Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.401
Filtrar
1.
Nat Commun ; 11(1): 4150, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811819

RESUMO

The systemic decline in autophagic activity with age impairs homeostasis in several tissues, leading to age-related diseases. A mechanistic understanding of adipocyte dysfunction with age could help to prevent age-related metabolic disorders, but the role of autophagy in aged adipocytes remains unclear. Here we show that, in contrast to other tissues, aged adipocytes upregulate autophagy due to a decline in the levels of Rubicon, a negative regulator of autophagy. Rubicon knockout in adipocytes causes fat atrophy and hepatic lipid accumulation due to reductions in the expression of adipogenic genes, which can be recovered by activation of PPARγ. SRC-1 and TIF2, coactivators of PPARγ, are degraded by autophagy in a manner that depends on their binding to GABARAP family proteins, and are significantly downregulated in Rubicon-ablated or aged adipocytes. Hence, we propose that age-dependent decline in adipose Rubicon exacerbates metabolic disorders by promoting excess autophagic degradation of SRC-1 and TIF2.


Assuntos
Adipócitos/metabolismo , Envelhecimento/fisiologia , Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doenças Metabólicas/metabolismo , Adipócitos/patologia , Adipogenia/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Adiposidade/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Técnicas de Inativação de Genes , Glucose/genética , Glucose/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , PPAR gama/metabolismo
2.
Medicine (Baltimore) ; 99(34): e21846, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32846833

RESUMO

INTRODUCTION: Stroke often causes residual hemiparesis, and upper extremity motor impairment is usually more disabling than lower extremity in those who are suffering from post-stroke hemiparesis. Cell therapy is one of the promising therapies to reduce post-stroke disability. PATIENT CONCERNS: Three male participants were included in the study to investigate the feasibility and tolerability of autologous adipose tissue derived stromal vascular fraction. DIAGNOSIS: All participants had hemiparesis after 1st-ever stroke longer than 6 months previously. INTERVENTIONS: Under general anesthesia, liposuction of abdominal subcutaneous fat was performed. Stromal vascular fraction freshly isolated from the adipose tissue extract was injected into the muscles of paretic upper extremity. All participants received inpatient stroke rehabilitation consisted of physical and occupational therapy more than 3 hours a day for 2 months or more. OUTCOMES: The whole procedure did not produce any significant adverse event in all participants. Adipose tissue extracts yielded sufficient stromal cells. One participant showed clinically important change in upper extremity Fugl-Meyer assessment after the injection and it lasted up to 6 months. Functional magnetic resonance imaging showed concomitant increase in ipsilesional cortical activity. The other 2 participants did not show remarkable changes. LESSONS: Intramuscular injection of autologous adipose tissue derived stromal vascular fraction seems to be a safe and tolerable procedure in subjects with chronic stroke, and its utility in rehabilitation needs further investigation.


Assuntos
Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Células Estromais/transplante , Tecido Adiposo/citologia , Adulto , Hemorragia Cerebral/complicações , Humanos , Injeções Intramusculares , Lipectomia/métodos , Imagem por Ressonância Magnética/métodos , Masculino , Células-Tronco Mesenquimais , Terapia Ocupacional/métodos , Paresia/fisiopatologia , Paresia/reabilitação , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Células Estromais/citologia , Extremidade Superior/fisiopatologia
3.
Plast Reconstr Surg ; 146(2): 309-320, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32740581

RESUMO

BACKGROUND: Adipose-derived stem cells are considered as candidate cells for regenerative plastic surgery. Measures to influence cellular properties and thereby direct their regenerative potential remain elusive. Hyperbaric oxygen therapy-the exposure to 100% oxygen at an increased atmospheric pressure-has been propagated as a noninvasive treatment for a multitude of indications and presents a potential option to condition cells for tissue-engineering purposes. The present study evaluates the effect of hyperbaric oxygen therapy on human adipose-derived stem cells. METHODS: Human adipose-derived stem cells from healthy donors were treated with hyperbaric oxygen therapy at 2 and 3 atm. Viability before and after each hyperbaric oxygen therapy, proliferation, expression of surface markers and protein contents of transforming growth factor (TGF)-ß, tumor necrosis factor-α, hepatocyte growth factor, and epithelial growth factor in the supernatants of treated adipose-derived stem cells were measured. Lastly, adipogenic, osteogenic, and chondrogenic differentiation with and without use of differentiation-inducing media (i.e., autodifferentiation) was examined. RESULTS: Hyperbaric oxygen therapy with 3 atm increased viability, proliferation, and CD34 expression and reduced the CD31/CD34/CD45 adipose-derived stem cell subset and endothelial progenitor cell population. TGF-ß levels were significantly decreased after two hyperbaric oxygen therapy sessions in the 2-atm group and decreased after three hyperbaric oxygen therapy sessions in the 3-atm group. Hepatocyte growth factor secretion remained unaltered in all groups. Although the osteogenic and chondrogenic differentiation were not influenced, adipogenic differentiation and autodifferentiation were significantly enhanced, with osteogenic autodifferentiation significantly alleviated by hyperbaric oxygen therapy with 3 atm. CONCLUSION: Hyperbaric oxygen therapy with 3 atm increases viability and proliferation of adipose-derived stem cells, alters marker expression and subpopulations, decreases TGF-ß secretion, and skews adipose-derived stem cells toward adipogenic differentiation. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.


Assuntos
Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Engenharia Celular/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxigênio/administração & dosagem , Tecido Adiposo/citologia , Adulto , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Pressão , Cultura Primária de Células/métodos
4.
Life Sci ; 257: 118055, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634429

RESUMO

AIMS: Human adipose derived mesenchymal stem cells (hAD-MSCs) as the most promising target for cell therapy and regenerative medicine, face senescence as a major drawback resulting in their limited proliferation and differentiation potentials. To evaluate the efficacy of miR-34a silencing as an anti-senescence strategy in hAD-MSCs, in this study common hallmarks of senescence were assessed after transient inhibition of miR-34a in hAD-MSCs. MATERIALS AND METHODS: The expression levels of miR-34a in hAD-MSCs at different passages were evaluated by real-time quantitative PCR. hAD-MSCs at passage 2 and passage 7 were transfected with miR-34a inhibitor. Doubling time assay, colony forming assay, and cell cycle analysis were performed to evaluate cell proliferation rate. The activity of senescence associated ß-galactosidase (SA-ß-gal) was assessed by histochemical staining. Moreover, the senescence associated molecular alterations including that of pro-senescence (P53, P21 and P16) and anti-senescence (SIRT1, HTERT and CD44) genes were examined by quantitative RT-PCR and western blot assays. To evaluate the differentiation potentials of MSCs, following adipogenic and osteogenic induction, the expression levels of lineage specific markers were analyzed by qPCR. KEY FINDINGS: Our results showed that inhibition of miR-34a enhances the proliferation, promotes the adipogenic and osteogenic differentiation potency, reduces the senescence associated-ß gal activity, and reverses the senescence associated molecular alterations in hAD-MSCs. SIGNIFICANCE: In this study, we showed that inhibition of miR-34a reduces the cellular senescence through the activation of SIRT1. Our findings support the silencing of miR-34a as an anti-senescence approach to improve the therapeutic potentials of hAD-MSCs.


Assuntos
Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Sirtuína 1/genética , Adipogenia/fisiologia , Tecido Adiposo/citologia , Inativação Gênica , Humanos , Receptores de Hialuronatos/genética , Osteogênese/fisiologia , Telomerase/genética
5.
Life Sci ; 257: 118091, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32668325

RESUMO

AIM: Inflammatory and oxidative microenvironment at diabetic' wound site hinder the therapeutic efficacy of cell-based therapies in diabetic patients. The purpose of this study is to explore the competence of curcumin preconditioned human adipose derived cells (hASCs) in combination with platelet rich plasma (PRP) for the repair of wounds in diabetic rats. MAIN METHODS: The cytoprotective effect of curcumin preconditioning for hASCs against hyperglycemic stress was evaluated through analysis of cell morphology, viability, cytotoxicity, senescence, and scratch wound healing assays. Subsequently, the healing capacity of curcumin preconditioned hASCs (Cur-hASCs) added to PRP was examined in excisional wounded diabetic rat model. Healed skin biopsies were excised to analyze gene and protein expression of wound healing markers by qPCR and western blotting. Histopathological changes were observed through hematoxylin and eosin staining. KEY FINDINGS: We found that Cur-hASCs counteract the glucose stress much better than non-preconditioned hASCs by maintaining their cellular morphology and viability as well as metabolic potential. Further in vivo results revealed that, Cur-hASCs co-injected with PRP resulted in faster wound closure, improved fibroblast proliferation, increased neovascularization, marked reduction in inflammatory cells, and compact extracellular matrix with completely covered thick epithelium. Moreover, Cur-hASCs + PRP treatment significantly improved the expression of key healing markers such as pro-angiogenic (Vegf), dermal matrix deposition (Col1α1), cell migration (bFgf) and cell proliferation (Pcna) at wound site. SIGNIFICANCE: Our findings propose a combinatorial therapy (Cur-hASCs + PRP) as a novel modality to improve the efficacy of hASCs-based therapy for diabetic wounds.


Assuntos
Curcumina/farmacologia , Diabetes Mellitus Experimental/terapia , Plasma Rico em Plaquetas , Transplante de Células-Tronco/métodos , Cicatrização/fisiologia , Tecido Adiposo/citologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Terapia Combinada , Diabetes Mellitus Experimental/complicações , Feminino , Glucose/metabolismo , Humanos , Ratos , Ratos Wistar
6.
Nat Commun ; 11(1): 2482, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424156

RESUMO

Senotherapy targeting for senescent cells is designed to attenuate age-related dysfunction. Senescent T cells, defined as CD4+ CD44high CD62Llow PD-1+ CD153+ cells, accumulate in visceral adipose tissues (VAT) in obese individuals. Here, we show the long-lasting effect of using CD153 vaccination to remove senescent T cells from high-fat diet (HFD)-induced obese C57BL/6J mice. We administered a CD153 peptide-KLH (keyhole limpet hemocyanin) conjugate vaccine with Alhydrogel (CD153-Alum) or CpG oligodeoxynucleotide (ODN) 1585 (CD153-CpG) and confirmed an increase in anti-CD153 antibody levels that was sustained for several months. After being fed a HFD for 10-11 weeks, adipose senescent T cell accumulation was significantly reduced in the VAT of CD153-CpG-vaccinated mice, accompanied by glucose tolerance and insulin resistance. A complement-dependent cytotoxicity (CDC) assay indicated that the mouse IgG2 antibody produced in the CD153-CpG-vaccinated mice successfully reduced the number of senescent T cells. The CD153-CpG vaccine is an optional tool for senolytic therapy.


Assuntos
Ligante CD30/imunologia , Senescência Celular/imunologia , Vacinas/imunologia , Tecido Adiposo/citologia , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Feminino , Teste de Tolerância a Glucose , Imunização , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/imunologia , Fatores de Tempo
7.
PLoS One ; 15(5): e0233263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453741

RESUMO

In the U.S., approximately 1.7 million people suffer traumatic brain injury each year, with many enduring long-term consequences and significant medical and rehabilitation costs. The primary injury causes physical damage to neurons, glia, fiber tracts and microvasculature, which is then followed by secondary injury, consisting of pathophysiological mechanisms including an immune response, inflammation, edema, excitotoxicity, oxidative damage, and cell death. Most attempts at intervention focus on protection, repair or regeneration, with regenerative medicine becoming an intensively studied area over the past decade. The use of stem cells has been studied in many disease and injury models, using stem cells from a variety of sources and applications. In this study, human adipose-derived mesenchymal stromal cells (MSCs) were administered at early (3 days) and delayed (14 days) time points after controlled cortical impact (CCI) injury in rats. Animals were routinely assessed for neurological and vestibulomotor deficits, and at 32 days post-injury, brain tissue was processed by flow cytometry and immunohistochemistry to analyze neuroinflammation. Treatment with HB-adMSC at either 3d or 14d after injury resulted in significant improvements in neurocognitive outcome and a change in neuroinflammation one month after injury.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Transplante de Células-Tronco Mesenquimais , Tecido Adiposo/citologia , Animais , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/psicologia , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Masculino , Aprendizagem em Labirinto , Células-Tronco Mesenquimais/citologia , Destreza Motora , Neurogênese , Ratos Sprague-Dawley , Fatores de Tempo
8.
Proc Natl Acad Sci U S A ; 117(21): 11387-11398, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32385149

RESUMO

Altered microarchitecture of collagen type I is a hallmark of wound healing and cancer that is commonly attributed to myofibroblasts. However, it remains unknown which effect collagen microarchitecture has on myofibroblast differentiation. Here, we combined experimental and computational approaches to investigate the hypothesis that the microarchitecture of fibrillar collagen networks mechanically regulates myofibroblast differentiation of adipose stromal cells (ASCs) independent of bulk stiffness. Collagen gels with controlled fiber thickness and pore size were microfabricated by adjusting the gelation temperature while keeping their concentration constant. Rheological characterization and simulation data indicated that networks with thicker fibers and larger pores exhibited increased strain-stiffening relative to networks with thinner fibers and smaller pores. Accordingly, ASCs cultured in scaffolds with thicker fibers were more contractile, expressed myofibroblast markers, and deposited more extended fibronectin fibers. Consistent with elevated myofibroblast differentiation, ASCs in scaffolds with thicker fibers exhibited a more proangiogenic phenotype that promoted endothelial sprouting in a contractility-dependent manner. Our findings suggest that changes of collagen microarchitecture regulate myofibroblast differentiation and fibrosis independent of collagen quantity and bulk stiffness by locally modulating cellular mechanosignaling. These findings have implications for regenerative medicine and anticancer treatments.


Assuntos
Colágeno/ultraestrutura , Miofibroblastos/citologia , Células Estromais/citologia , Tecido Adiposo/citologia , Fenômenos Biomecânicos , Diferenciação Celular , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/ultraestrutura , Fibronectinas/metabolismo , Humanos , Mecanotransdução Celular , Miofibroblastos/metabolismo , Miofibroblastos/ultraestrutura , Células Estromais/metabolismo , Células Estromais/ultraestrutura
9.
Life Sci ; 255: 117719, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32428599

RESUMO

AIMS: To investigate the protective function of exosomes from adipose tissue-derived mesenchymal stem cells (AMSCs) in sepsis-induced acute kidney injury (AKI) in mice and the possible underlying mechanism in order to provide a theoretical and experimental basis for using exosomes in clinical. MAIN METHODS: The AKI model was prepared through cecal ligation and puncture (CLP). Exosomes were injected via the tail vein of mice. Male C57/BL6 mice (18-22 g; 6-8 weeks old) were randomly grouped. Firstly, after mice were modeled, the variations of inflammatory cytokines and kidney functions at different time points (0, 6, 12, 24 and 48 h) were comprehended. Secondly, mice were divided into Sham, CLP and CLP + Exo, and the survival rates of each group were observed. Lastly, a time point (24 h) was selected for exploring the effect and mechanism of exosomes. The levels of inflammatory cytokines in serum were detected by ELISA, while the kidney was by immunohistochemistry. Kidney histopathological score were analyzed by hematoxylin-eosin (HE) staining. The protein levels of sirtuin 1 (SIRT1), inflammation-related and apoptosis-related were detected by western blot. KEY FINDINGS: In CLP group, renal function gradually deteriorated, and the kidneys was in a state of inflammation, apoptosis and microcirculation disorders. However, SIRT1 was activated after intervention of exosomes in CLP mice, which reversed above changes. The mortality was reduced with treatment of exosomes in AKI mice. SIGNIFICANCE: In mice of sepsis-induce AKI, the intervention of AMSCs derived exosomes played a renal protective effect. The mechanism may be through SIRT1 signaling pathway.


Assuntos
Lesão Renal Aguda/prevenção & controle , Exossomos/metabolismo , Células-Tronco Mesenquimais/citologia , Sepse/terapia , Sirtuína 1/metabolismo , Lesão Renal Aguda/etiologia , Tecido Adiposo/citologia , Animais , Apoptose/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/complicações
10.
Plast Reconstr Surg ; 145(6): 1037e-1049e, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32459770

RESUMO

BACKGROUND: The major intrinsic cause of facial skin degeneration is age, associated with extrinsic factors such as exposure to sun. Its major pathologic causes are degeneration of the elastin matrix, with loss of oxytalan and elaunin fibers in the subepidermal region, and actinic degeneration of elastin fibers that lose their functional properties in the deep dermis. Therapy using autologous adipose mesenchymal stem cells for regeneration of extracellular matrix in patients with solar elastosis was addressed in qualitative and quantitative analyses of the dermal elastic fiber system and the associated cells. METHODS: Mesenchymal stem cells were obtained from lipoaspirates, expanded in vitro, and introduced into the facial skin of patients submitted after 3 to 4 months to a face-lift operation. In the retrieved skin, immunocytochemical analyses quantified elastic matrix components; cathepsin K; matrix metalloproteinase 12 (macrophage metalloelastase); and the macrophage M2 markers CD68, CD206, and hemeoxygenase-1. RESULTS: A full de novo formation of oxytalan and elaunin fibers was observed in the subepidermal region, with reconstitution of the papillary structure of the dermal-epidermal junction. Elastotic deposits in the deep dermis were substituted by a normal elastin fiber network. The coordinated removal of the pathologic deposits and their substitution by the normal ones was concomitant with activation of cathepsin K and matrix metalloproteinase 12, and with expansion of the M2 macrophage infiltration. CONCLUSION: The full regeneration of solar elastosis was obtained by injection of in vitro expanded autologous adipose mesenchymal stem cells, which are appropriate, competent, and sufficient to elicit the full structural regeneration of the sun-aged skin. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV.


Assuntos
Tecido Adiposo/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Cuidados Pré-Operatórios/métodos , Ritidoplastia , Envelhecimento da Pele , Idoso , Biópsia , Brasil , Elastina/análise , Elastina/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/metabolismo , Face , Feminino , Seguimentos , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Rejuvenescimento , Pele/patologia , Pele/efeitos da radiação , Luz Solar/efeitos adversos , Transplante Autólogo/métodos , Resultado do Tratamento
11.
Cell Prolif ; 53(6): e12834, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32468637

RESUMO

OBJECTIVES: Advanced glycation end products (AGEs) are considered a cause of diabetic osteoporosis. Although adipose-derived stem cells (ASCs) are widely used in the research of bone regeneration, the mechanisms of the osteogenic differentiation of ASCs from diabetic osteoporosis model remain unclear. This work aimed to investigate the influence and the molecular mechanisms of AGEs on the osteogenic potential of ASCs. MATERIALS AND METHODS: Enzyme-linked immunosorbent assay was used to measure the change of AGEs in diabetic osteoporotic and control C57BL/6 mice. ASCs were obtained from the inguinal fat of C57BL/6 mice. AGEs, 5-aza2'-deoxycytidine (5-aza-dC) and DKK-1 were used to treat ASCs. Real-time cell analysis and cell counting kit-8 were used to monitor the proliferation of ASCs within and without AGEs. Real-time PCR, Western blot and Immunofluorescence were used to analyse the genes and proteins expression of osteogenic factors, DNA methylation factors and Wnt/ß-catenin signalling pathway among the different groups. RESULTS: The AGEs and DNA methylation were increased in the adipose and bone tissue of the diabetic osteoporosis group. Untreated ASCs had higher cell proliferation activity than AGEs-treatment group. The expression levels of osteogenic genes, Opn and Runx2, were lower, and mineralized nodules were less in AGEs-treatment group. Meanwhile, DNA methylation was increased, and the Wnt signalling pathway markers, including ß-Catenin, Lef1 and P-GSK-3ß, were inhibited. After treatment with 5-aza-dC, the osteogenic differentiation capacity of ASCs in the AGEs environment was restored and the Wnt signalling pathway was activated during this process. CONCLUSIONS: Advanced glycation end products inhibit the osteogenic differentiation ability of ASCs by activating DNA methylation and inhibiting Wnt/ß-catenin pathway in vitro. Therefore, DNA methylation may be promising targets for the bone regeneration of ASCs with diabetic osteoporosis.


Assuntos
Tecido Adiposo/citologia , Metilação de DNA , Complicações do Diabetes/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Osteogênese/efeitos dos fármacos , Osteoporose/metabolismo , Células-Tronco/metabolismo , Tecido Adiposo/metabolismo , Animais , Osso e Ossos/metabolismo , Proliferação de Células , Células Cultivadas , Decitabina/farmacologia , Complicações do Diabetes/patologia , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Camundongos Endogâmicos C57BL , Osteoporose/patologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Via de Sinalização Wnt
12.
Int J Nanomedicine ; 15: 3281-3290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32440124

RESUMO

Introduction: Cells exhibit high sensitivity and a diverse response to the nanotopography of the extracellular matrix, thereby endowing materials with instructive performances formerly reserved for growth factors. This finding leads to opportunities for improvement. However, the interplay between the topographical surface and cell behaviors remains incompletely understood. Methods: In the present study, we showed nanosurfaces with various dimensions of nanopits (200-750 nm) fabricated by self-assembling polystyrene (PS) nanospheres. Human adipose-derived stem cell behaviors, such as cell morphology, adhesion, cytoskeleton contractility, proliferation, and differentiation, were investigated on the prepared PS nanopit surface. Results: The osteogenic differentiation can be enhanced by nanopits with a diameter of 300-400 nm. Discussion: The present study provided exciting new avenues to investigate cellular responses to well-defined nanoscale topographic features, which could further guide bone tissue engineering and stem cell clinical research. The capability to control developing biomaterials mimicking nanotopographic surfaces promoted functional tissue engineering, such as artificial joint replacement, bone repair, and dental applications.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Nanoestruturas/química , Osteogênese , Poliestirenos/farmacologia , Células-Tronco/citologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Nanoestruturas/ultraestrutura , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/ultraestrutura
13.
Muscle Nerve ; 62(1): 119-127, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243602

RESUMO

INTRODUCTION: Many reports have indicated that adipose-derived stem cells (ADSCs) are effective for nerve regeneration. We investigated nerve regeneration by combining a polyglycolic acid collagen (PGA-c) tube, which is approved for clinical use, and Schwann cell-like differentiated ADSCs (dADSCs). METHODS: Fifteen-millimeter-long gaps in the sciatic nerve of rats were bridged in each group using tubes (group I), with tubes injected with dADSCs (group II), or by resected nerve (group III). RESULTS: Axonal outgrowth was greater in group II than in group I. Tibialis anterior muscle weight revealed recovery only in group III. Latency in nerve conduction studies was equivalent in group II and III, but action potential was lower in group II. Transplanted dADSCs maintained Schwann cell marker expression. ATF3 expression level in the dorsal root ganglia was equivalent in groups II and III. DISCUSSION: dADSCs maintained their differentiated state in the tubes and are believed to have contributed to nerve regeneration.


Assuntos
Tecido Adiposo/fisiologia , Diferenciação Celular/fisiologia , Regeneração Nervosa/fisiologia , Células de Schwann/fisiologia , Nervo Isquiático/fisiologia , Transplante de Células-Tronco/métodos , Tecido Adiposo/citologia , Tecido Adiposo/transplante , Animais , Diferenciação Celular/efeitos dos fármacos , Colágeno/administração & dosagem , Feminino , Regeneração Nervosa/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/fisiologia , Ácido Poliglicólico/administração & dosagem , Ratos , Ratos Wistar , Células de Schwann/transplante , Nervo Isquiático/efeitos dos fármacos , Neuropatia Ciática/fisiopatologia , Neuropatia Ciática/terapia , Células-Tronco/fisiologia
14.
Life Sci ; 251: 117587, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224027

RESUMO

Diabetes mellitus (DM) is a serious public health problem and can cause long-term damage to the brain, resulting in cognitive impairment in these patients. Insulin therapy for type 1 DM (DM1) can achieve overall blood glucose control, but glycemic variations can occur during injection intervals, which may contribute to some complications. Among the additional therapies available for DM1 treatment is the implantation of insulin-producing cells (IPCs) to attenuate hyperglycemia and even reverse diabetes. Here, we studied the strategy of implanting IPCs obtained from mesenchymal stromal cells (MSCs) from adipose tissue, comparing two different IPC implant sites, subcapsular renal (SR) and subcutaneous (SC), to investigate their putative protection against hippocampal damage, induced by STZ, in a rat DM1 model. Both implants improved hyperglycemia and reduced the serum content of advanced-glycated end products in diabetic rats, but serum insulin was not observed in the SC group. The SC-implanted group demonstrated ameliorated cognitive impairment (evaluated by novel object recognition) and modulation of hippocampal astroglial reactivity (evaluated by S100B and GFAP). Using GFP+ cell implants, the survival of cells at the implant sites was confirmed, as well as their migration to the pancreas and hippocampus. The presence of undifferentiated MSCs in our IPC preparation may explain the peripheral reduction in AGEs and subsequent cognitive impairment recovery, mediated by autophagic depuration and immunomodulation at the hippocampus, respectively. Together, these data reinforce the importance of MSCs for use in neuroprotective strategies, and highlight the logistic importance of the subcutaneous route for their administration.


Assuntos
Disfunção Cognitiva/prevenção & controle , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Insulina/metabolismo , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Animais , Glicemia/metabolismo , Disfunção Cognitiva/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Produtos Finais de Glicação Avançada/sangue , Hipocampo/metabolismo , Hiperglicemia/terapia , Insulina/sangue , Masculino , Pâncreas/metabolismo , Ratos , Ratos Endogâmicos WKY
15.
PLoS One ; 15(4): e0230265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298282

RESUMO

Autologous adipose tissue (AT) transfer has gained widespread acceptance and is used for a broad variety of regenerative clinical indications. It is assumed that the successful outcome of AT transfer essentially depends on the amount of autocrine-generated growth factors (GF). It is supposed that several GF enhance and improve the anatomic and functional integration of the transplanted AT grafts at the site of implantation. In the present study we have investigated for the first time the correlation between the concentration of GF of freshly isolated AT and the proliferation and migration capacity of mesenchymal stroma cells (MSCs) derived from the respective AT sample. We here show that the proliferation and migration capacity of MSCs strongly depends on the GF content of the AT the cells were isolated from but in an inversely proportional manner. The lower the GF content of an AT sample was, the higher was the proliferation and migration capacity of the respective MSC population contained in the AT and vice versa. Furthermore, we found that supplementation with recombinant GFs only in the case of AT samples with low but not with higher growth factor contents led to a significant enhancement of proliferation and migration of the AT-resident MSCs. As we further show, this inefficiency of GFs to enhance MSC proliferation and migration in AT samples with high GF contents indicates a GF-mediated negative feedback mechanism leading to an impaired GF signaling in MSC obtained from those AT samples. Our results might explain why the successful use of AT grafting is frequently limited by low and unpredictable survival rates, and we suggest to use the knowledge of GF content of harvested AT as a predictive clinical parameter for risk assessment of the therapeutic outcome of autologous AT transfer.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tecido Adiposo/citologia , Adulto , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade
16.
Metabolism ; 107: 154225, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32275973

RESUMO

BACKGROUND: Caloric restriction (CR) delays the onset of metabolic and age-related disorders. Recent studies have demonstrated that formation of beige adipocytes induced by CR is strongly associated with extracellular remodeling in adipose tissue, decrease in adipose tissue inflammation, and improved systemic metabolic homeostasis. However, beige adipocytes rapidly transition to white upon CR withdrawal through unclear mechanisms. MATERIALS AND METHODS: Six-week old C57BL6 mice were fed with 40% CR chow diet for 6 weeks. Subsequently, one group of mice was switched back to ad libitum chow diet, which was continued for additional 2 weeks. Adipose tissues were assessed histologically and biochemically for beige adipocytes. RESULTS: Beige adipocytes induced by CR rapidly transition to white adipocytes when CR is withdrawn independent of parkin-mediated mitophagy. We demonstrate that the involution of mitochondria during CR withdrawal is strongly linked with a decrease in mitochondrial biogenesis. We further demonstrate that beige-to-white fat transition upon ß3-AR agonist-withdrawal could be attenuated by CR, partly via maintenance of mitochondrial biogenesis. CONCLUSION: In the model of CR, our study highlights the dominant role of mitochondrial biogenesis in the maintenance of beige adipocytes. We propose that loss of beige adipocytes upon ß3-AR agonist withdrawal could be attenuated by CR.


Assuntos
Adipócitos Bege/fisiologia , Restrição Calórica , Biogênese de Organelas , Adipócitos Brancos/fisiologia , Tecido Adiposo/citologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Composição Corporal , Fusão Celular , Dieta , Insulina/sangue , Camundongos , Camundongos Endogâmicos C57BL , Mitofagia , Consumo de Oxigênio , Cultura Primária de Células
18.
Acta Vet Scand ; 62(1): 13, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164768

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have generated a great amount of interest over the past decade as a novel therapeutic treatment for a variety of diseases. Emerging studies have indicated that MSCs could enhance the repair of injured skin in canine cutaneous wounds. CASE PRESENTATION: A healthy 2 years old Bodeguero Andaluz dog was presented with multiple skin bite wounds. Antibiotic and anti-inflammatory therapy was administered for 8 days. On day three, 107 allogeneic adipose-derived mesenchymal stem cells (ASCs) were intradermally injected approximately equidistant to the ASCs treated wounds. Control wounds underwent conventional treatment with a topical antibacterial ointment until wound healing and closure. Wounds, skin morphology and healing progress were monitored via serial photographs and histopathology of biopsies obtained at day seven after ASC treatment. Histopathology revealed absence of inflammatory infiltrates and presence of multiple hair follicles in contrast to the non-ASCs treated control wounds indicating that ASC treatment promoted epidermal and dermal regeneration. ASCs were identified by flow cytometry and RT-PCR. The immunomodulatory role of ASCs was evidenced by coculturing peripheral blood mononuclear cells with allogeneic ASCs. Phytohemagglutinin was administered to stimulate lymphocyte proliferation. Cells were harvested and stained with an anticanine CD3-FITC antibody. The ASCs inhibited proliferation of T lymphocytes, which was quantified by reduction of carboxyfluorescein succinimidyl ester intensity using flow cytometry. CONCLUSIONS: Compared with conventional treatment, wounds treated with ASCs showed a higher regenerative capacity with earlier and faster closure in this dog.


Assuntos
Tecido Adiposo/citologia , Mordeduras e Picadas/veterinária , Células-Tronco Mesenquimais/citologia , Regeneração , Pele/lesões , Medicina Veterinária/métodos , Cicatrização , Células Alógenas/citologia , Animais , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Mordeduras e Picadas/tratamento farmacológico , Mordeduras e Picadas/terapia , Cães , Pele/citologia , Transplante Homólogo/veterinária , Resultado do Tratamento
19.
J Vis Exp ; (157)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32202519

RESUMO

As early as the 1970s, researchers have successfully transplanted mammary epithelial cells into the interscapular white fat pad of rats. Grafting mammary epithelium using transplantation techniques takes advantage of the hormonal environment provided by the adolescent rodent host. These studies are ideally suited to explore the impact of various biological manipulations on mammary gland development and dissect many aspects of mammary gland biology. A common, but limiting, feature is that transplanted epithelial cells are strongly influenced by the surrounding stroma and outcompeted by endogenous epithelium; to utilize native mammary tissue, the abdominal-inguinal white fat pad must be cleared to remove host mammary epithelium prior to the transplantation. A major obstacle when using the rat model organism is that clearing the developing mammary tree in post-weaned rats is not efficient. When transplanted into gland-free fat pads, donor epithelial cells can repopulate the cleared host fat pad and form a functional mammary gland. The interscapular fat pad is an alternative location for these grafts. A major advantage is that it lacks ductal structures yet provides the normal stroma that is necessary to promote epithelial outgrowth and is easily accessible in the rat. Another major advantage of this technique is that it is minimally invasive, because it eliminates the need to cauterize and remove the growing endogenous mammary tree. Additionally, the interscapular fat pad contains a medial blood vessel that can be used to separate sites for grafting. Because the endogenous glands remain intact, this technique can also be used for studies comparing the endogenous mammary gland to the transplanted gland. This paper describes the method of mammary epithelial cell transplantation into the interscapular white fat pad of rats.


Assuntos
Tecido Adiposo/citologia , Transplante de Células/métodos , Células Epiteliais/transplante , Glândulas Mamárias Animais/citologia , Tecido Adiposo/cirurgia , Tecido Adiposo Branco/citologia , Animais , Feminino , Ratos
20.
Adv Exp Med Biol ; 1219: 125-142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130697

RESUMO

Obesity has for decades been recognised as one of the major health concerns. Recently accumulated evidence has established that obesity or being overweight is strongly linked to an increased risk of cancer. However, it is still not completely clear how adipose tissue (fat), along with other stromal connective tissues and cells, contribute to tumour initiation and progression. In the tumour microenvironment, the adipose tissue cells, in particular the adipocytes, secrete a number of adipokines, including growth factors, hormones, collagens, fatty acids, and other metabolites as well as extracellular vesicles to shape and condition the tumour and its microenvironment. In fact, the adipocytes, through releasing these factors and materials, can directly and indirectly facilitate cancer cell proliferation, apoptosis, metabolism, angiogenesis, metastasis and even chemotherapy resistance. In this chapter, the multidimensional role played by adipocytes, a major and functional component of the adipose tissue, in promoting cancer development and progression within the tumour microenvironment will be discussed.


Assuntos
Adipócitos/metabolismo , Carcinogênese , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA