Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.589
Filtrar
1.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677617

RESUMO

Agro-industrial residues represent more than 60% of organic wastes worldwide, which could be used to generate other by-products or to be incorporated into other production chains. For example, bagasse is a waste from the tequila industry in Mexico that could be implemented for mushroom cultivation. Additionally, the substrate influences the growth, development, and production of secondary metabolites of fungi. This work presents a comparative experiment that studies the metabolite production in Pleurotus djamor mushrooms on agave bagasse and barley straw (traditional substrate). The biological efficiency (BE), yield, phenolics and flavonoids, antioxidant capacity, tannins, and the identification of low molecular weight metabolites were evaluated. Five treatments were proposed according to the following mixtures of agave bagasse: barley straw: T1 (1:0), T2 (3:1), T3 (1:1), T4 (1:3), and T5 (0:1). T2 had the highest yield (13.39 ± 3.23%), BE (56.7 ± 13.71%), and flavonoids (44.25 mg rutin equivalent (RE)/g); T3 obtained the highest phenol content (230.27 mg GAE/g); and T1 the highest tannins content (0.23 mg (+) catechin equivalent (CE)/g). Finally, T1 and T5 are the ones that present the greatest number of primary metabolites, including hydroxycitric acid, 2-deoxy-D-galactose, D-mannose, paromomycin, palmitic acid, pyrrole, mannitol, and DL arabinose, while in T2, T3, and T4 only two chemical compounds were found present (palmitic acid and pyrrole in T2, silicic acid and pyrrole in T3 and 2-deoxy-D-galactose and quinoline in T4). The cultivation substrate influences the concentration of bioactive molecules in the fruiting bodies of P. djamor. Additionally, P. djamor's degradation of agave bagasse residue generates a potential application for agro-industrial residue management at a low cost.


Assuntos
Agave , Pleurotus , Agave/química , Ácido Palmítico/metabolismo , Pleurotus/metabolismo , Taninos/metabolismo
2.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677749

RESUMO

Horchata, a herbal infusion drink from Ecuador containing a mixture of medicinal plants, has been reported to exhibit anti-inflammatory, analgesic, diuretic, and antioxidant activity. The antibacterial activity of each of the plants contained in the horchata mixture has not been fully evaluated. Thus, in this study, we analysed the antibacterial activity of 21 plants used in horchata, collected from the Ecuadorian Andes region, against bacterial strains of clinical importance. The methanolic extract of Cinnamomum sp. showed minimal inhibitory concentration (MIC) values of 250 µg/mL against Staphylococcus aureus ATCC25923 and Methicillin-resistant S. aureus (MRSA), while Pelargonium odoratissimum exhibited a MIC value of 500 µg/mL towards S. aureus ATCC25923. The high-performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS) analyses identified in Cinnamomum sp. epicatechin tannins, cinnamaldehyde, and prehelminthosporol molecules, whereas in P. odoratissimum, gallocatechin and epigallocatechin tannins, some flavonoids, and gallic acid and derivatives were identified. Finally, Cinnamomum sp. and P. odoratissimum showed partial inhibition of biofilm formation of S. aureus ATCC25923 and MRSA. Overall, our findings revealed which of the plants used in horchata are responsible for the antibacterial activity attributed to this herbal drink and exhibit the potential for Cinnamomum sp. and P. odoratissimum secondary metabolites to be explored as scaffolds in drug development.


Assuntos
Cinnamomum , Staphylococcus aureus Resistente à Meticilina , Pelargonium , Staphylococcus aureus , Cinnamomum/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Taninos
3.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615589

RESUMO

The impossibility of using drugs for the health of farm animals leads to the search for alternative strategies with two purposes: to maintain animal health and safeguard human health. In this perspective, tannins have shown great promises. These phytocomplexes obtained from natural matrices with multiple health properties may be used as a feed supplement in chicken farms. In this work, we studied two tannin-based extracts (from Castanea sativa Mill. wood and from Schinopsis balansae Engl. Quebracho Colorado hardwood) with different chemical compositions on the spontaneous contractility on the isolated intestinal tissues of healthy chicken. The results showed that the chemical composition of the two phytocomplexes influenced the spontaneous intestinal contractility in different ways by regulating the tone and consequent progression of the food bolus. The chemical analysis of the two extracts revealed that Castanea sativa Mill. wood mainly contains hydrolysable tannins, while Schinopsis balansae Engl. hardwood mainly contains condensed tannins. The two phytocomplexes showed different effects towards gastrointestinal smooth muscle contractility, with Castanea sativa Mill. wood providing a better activity profile than Schinopsis balansae Engl. hardwood.


Assuntos
Proantocianidinas , Taninos , Animais , Humanos , Taninos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Galinhas , Taninos Hidrolisáveis/farmacologia
4.
Food Chem ; 403: 134321, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191418

RESUMO

Absorbance-transmission and fluorescence excitation-emission matrix (A-TEEM) spectroscopy was investigated as a rapid method for predicting maturity indices using Cabernet Sauvignon grapes produced under four viticulture treatments during two growing seasons. Machine learning models were developed with fused spectral data to predict 3-isobutyl-2-methoxypyrazine (IBMP), pH, total tannins (Tannin), total soluble solids (TSS), and malic and tartaric acids based on the results from traditional analysis methods. Extreme gradient boosting (XGB) regression yielded R2 values of 0.92-0.96 for IBMP, malic acid, pH, and TSS for externally validated (Test) models, with partial least squares regression being superior for TSS prediction (R2 = 0.97). R2 values of 0.64-0.81 were achieved with either approach for tartaric acid and Tannin predictions. Classification of grape maturity, defined by quantile ranges for red colour, IBMP, malic acid, and TSS, was investigated using XGB discriminant analysis, providing an average of 78 % correctly classified samples for the Test model.


Assuntos
Vitis , Vinho , Vitis/química , Vinho/análise , Taninos/análise , Aprendizado de Máquina
5.
Anal Chem ; 95(2): 581-586, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36583571

RESUMO

Access to both protein and metabolite biomarker information in biospecimens from trace samples remains a significant challenge, and it is necessary to separate proteins and metabolites before analysis. In this work, the Fe3O4@SiO2@Proteins@Metal-polyphenol network (MPN) was successfully constructed and applied to separate metabolites and proteins. Tannic acid (TA) and Cu2+ were involved in the synthesis of MPN because of rapid degradation and maintaining the assay performance of proteins. There are a variety of interactions between TA and proteins, including hydrogen-bonding, hydrophobic, and ionic interactions. Moreover, benefiting from the small molecule permeability and surface adherence of MPN, proteins were encapsulated and immobilized on the surface of substrates with the growth of MPN. At the same time, endogenous metabolites remained dispersed in the supernatant. In the model sample and real biospecimen cases, the protein biomarkers (e.g., carcinoembryonic antigen and alanine aminotransferase) were encapsulated on the surface of Fe3O4@SiO2, which allowed the isolation of proteins from the original matrix, as well as release and analysis in a short time. Meanwhile, the metabolites in the produced supernatant were analyzed by LC-MS/MS. By the self-assembly and disassembly of MPN, the group differences of proteins and metabolites between physiological and pathological biospecimens are correctly characterized without multisampling. Overall, an MPN-mediated separation strategy of biomarkers was proposed, and MPN facilitated a "two birds with one stone" approach, where the proteins were encapsulated and immobilized in the precipitation while endogenous metabolites distributed in the produced supernatant, opening a new chapter in the application of MPNs.


Assuntos
Polifenóis , Dióxido de Silício , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas , Metais , Taninos/química
6.
Int J Biol Macromol ; 227: 58-70, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529224

RESUMO

This work proposed new black-wattle tannin/kraft lignin H3PO4-activated carbon xerogels as sustainable and efficient adsorbents. The precursors were chosen based on their eco-friendly and cost-effective nature, aiming to achieve adsorbents with high adsorption capacities. Carbon xerogels were synthesized through polycondensation with formaldehyde and alkaline catalyst in a simple one-pot procedure. Activation was performed using H3PO4 in a tubular furnace (500 °C), under a nitrogen atmosphere. Results show that the inclusion of the kraft lignin led to changes in the morphology of the materials, facilitating the development of their porous structure and increasing specific surface area and pore volume. The best adsorbent (XLT 50 %) was synthesized using a 1:1 tannin/kraft lignin mass ratio. This material presented an adsorption capacity of nearly 1150 mg g-1 of methylene blue (pH = 5 and T = 298 K), which was linked to its high specific surface area of 1348 m2 g-1. The adsorption process followed the pseudo-second-order kinetic model, whereas the adsorption isotherms were best fitted by the Sips model. The XLT 50 % presented good reusability properties, maintaining its adsorption capacity for 3 cycles. Finally, the XLT 50 % presented good adsorptive properties toward other pollutants (methyl orange, 4-chlorophenol, and hexavalent chromium), indicating its versatility for adsorption processes.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Animais , Taninos , Crista e Barbelas , Formaldeído , Lignina/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
7.
J Agric Food Chem ; 71(1): 488-498, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562642

RESUMO

The high accumulation of galloylated flavan-3-ols in Camellia sp. is a noteworthy phenomenon. We identified a flavan-3-ol galloylation-related functional gene cluster in tannin-rich plant Camellia sp., which included UGT84A22 and SCPL-AT gene clusters. We investigated the possible correlation between the accumulation of metabolites and the expression of SCPL-ATs and UGT84A22. The results revealed that C. sinensis, C. ptilophylla, and C. oleifera accumulated galloylated cis-flavan-3-ols (EGCG), galloylated trans-flavan-3-ols (GCG), and hydrolyzed tannins, respectively; however, C. nitidissima did not accumulate any galloylated compounds. C. nitidissima exhibited no expression of SCPL-AT or UGT84A22, whereas the other three species of Camellia exhibited various expression patterns. This indicated that the functions of the paralogs of SCPL-AT vary. Enzymatic analysis revealed that SCPL5 was neofunctionalized as a noncatalytic chaperone paralog, a type of chaerone-like protein, associating with flavan-3-ol galloylation; moreover, CsSCPL4 was subfunctionalized in association with the galloylation of cis- and trans-flavan-3-ols. In C. nitidissima, an SCPL4 homolog was noted with mutations in two cysteine residues forming a disulfide bond, which suggested that this homolog was defunctionalized. The findings of this study improve our understanding of the functional diversification of SCPL paralogs in Camellia sp.


Assuntos
Camellia sinensis , Camellia , Camellia/genética , Flavonoides/química , Taninos/metabolismo , Camellia sinensis/química
8.
Food Chem ; 407: 135145, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521391

RESUMO

The seed coat is a major byproduct of lentil processing with potential as a sustainable source of antioxidant polyphenols. Profiles of water-soluble phenolic compounds and antioxidant activities of seven genotypes of lentil which includes both normal-tannin and low-tannin seed coats were investigated. Antioxidant activities were assessed using four antioxidant assays, and phenolic compounds were quantified using liquid chromatography mass spectrometry (LC-MS). Total phenolic content (TPC) varied significantly among genotypes and ranged between 1519 ± 140 and 6502 ± 154 µg/g. Thirty phenolic compounds were identified with kaempferol tetraglycoside, catechin-3-glucoside and procyanidins being the dominant compounds in normal-tannin seed coats. Kaempferol tetraglycoside predominated (80-90%) in low-tannin seed coats. Antioxidant activities strongly correlated with TPC (r > 0.93) with a 6-9 times higher activity in normal-tannin than that of low-tannin lentils. Without flavan-3-ols and procyanidins, low-tannin seed coat may not exert strong antioxidant potential, whereas normal-tannin seed coat contains water-extractable natural phenolic compounds with promising antioxidant potential.


Assuntos
Lens (Planta) , Proantocianidinas , Antioxidantes/química , Proantocianidinas/análise , Lens (Planta)/genética , Lens (Planta)/química , Quempferóis/análise , Fenóis/análise , Taninos/análise , Sementes/genética , Sementes/química , Genótipo
9.
ACS Appl Mater Interfaces ; 15(1): 2147-2162, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562537

RESUMO

Flexible sensing devices (FSDs) fabricated using conductive hydrogels have attracted researchers' extensive enthusiasm in recent years due to their versatility. Considering the complexity of their application environments, the integration of various functional characteristics (e.g., excellent mechanical, antibacterial, and antifreezing properties) is an important guarantee for FSDs to stably perform their applications in different environments. Herein, we developed a multifunctional conductive polyvinyl alcohol (PVA) organohydrogel PVA-CT-Ag-Al-Gly (PCAAG) by using a green, natural, and cheap biomass, chestnut tannin (CT), as a crosslinking agent, nano-silver particles (AgNPs) as an antimicrobial agent, aluminum trichloride (AlCl3) as a conducting medium, and the mixed water-glycerol as the solvent system. In this organohydrogel system, CT acted not only as the reducing and stabilizing agent for the preparation of antibacterial AgNPs but also as the crosslinking agent owing to its strong multiple hydrogen bonding interactions with PVA, realizing its multifunctional application. The PCAAG organohydrogel possessed outstanding physical and mechanical properties (350.54% of the maximum fracture strain and 1.55 MPa of the maximum tensile strength), considerable bacteriostatic effects against both Escherichia coli and Staphylococcus aureus, and excellent freeze resistance (it could function normally at -20 °C). The motion-monitoring sensor based on the PCAAG organohydrogel exhibited excellent specificity recognition for both large-amplitude (e.g., elbow bending, wrist bending, finger bending, running and walking, etc.) and small-amplitude (frowning and swallowing) human movements. The flexible keyboard constructed by using the PCAAG organohydrogel could easily achieve the transformation between digital signals and electrical signals, and the signal output had both specificity and stability. The velocity-monitoring sensor fabricated by using the PCAAG organohydrogel could accurately measure the speed of the object movement (less than 3% of relative error). In short, the present PCAAG organohydrogel solves the problems of the single application environment and a few application scenarios of traditional conductive hydrogels and possesses remarkable application potential as a multifunctional FSD in many fields such as artificial intelligence, sport management, soft robots, and human-computer interface.


Assuntos
Inteligência Artificial , Taninos , Humanos , Antibacterianos/farmacologia , Movimento (Física) , Condutividade Elétrica , Escherichia coli , Hidrogéis
10.
Food Res Int ; 162(Pt A): 111974, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461222

RESUMO

The proportion of seed tannins in wine is higher than that of skin tannins during normal winemaking practices. The interaction between grape skin cell wall and seed tannin could alter seed tannin extraction and wine tannin profiles during winemaking. However, the influence of grape skin cell wall ripeness in the interaction is still unclear. The purpose of this work was to study the influence of grape skins cell wall ripeness on seed tannins extraction and the final wine tannin profiles during alcoholic fermentation. The percentage of seed tannins extraction increases according to the skin cell wall maturity, and the higher the mDP of tannins, the larger the difference of tannins extraction. During alcoholic fermentation, seed tannins are adsorbed to the skin cell wall and desorb gradually into wine. For the final wine, cell wall maturity was positively correlated with tannins concentration and negatively correlated with G%. The results indicate that grape skin cell walls of different ripeness modulate seed tannins profiles in wine by controlling seed tannins release and adsorption-desorption of tannins during alcoholic fermentation.


Assuntos
Taninos , Vinho , Fermentação , Parede Celular , Sementes , Benzopiranos
11.
Food Res Int ; 162(Pt B): 112078, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461328

RESUMO

The antioxidant properties of condensed tannins (CTs) are closely related to the mean degree of polymerization (mDP), and CTs with low mDP show stronger antioxidant effects. Therefore, obtaining CTs with a low mDP are very meaningful in improving their antioxidant properties and utilization. In this study, hydroxyl radicals generated by the decomposition of hydrogen peroxide under UV irradiation were used to degrade bayberry tannins in a clean and controllable manner. Taking the formaldehyde reactivity as an index to control the mDP of the degradation product, the changes in antioxidant properties of bayberry tannins with different mDP were studied by the method of 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH), and 2,2-azido-di(3-ethyl-benzothiazole-6-sulfonic acid)diammonium salt (ABTS). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), gel permeation chromatography (GPC), carbon nuclear magnetic resonance (13C NMR), and reversed-phase HPLC-ESI-MS were used to characterize the mDP, molecular weight (Mw), and chemical structure of the degradation products of bayberry tannins in different degradation stages. Results showed that hydroxyl radicals could cause significant degradation of bayberry tannins, and the controllable degradation of bayberry tannins could be achieved with the formaldehyde reactivity as an index. At the degradation times of 0, 2, 4, 6, and 8 h, the mDP (Mw) of the degradation products were as follows: 5.22 (2457), 4.36 (1895), 3.36 (1534), 2.87 (1153), and 1.78 (813), respectively. The antioxidant activity of the degraded product increased with the decrease in the mDP, and the degraded products had the largest formaldehyde reactivity and the best oxidation resistance when degraded for 6 h. This study provided a new method to achieve clean and controllable degradation of tannins and supported those tannins with low mDP could provide higher antioxidant activity.


Assuntos
Myrica , Radical Hidroxila , Taninos , Antioxidantes , Polimerização , Formaldeído
12.
Sci Rep ; 12(1): 22406, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575241

RESUMO

Extracellular tannase Lactiplantibacillus plantarum-producing strains (TanA+) release bioactive metabolites from dietary tannins. However, there is a paucity of knowledge of TanA+ strains and their hydrolyzing capacities. This study aimed to shed light on the metabolic and genomic features of TanA+ L. plantarum strains and to develop a screening technique. The established spectrophotometric was validated by UPLC-UV-QToF. Eight of 115 screened strains harbored the tanA gene, and six presented TanA activity (PROBI S126, PROBI S204, RKG 1-473, RKG 1-500, RKG 2-219, and RKG 2-690). When cultured with tannic acid (a gallotannin), TanA+ strains released 3.2-11 times more gallic acid than a lacking strain (WCFS1) (p < 0.05). TanA+ strains with gallate decarboxylase (n = 5) transformed this latter metabolite, producing 2.2-4.8 times more pyrogallol than the TanA lacking strain (p < 0.05). However, TanA+ strains could not transform punicalagin (an ellagitannin). Genomic analysis revealed high similarity between TanA+ strains, as only two variable regions of phage and polysaccharide synthesis were distinguished. A phylogenetic analysis of 149 additional genome sequences showed that tanA harboring strains form a cluster and present two bacteriocin coding sequences profile. In conclusion, TanA+ L. plantarum strains are closely related and possess the ability to resist and transform gallotannins. TanA can be screened by the method proposed herein.


Assuntos
Lactobacillus plantarum , Taninos , Taninos/metabolismo , Filogenia , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Genômica
13.
Molecules ; 27(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36500366

RESUMO

Tannins are polyphenols characterized by different molecular weights that plants are able to synthetize during their secondary metabolism. Macromolecules (proteins, structural carbohydrates and starch) can link tannins and their digestion can decrease. Tannins can be classified into two groups: hydrolysable tannins and condensed tannins. Tannins are polyphenols, which can directly or indirectly affect intake and digestion. Their ability to bind molecules and form complexes depends on the structure of polyphenols and on the macromolecule involved. Tannins have long been known to be an "anti-nutritional agent" in monogastric and poultry animals. Using good tannins' proper application protocols helped the researchers observe positive effects on the intestinal microbial ecosystem, gut health, and animal production. Plant tannins are used as an alternative to in-feed antibiotics, and many factors have been described by researchers which contribute to the variability in their efficiencies. The objective of this study was to review the literature about tannins, their effects and use in ruminant nutrition.


Assuntos
Ecossistema , Taninos , Animais , Taninos/química , Ruminantes/metabolismo , Polifenóis/metabolismo , Taninos Hidrolisáveis/metabolismo , Plantas/química , Ração Animal
14.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500422

RESUMO

It has been reported that polysaccharides in wine can interact with tannins and other wine components and modify the sensory properties of the wine. Unfortunately, the contribution of polysaccharides to wine quality is poorly understood, mainly due to their complicated structure and varied composition. In addition, the composition and molecular structure of polysaccharides in different wines can vary greatly. In this study, the polysaccharides were isolated from pinot noir wine, then separated into high-molecular-weight (PNWP-H) and low-molecular-weight (PNWP-L) fractions using membrane-based ultrafiltration. Each polysaccharide fraction was further studied using size exclusion chromatography, UV-Vis, FT-IR, matrix-assisted laser desorption/ionization-high-resolution mass spectrometry, and gas chromatography-mass spectrometry (GC-MS). The results showed that PNWP-L and PNWP-H had different chemical properties and compositions. The FT-IR analysis showed that PNWPs were acidic polysaccharides with α- and ß-type glycosidic linkages. PNWP-L and PNWP-H had different α- and ß-type glycosidic linkage structures. FT-IR showed stronger antisymmetric and symmetric stretching vibrations of carboxylate anions of uronic acids in PNWP-L, suggesting more uronic acid in PNWP-L. The size exclusion chromatography results showed that over 72% of the PNWP-H fraction had molecular sizes from 25 kDa to 670 kDa. Only a small percentage of smaller molecular polysaccharides was found in the PNWP-H fraction. In comparison, all of the polysaccharides in the PNWP-L fraction were below 25 KDa, with a majority distributed approximately 6 kDa (95.1%). GC-MS sugar composition analysis showed that PNWP-L was mainly composed of galacturonic acid, rhamnose, galactose, and arabinose, while PNWP-H was mainly composed of mannose, arabinose, and galactose. The molecular size distribution and sugar composition analysis suggested that the PNWP-L primarily consisted of rhamnogalacturonans and polysaccharides rich in arabinose and galactose (PRAG). In comparison, PNWP-H were mostly mannoproteins and polysaccharides rich in arabinose and galactose (PRAG). Further research is needed to understand the impacts of these fractions on wine organoleptic properties.


Assuntos
Galactose , Vinho , Galactose/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Vinho/análise , Polissacarídeos/química , Taninos/química , Arabinose/análise
15.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500671

RESUMO

Sauropus androgynus has become an essential plant in pharmaceutical formulations due to its beneficial antioxidant phytochemical components, participating in the antioxidant defense system and playing an important role in protecting human health. However, no research has been conducted on ruminant animals. This study aimed to evaluate the phytochemical profiles and biological potential of S. androgynus leaf extracts for ruminant health. Methanolic and hexanoic extracts from each commercially and noncommercially cultivated site were prepared over the course of five consecutive months. By means of HPLC-DAD, vitamins (ascorbic acid), essential oils (eugenol), tannins (gallic acid), cinnamic acids (caffeic acid, syringic acid, p-coumaric acid, sinapic acid and ferulic acid), and flavonoids (catechin, rutin, myricetin, quercetin, apigenin, and kaempferol) were detected. Variations in phytochemical composition were depending on solvent type but not on cultivation site or sample period. Methanolic extracts contained more phytochemicals than hexanoic extracts. Ascorbic acid and rutin were discovered to be the two most abundant phytochemicals in the methanolic extract of S. androgynus leaf, followed by essential oils, cinnamic acids, and tannins. In comparison to hexanoic extract, methanolic extract of S. androgynus demonstrated to be more efficient against oxidation scavenging: 1,1-diphenyl-2-picrylhydrazyl (IC50 = 13.14 ± 0.055 (mg/mL)), nitric oxide (IC50 = 55.02 ± 1.338 (mg/mL)) and superoxide (IC50 = 25.31 ± 0.886 (mg/mL)), as well as α-glucosidase inhibitory activity (IC50 = 9.83 ± 0.032 (mg/mL)). Similarly, methanolic was found to be more protective than hexanoic against oxidative damage in ruminant erythrocytes, with IC50 values (mg/mL) for hemoglobin oxidation, lipid peroxidation, and hemolysis of 11.96 ± 0.011, 13.54 ± 0.012, and 5.940 ± 0.005, respectively. These findings suggested that the leaves of S. androgynus are a prospective source of phytochemical substances with health-promoting qualities for ruminant production.


Assuntos
Antioxidantes , Óleos Voláteis , Humanos , Animais , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Estudos Prospectivos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Taninos , Ácido Ascórbico
16.
Mar Drugs ; 20(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36547889

RESUMO

Phlorotannins are a type of natural active substance extracted from brown algae, which belong to a type of important plant polyphenol. Phloroglucinol is the basic unit in its structure. Phlorotannins have a wide range of biological activities, such as antioxidant, antibacterial, antiviral, anti-tumor, anti-hypertensive, hypoglycemic, whitening, anti-allergic and anti-inflammatory, etc. Phlorotannins are mainly used in the fields of medicine, food and cosmetics. This paper reviews the research progress of extraction, separation technology and biological activity of phlorotannins, which will help the scientific community investigate the greater biological significance of phlorotannins.


Assuntos
Antineoplásicos , Feófitas , Alga Marinha , Taninos/farmacologia , Taninos/química , Alga Marinha/química , Polifenóis/farmacologia , Feófitas/química
17.
Mar Drugs ; 20(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36547901

RESUMO

Fucales are an order within the Phaeophyceae that include most of the common littoral seaweeds in temperate and subtropical coastal regions. Many species of this order have long been a part of human culture with applications as food, feedand remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of multiple bioactive compounds with great industrial interest. Among them, phlorotannins, a unique and diverse class of brown algae-exclusive phenolics, have gathered much attention during the last few years due to their numerous potential health benefits. However, due to their complex structural features, combined with the scarcity of standards, it poses a great challenge to the identification and characterization of these compounds, at least with the technology currently available. Nevertheless, much effort has been taken towards the elucidation of the structural features of phlorotannins, which have resulted in relevant insights into the chemistry of these compounds. In this context, this review addresses the major contributions and technological advances in the field of phlorotannins extraction and characterization, with a particular focus on Fucales.


Assuntos
Feófitas , Alga Marinha , Humanos , Taninos/farmacologia , Taninos/química , Feófitas/química , Alga Marinha/química , Fenóis/química , Antioxidantes/química
18.
Molecules ; 27(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36558167

RESUMO

Diabetic nephropathy is manifested in more than 10% of people with diabetes. It is a common cause of kidney failure and end-stage kidney disease. Understanding of mechanisms underlying the initiation and development of diabetes-induced kidney injuries will allow for the development of more effective methods of prevention and treatment of the disease. Diabetic nephropathy is a wide-ranging complication of diabetes, and it is necessary to discuss the "weight" of pro-inflammatory pathways and molecules in the progress of renal injuries during the development of the disease. A large spectrum of pro-inflammatory molecules and pathways participate in different stages of the pathophysiological progression of diabetic nephropathy, including pro-inflammatory cytokines, chemokines, their receptors, adhesion molecules, and transcription factors. On the other hand, it is known that one of the consequences of hyperglycemia-induced ROS generation is the up-regulation of pro-inflammatory cascades, which, in turn, activate the transcription of genes encoding cytokines-chemokines, growth factors, and extracellular matrix proteins. It is a proven fact that a variety of plant secondary metabolites, such as tannins, flavonoids, and other polyphenols, demonstrate significant anti-diabetic, redox-modulating properties and effectively modulate the inflammatory response. Thus, this review is discussing the possible role of plant phenols in the prevention and treatment of diabetic nephropathy.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/etiologia , Taninos/farmacologia , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Polifenóis/metabolismo , Transdução de Sinais , Estresse Oxidativo , Rim , Citocinas/metabolismo , Inflamação/metabolismo , Quimiocinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
19.
Sci Rep ; 12(1): 21421, 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36504046

RESUMO

In this study, phytochemical analysis and toxicity profile of leaf and flower extracts of Nerium oleander L. species collected from Giresun province (Turkey) were investigated. In phytochemical analyzes, the cardiac glycoside, alkaloid, saponin and tannin contents of the extracts were analyzed qualitatively and quantitatively. The physiological effects of extracts were determined by examining root elongation, weight gain and germination rates. Biochemical effects were determined by measuring the levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), which are indicators of oxidative stress. Cytotoxic and genotoxic effects were investigated by mitotic index (MI), micronucleus (MN) and chromosomal abnormality (CA) tests. N. oleander leaf and flower extract applications caused significant decreases in the physiological parameters of Allium bulbs. SOD and CAT activity in root tip cells increased significantly after the application of leaf extract compared to the control group. Similar changes were observed in the application of flower extract, but these increases were found to be at a lower level compared to the increases induced by the leaf extract. An increase in MDA levels and a decrease in GSH levels were observed in groups treated with leaf and flower extracts. These changes show that the extracts cause deterioration in antioxidant/oxidant balance. It was determined that the extracts, which caused a decrease in MI rates and an increase in MN and CAs frequencies, showed the most prominent cytotoxic and genotoxic effects at 250 µg/mL doses. These toxic effects were associated with the phytochemical content of the extracts, and it was thought that cardiac glycosides and alkaloids, whose presence were detected in qualitative and quantitative analyzes, may play an important role in toxicity. Studies investigating the therapeutic properties of plants as well as their toxic effects are insufficient, which leads to the fact that plants exhibiting potential toxicity are not well known. Therefore, this study will lead many studies on the toxicity profile of the phytochemical contents of plants. Therefore, this study will draw attention to the investigation of the toxicity profile and phytochemical contents of plants and will lead to similar studies.


Assuntos
Glicosídeos Cardíacos , Compostos Fitoquímicos , Compostos Fitoquímicos/toxicidade , Antioxidantes , Taninos , Glutationa , Superóxido Dismutase , Extratos Vegetais/toxicidade
20.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499763

RESUMO

The microbiome's significance in chronic rhinosinusitis (CRS) is unclear. Antimicrobials are recommended in acute exacerbations of the disease (AECRS). Increasing rates of antibiotic resistance have stimulated research on alternative therapeutic options, including silver nanoparticles (AgNPs). However, there are concerns regarding the safety of silver administration. The aim of this study was to assess the biological activity of tannic acid-prepared AgNPs (TA-AgNPs) towards sinonasal pathogens and nasal epithelial cells (HNEpC). The minimal inhibitory concentration (MIC) for pathogens isolated from patients with AECRS was approximated using the well diffusion method. The cytotoxicity of TA-AgNPswas evaluated using an MTT assay and trypan blue exclusion. A total of 48 clinical isolates and 4 reference strains were included in the study (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Klebsiellaoxytoca, Acinetobacter baumannii, Serratia marcescens, Enterobacter cloacae). The results of the studies revealed that the MIC values differed between isolates, even within the same species. All the isolates were sensitive to TA-AgNPs in concentrations non-toxic to human cells during 24 h exposition. However, 48 h exposure to TA-AgNPs increased toxicity to HNEpC, narrowing their therapeutic window and enabling 19% of pathogens to resist the TA-AgNPs' biocidal action. It was concluded that TA-AgNPs are non-toxic for the investigated eukaryotic cells after short-term exposure and effective against most pathogens isolated from patients with AECRS, but sensitivity testing may be necessary before application.


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Prata/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Taninos/farmacologia , Escherichia coli
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...