase assays, we found that Cdkl5 is activated in RTECs early during the development of rhabdomyolysis-associated AKI. Furthermore, we found that RTEC-specific Cdkl5 gene ablation mitigates rhabdomyolysis-associated renal impairment. In addition, the small-molecule kinase inhibitor AST-487 alleviated rhabdomyolysis-associated AKI in a Cdkl5-dependent manner. Mechanistically, we demonstrated that Cdkl5 phosphorylates the transcriptional regulator sex-determining region Y box 9 (Sox9) and suppresses its protective function under stress conditions. On the basis of these results, we propose that, by suppressing the protective Sox9-directed transcriptional program, Cdkl5 contributes to rhabdomyolysis-associated renal impairment. All together, the present study identified Cdkl5 as a critical stress-induced kinase that drives RTEC dysfunction and kidney injury linked with distinct etiologies.


Assuntos
Lesão Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição SOX9/metabolismo , Lesão Renal Aguda/patologia , Morte Celular/fisiologia , Humanos , Rim/metabolismo , Fosforilação , Rabdomiólise/induzido quimicamente , Transdução de Sinais/fisiologia
8.
Am J Physiol Renal Physiol ; 319(5): F908-F919, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044868

RESUMO

Females are protected against the development of angiotensin II (ANG II)-induced hypertension compared with males, but the mechanisms have not been completely elucidated. In the present study, we hypothesized that the effect of ANG II on the macula densa nitric oxide (NO) synthase 1ß (NOS1ß)-mediated tubuloglomerular feedback (TGF) mechanism is different between males and females, thereby contributing to the sexual dimorphism of ANG II-induced hypertension. We used microperfusion, micropuncture, clearance of FITC-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1ß expression and activity, TGF response, natriuresis, and blood pressure (BP) after a 2-wk ANG II infusion in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, ANG II induced higher expression of macula densa NOS1ß, greater NO generation by the macula densa, and a lower TGF response in vitro and in vivo in females than in males; the increases of glomerular filtration rate, urine flow rate, and Na+ excretion in response to an acute volume expansion were significantly greater and the BP responses to ANG II were significantly less in females than in males. In contrast, these sex differences in the effects of ANG II on TGF, natriuretic response, and BP were largely diminished in knockout mice. In addition, tissue culture of human kidney biopsies (renal cortex) with ANG II resulted in a greater increase in NOS1ß expression in females than in males. In conclusion, macula densa NOS1ß-mediated TGF is a novel and important mechanism for the sex differences in ANG II-induced hypertension.


Assuntos
Hipertensão/metabolismo , Túbulos Renais/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Caracteres Sexuais , Angiotensina II/farmacologia , Animais , Retroalimentação , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Hipertensão/induzido quimicamente , Córtex Renal/metabolismo , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Masculino , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo
9.
Am J Physiol Renal Physiol ; 319(5): F876-F884, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017192

RESUMO

Renal injury leads to chronic kidney disease, with which women are not only more likely to be diagnosed than men but have poorer outcomes as well. We have previously shown that expression of small proline-rich region 2f (Sprr2f), a member of the small proline-rich region (Sprr) gene family, is increased several hundredfold after renal injury using a unilateral ureteral obstruction (UUO) mouse model. To better understand the role of Sprr2f in renal injury, we generated a Sprr2f knockout (Sprr2f-KO) mouse model using CRISPR-Cas9 technology. Sprr2f-KO female mice showed greater renal damage after UUO compared with wild-type (Sprr2f-WT) animals, as evidenced by higher hydroxyproline levels and denser collagen staining, indicating a protective role of Sprr2f during renal injury. Gene expression profiling by RNA sequencing identified 162 genes whose expression levels were significantly different between day 0 and day 5 after UUO in Sprr2f-KO mice. Of the 162 genes, 121 genes were upregulated after UUO and enriched with those involved in oxidation-reduction, a phenomenon not observed in Sprr2f-WT animals, suggesting a protective role of Sprr2f in UUO through defense against oxidative damage. Consistently, bilateral ischemia-reperfusion injury resulted in higher serum blood urea nitrogen levels and higher tissue reactive oxygen species in Sprr2f-KO compared with Sprr2f-WT female mice. Moreover, cultured renal epithelial cells from Sprr2f-KO female mice showed lower viability after oxidative damage induced by menadione compared with Sprr2f-WT cells that could be rescued by supplementation with reduced glutathione, suggesting that Sprr2f induction after renal damage acts as a defense against reactive oxygen species.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Células Epiteliais/metabolismo , Rim/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Proteínas Ricas em Prolina do Estrato Córneo/genética , Modelos Animais de Doenças , Feminino , Túbulos Renais/metabolismo , Camundongos Knockout , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Obstrução Ureteral/patologia
10.
Anticancer Res ; 40(11): 6525-6530, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33109593

RESUMO

BACKGROUND/AIM: End-stage kidney disease is characterized by chronic inflammation and frequent development of cancer. The level of circulating vitamin D is generally low in patients with end-stage renal disease (ESRD). Experimental studies have implicated the role of dysfunctional vitamin D metabolism in tumorigenesis. PATIENTS AND METHODS: We analyzed the expression of vitamin D receptor (VDR), cytochrome P450 family 27 subfamily B member 1 (CYP27B1) and cytochrome P450 family 24 subfamily A member 1 (CYP24A1), the key genes involved in vitamin D signaling, in kidneys from patients with ESRD, tissue microarrays containing ESRD-associated renal cell tumors, as well as in their precursor lesions by immunohistochemistry. RESULTS: Kidneys from patients with ESRD showed strong structural rearrangement with only few tubules and epithelial cell groups embedded in fibrotic-inflammatory stroma. Only an estimated 1-3% of the epithelial cells showed positive staining with antibodies to VDR, CYP27B1 and CYP24A1, which contrasted with the 100%, 40-50% and 40-50% of positively stained cells, respectively, found in normal kidneys. Down-regulation of the vitamin D signaling proteins was found in patients with renal cancer, with the exception of tumors and their precursors occurring exclusively in ESRD. CONCLUSION: The significantly reduced activity of CYP27B1 in kidney from patients with ESRD explains the low level of circulating vitamin D. We suggest that the lack of anti-tumorigenic effect of vitamin D is a crucial factor in the frequent development of unique types of renal cell cancer in in patients with ESRD.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Carcinoma de Células Renais/genética , Falência Renal Crônica/genética , Receptores de Calcitriol/genética , Vitamina D3 24-Hidroxilase/genética , Carcinoma de Células Renais/sangue , Carcinoma de Células Renais/complicações , Carcinoma de Células Renais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Rim/metabolismo , Rim/patologia , Falência Renal Crônica/sangue , Falência Renal Crônica/complicações , Falência Renal Crônica/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Redes e Vias Metabólicas/genética , Vitamina D/sangue
11.
Toxicology ; 444: 152583, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911022

RESUMO

Extracellular matrix (ECM) exerts a major role in maintaining the structure and developmental processes of tissues. To form the tubular basement membrane in the kidney, sulfate proteoglycans, collagen, laminin, fibronectin, and other glycoproteins congregate in the ECM. As an insecticide, diazinon (DZN) may alter the proportion of ECM by cholinesterase activity inhibition and oxidative stress. The naturally, alpha-lipoic acid (ALA) plays an effective and therapeutic role in the treatment of toxicities and diseases in the body. In the current study, an attempt was made to evaluate the impacts of alpha-lipoic acid on the distribution of fibronectin and laminin in the renal tubules of male Wistar rats following exposure to diazinon. In this study, the animal groups comprised 30 adult male Wistar rats (almost three months old) randomly distributed into the following groups; control, DZN (40 mg/kg), DZN + ALA (40 mg/kg+100 mg/kg), ALA (100 mg/kg), and sham. The rats were anesthetized after six weeks. Blood sampling was performed, and kidneys were removed for immunohistochemistry study. Diazinon reduced the distribution of fibronectin and laminin and significantly inhibited cholinesterase activity in the renal tubules. Furthermore, urea and creatinine levels were higher in diazinon than in other groups. ALA in the co-treatment group enhanced cholinesterase activity and distribution of both glycoproteins in the renal tubules. Urea and creatinine levels were meaningfully diminished in the DZN + ALA group. The nephrotoxic effect of diazinon in vivo was the reduced distribution of laminin and fibronectin, probably induced by cholinesterase activity inhibition. As an antioxidant with specific properties, ALA reduces the nephrotoxic effects of diazinon by multifarious mechanisms.


Assuntos
Inibidores da Colinesterase/toxicidade , Diazinon/toxicidade , Fibronectinas/metabolismo , Inseticidas/toxicidade , Túbulos Renais/efeitos dos fármacos , Laminina/metabolismo , Ácido Tióctico/farmacologia , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/metabolismo , Túbulos Renais/metabolismo , Masculino , Ratos Wistar
12.
Life Sci ; 261: 118484, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32976885

RESUMO

AIM: Chloride channel 7 (CLC-7), broadly expressed in kidney tissues, affects the lysosome degradation pathway. And redox status impairment contributes to cell apoptosis and activates autophagy flux. This study mainly investigates the role and molecular mechanism of CLC-7 in redox status impairment-induced autophagic flux and apoptosis. MAIN METHODS: When NRK52E cells, rat renal tubular epithelial cells, were exposed to H2O2 treatment, apoptosis, autophagy flux, and CLC-7 expression were detected. Further investigation was done to observe the change of apoptosis and autophagy flux in renal cells under overexpression or knocking down of CLC-7. The lysosomes acidity, lysosome enzyme Cathepsin D activity and phosphorylation of Ampk/mTOR were also examined when CLC-7 was overexpressed or knocked down. KEY FINDINGS: Redox status impairment induced apoptosis and autophagy flux in NRK52E cells and upregulated CLC-7. Overexpression of CLC-7 increased lysosome acidity and Cathepsin D activity. In cells with CLC-7 overexpression, we observed a significant increase of autophagy flux and decline of apoptosis, as well as an apparent increase of p-Ampk and decrease of p-mTOR. On the contrary, cells with knocking down CLC-7 led to opposite results. SIGNIFICANCES: CLC-7 is essential to maintain and enhance acidity and enzyme activity in lysosome. Through activating autophagy flux, it exerts survival against renal tubular epithelial cell apoptosis induced by redox status impairment. Its function to modulate Ampk/mTOR pathway is the possible reason why CLC-7 can trigger autophagy flux.


Assuntos
Autofagia , Canais de Cloreto/metabolismo , Células Epiteliais/citologia , Túbulos Renais/citologia , Animais , Apoptose , Linhagem Celular , Células Epiteliais/metabolismo , Peróxido de Hidrogênio/metabolismo , Túbulos Renais/metabolismo , Oxirredução , Ratos
13.
Toxicol Lett ; 334: 36-43, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941993

RESUMO

Cisplatin is a widely used chemotherapeutic agent. However, it is causing nephrotoxic side effects including a reduced glomerular filtration rate and acute kidney injury. Although kidneys can recover to an extent from the treatment, long-term damage is possible. While a lot of research is focusing on short-term effects, little is known about adverse metabolic effects in the process of recovery. In this study, male Han Wistar rats were dosed with a single intraperitoneal injection of 3 mg/kg cisplatin. Urine and kidney samples were harvested 3, 8 and 26 days after administration. Tubular injury was demonstrated through urinary biomarkers. Complementing this, mass spectrometry imaging gives insight on molecular alterations on a spatial level, thus making it well suited to analyze short- and long-term disturbances. Various metabolic pathways seem to be affected, as changes in a wide range of metabolites were observed between treated and control animals. Besides previously reported early changes in kidney metabolism, unprecedented long-term effects were detected including deviation in nucleotides, antioxidants, and phospholipids.


Assuntos
Antineoplásicos/toxicidade , Antioxidantes/metabolismo , Cisplatino/toxicidade , Metabolismo Energético/efeitos dos fármacos , Rim/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Injeções Intraperitoneais , Rim/metabolismo , Rim/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Ratos Wistar , Fatores de Tempo
14.
Exp Mol Pathol ; 116: 104516, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32853636

RESUMO

Renal biopsy (RBx) is an essential tool in the diagnostic and therapeutic process of most native kidney diseases and in the renal transplanted graft. Laser capture microdissection (LCM), combined with molecular biology, might improve the diagnostic power of RBx. However, the limited amount of available renal tissue is often an obstacle for achieving a satisfactory qualitative and quantitative analysis. In our work we present a method which allows us to obtain good quality and quantity of RNA from formalin-fixed and paraffin-embedded (FFPE) renal tissue derived from RBx performed in transplanted patients. Histology, immunohistochemistry, LCM, pre-amplify system and qRT-PCR of biomarkers related to tubular damage, inflammation and fibrosis on FFPE RBx were performed. Glomeruli, tubules and interstitium of three RBx (RB-A: no alteration; RB-B and -C: the progressive rise of creatinine) were compared. The method proposed, could well be useful in future clinical practice. It is quick, easy to perform and allows the analyses of many biomarkers. In addition, it could be extended to all types of RBx without any limitation on the sample amount. Nevertheless, the need for a higher number of well-trained technicians might represent some limitation, counterbalanced by the opportunity to elaborate more accurate diagnosis and, consequently, more targeted therapies.


Assuntos
Biomarcadores/metabolismo , Inflamação/metabolismo , Transplante de Rim/efeitos adversos , Túbulos Renais/metabolismo , Biópsia , Formaldeído , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Inflamação/etiologia , Inflamação/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Túbulos Renais/patologia , Microdissecção e Captura a Laser , Inclusão em Parafina , RNA Mensageiro/genética , Fixação de Tecidos
15.
Ecotoxicol Environ Saf ; 205: 111188, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32836151

RESUMO

Increasing evidence indicates autophagy and apoptosis are involved in the toxicity mechanism of heavy metals. Our previous studies showed that cadmium (Cd) could induce autophagy and apoptosis in duck kidneys in vivo, nevertheless, the interaction between them has yet to be elucidated. Herein, the cells were either treated with 3CdSO4·8H2O (0, 1.25, 2.5, 5.0 µM Cd) or/and 3-methyladenine (3-MA) (2.5 µM) for 12 h and the indictors related autophagy and apoptosis were detected to assess the correlation between autophagy and apoptosis induced by Cd in duck renal tubular epithelial cells. The results demonstrated that Cd exposure notably elevated intracellular and extracellular Cd contents, the number of autophagosomes and LC3 puncta, up-regulated LC3A, LC3B, Beclin-1, Atg5 mRNA levels, and Beclin-1 and LC3II/LC3I protein levels, down-regulated mTOR, p62 and Dynein mRNA levels and p62 protein level. Additionally, autophagy inhibitor 3-MA decreased Beclin-1, LC3II/LC3I protein levels and increased p62 protein level. Moreover, co-treatment with Cd and 3-MA could notably elevate Caspase-3, Cyt C, Bax, and Bak-1 mRNA levels, Caspase-3 and cleaved Caspase-3 protein levels, and cell apoptotic rate as well as cell damage, decreased mitochondrial membrane potential (MMP), Bcl-2 mRNA level and the ratio of Bcl-2 to Bax compared to treatment with Cd alone. Overall, these results indicate Cd exposure can induce autophagy in duck renal tubular epithelial cells, and inhibition of autophagy might aggravate Cd-induced apoptosis through mitochondria-mediated pathway.


Assuntos
Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cádmio/toxicidade , Patos , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Animais , Autofagossomos/metabolismo , Autofagossomos/patologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos
16.
Life Sci ; 259: 118269, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798559

RESUMO

BACKGROUND: Diabetic nephropathy (DN), a severe microvascular complication of diabetes, has complex pathogenesis. Circular RNAs (circRNAs) exert broad biological functions on human diseases. This study intended to explore the role and mechanism of circ_WBSCR17 in DN. METHODS: DN mice models were constructed using streptozotocin injection, and DN cell models were assembled using high glucose (HG) treatment in human kidney 2 cells (HK-2). The expression of circ_WBSCR17, miR-185-5p and SRY-Box Transcription Factor 6 (SOX6) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of SOX6 and fibrosis markers were examined by western blot. The release of inflammatory cytokines, cell proliferation and apoptosis, were assessed by enzyme-linked immunosorbent assay (ELISA), cell counting kit-8 (CCK-8) assay and flow cytometry assay, respectively. The predicted interaction between miR-185-5p and circ_WBSCR17 or SOX6 was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULT: Circ_WBSCR17 was highly expressed in DN mice models and HG-induced HK-2 cells. Circ_WBSCR17 knockdown or SOX6 knockdown promoted cell proliferation and blocked cell apoptosis, inflammatory responses and fibrosis, while circ_WBSCR17 overexpression or SOX6 overexpression conveyed the opposite effects. MiR-185-5p was a target of circ_WBSCR17 and directly bound to SOX6. MiR-185-5p could reverse the role of circ_WBSCR17 or SOX6. Moreover, the expression of SOX6 was modulated by circ_WBSCR17 through intermediating miR-185-5p. CONCLUSION: Circ_WBSCR17 triggered the dysfunction of HG-induced HK-2 cells, including inflammatory responses and fibrosis, which was accomplished via the miR-185-5p/SOX6 regulatory axis.


Assuntos
Nefropatias Diabéticas/metabolismo , Túbulos Renais/metabolismo , MicroRNAs/metabolismo , N-Acetilgalactosaminiltransferases/genética , RNA Circular/metabolismo , Fatores de Transcrição SOXD/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Fibrose/genética , Fibrose/metabolismo , Glucose/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Túbulos Renais/patologia , Túbulos Renais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , N-Acetilgalactosaminiltransferases/metabolismo , RNA Circular/genética , Fatores de Transcrição SOXD/genética
17.
Metabolism ; 111: 154334, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32777444

RESUMO

BACKGROUND AND PURPOSE: Excessive mitochondrial fission was observed in diabetic kidney disease (DKD). Phosphoglycerate mutase family member 5 (PGAM5) plays an important role in mitochondrial fission by dephosphorylating the dynamin-related protein 1 at Ser637 (DRP1S637). Whether PGAM5 participates in the mitochondrial fission in diabetic renal tubular injury is unknown. Clinical trials have observed encouraging effect of Sodium-glucose cotransporter 2 (SGLT2) inhibitors on DKD though the underling mechanisms remain unclear. EXPERIMENTAL APPROACH: We used KK-Ay mice as diabetic model and Empagliflozin (Empa) were administrated by oral gavage. The mitochondrial fission and the expressions of phosphorylated AMP-activated protein kinase (p-AMPK), specificityprotein1 (SP1), PGAM5 and DRP1S637 were tested. We also examined these changes in HK2 cells that cultured in normal glucose (NG), high glucose (HG) and high glucose+Empa (HG + Empa) environment. Then we verified our deduction using AMPK activator (5-aminoimidazole-4-carboximide Riboside, AICAR), inhibitor (Compound C), si-SP1 and si-PGAM5. Lastly, we testified the interaction between SP1 and the PGAM5promotor by CHIP assay. KEY RESULTS: The mitochondrial fission and the expression of SP1, PGAM5 increased and the expression of p-AMPK, DRP1S637 decreased in diabetic or HG environment. These changes were all reversed in Empa or AICAR treated groups. These reversal effects of Empa could be diminished by Compound C. Either si-SP1 or si-PGAM5 could alleviate the mitochondrial fission without affection on AMPK phosphorylation. Finally, the CHIP assay confirmed the interaction between SP1 and the PGAM5 promotor. CONCLUSIONS AND IMPLICATIONS: The PGAM5 aggravated the development of diabetic renal tubular injury and the Empa could improve the DKD by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Compostos Benzidrílicos/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Glucosídeos/farmacologia , Túbulos Renais/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Linhagem Celular , Nefropatias Diabéticas/metabolismo , Humanos , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Am J Physiol Renal Physiol ; 319(3): F380-F393, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32628538

RESUMO

Euryhaline teleost kidneys undergo a major functional switch from being filtratory in freshwater (FW) to being predominantly secretory in seawater (SW) conditions. The transition involves both vascular and tubular effects. There is consensus that the glomerular filtration rate is greatly reduced upon exposure to hyperosmotic conditions. Yet, regulation at the tubular level has only been examined sporadically in a few different species. This study aimed to obtain a broader understanding of transcriptional regulation in proximal versus distal tubular segments during osmotic transitions. Proximal and distal tubule cells were dissected separately by laser capture microdissection, RNA was extracted, and relative mRNA expression levels of >30 targets involved in solute and water transport were quantified by quantitative PCR in relation to segment type in fish acclimated to FW or SW. The gene categories were aquaporins, solute transporters, fxyd proteins, and tight junction proteins. aqp8bb1, aqp10b1, nhe3, sglt1, slc41a1, cnnm3, fxyd12a, cldn3b, cldn10b, cldn15a, and cldn12 were expressed at a higher level in proximal compared with distal tubules. aqp1aa, aqp1ab, nka-a1a, nka-a1b, nkcc1a, nkcc2, ncc, clc-k, slc26a6C, sglt2, fxyd2, cldn3a, and occln were expressed at a higher level in distal compared with proximal tubules. Expression of aqp1aa, aqp3a1, aqp10b1, ncc, nhe3, cftr, sglt1, slc41a1, fxyd12a, cldn3a, cldn3b, cldn3c, cldn10b, cldn10e, cldn28a, and cldn30c was higher in SW- than in FW-acclimated salmon, whereas the opposite was the case for aqp1ab, slc26a6C, and fxyd2. The data show distinct segmental distribution of transport genes and a significant regulation of tubular transcripts when kidney function is modulated during salinity transitions.


Assuntos
Aclimatação/fisiologia , Túbulos Renais/metabolismo , Salmo salar , Animais , Água Doce , Regulação da Expressão Gênica , Imuno-Histoquímica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água do Mar , Transcriptoma , Equilíbrio Hidroeletrolítico
19.
Am J Physiol Renal Physiol ; 319(2): F202-F214, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32628541

RESUMO

Kidney stone disease is a crystal concretion formed in the kidneys that has been associated with an increased risk of chronic kidney disease. MicroRNAs are functionally involved in kidney injury. Data mining using a microRNA array database suggested that miR-21 may be associated with calcium oxalate monohydrate (COM)-induced renal tubular cell injury. Here, we confirmed that COM exposure significantly upregulated miR-21 expression, inhibited proliferation, promoted apoptosis, and caused lipid accumulation in an immortalized renal tubular cell line (HK-2). Moreover, inhibition of miR-21 enhanced proliferation and decreased apoptosis and lipid accumulation in HK-2 cells upon COM exposure. In a glyoxylate-induced mouse model of renal calcium oxalate deposition, increased miR-21 expression, lipid accumulation, and kidney injury were also observed. In silico analysis and subsequent experimental validation confirmed the peroxisome proliferator-activated receptor (PPAR)-α gene (PPARA) a key gene in fatty acid oxidation, as a direct miR-21 target. Suppression of miR-21 by miRNA antagomiR or activation of PPAR-α by its selective agonist fenofibrate significantly reduced renal lipid accumulation and protected against renal injury in vivo. In addition, miR-21 was significantly increased in urine samples from patients with calcium oxalate renal stones compared with healthy volunteers. In situ hybridization of biopsy samples from patients with nephrocalcinosis revealed that miR-21 was also significantly upregulated compared with normal kidney tissues from patients with renal cell carcinoma who underwent radical nephrectomy. These results suggested that miR-21 promoted calcium oxalate-induced renal tubular cell injury by targeting PPARA, indicating that miR-21 could be a potential therapeutic target and biomarker for nephrolithiasis.


Assuntos
Oxalato de Cálcio/farmacologia , Rim/lesões , MicroRNAs/farmacologia , PPAR alfa/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores/metabolismo , Oxalato de Cálcio/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Rim/metabolismo , Cálculos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , MicroRNAs/genética , Nefrocalcinose/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Am J Physiol Renal Physiol ; 319(2): F292-F303, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32686520

RESUMO

In proteinuric renal diseases, excessive plasma nonesterified free fatty acids bound to albumin can leak across damaged glomeruli to be reabsorbed by renal proximal tubular cells and cause inflammatory tubular cells damage by as yet unknown mechanisms. The present study was designed to investigate these mechanisms induced by palmitic acid (PA; one of the nonesterified free fatty acids) overload. Our results show that excess PA stimulates ATP release through the pannexin 1 channel in human renal tubule epithelial cells (HK-2), increasing extracellular ATP concentration approximately threefold compared with control. The ATP release is dependent on caspase-3/7 activation induced by mitochondrial reactive oxygen species. Furthermore, extracellular ATP aggravates PA-induced monocyte chemoattractant protein-1 secretion and monocyte infiltration of tubular cells, enlarging the inflammatory response in both macrophages and HK-2 cells via the purinergic P2X7 receptor-mammalian target of rapamycin-forkhead box O1-thioredoxin-interacting protein/NOD-like receptor protein 3 inflammasome pathway. Hence, PA increases mitochondrial reactive oxygen species-induced ATP release and inflammatory stress, which cause a "first hit," while ATP itself is a "second hit" in amplifying the renal tubular inflammatory response. Thus, inhibition of ATP release or the purinergic P2X7 receptor may be an approach to reduce renal inflammation and improve renal function.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Inflamassomos/metabolismo , Túbulos Renais/metabolismo , Células Epiteliais/metabolismo , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA