Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.000
Filtrar
1.
Food Chem ; 336: 127728, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32795782

RESUMO

This study explored the influence of constant power microwave on the adsorption ability of myofibril protein from beef to typical aldehyde flavour compounds. Results showed that there was a significant increasing trend in surface hydrophobicity and reactive sulfhydryls content of myofibril protein with an increase in microwave power and treatment time. The adsorption ability of myofibril protein to aldehyde flavour compounds increased with increasing microwave power and time. The percentage of free aldehyde flavour compounds was related to the content of surface hydrophobicity, and reactive and total sulfhydryls of myofibril protein under microwave conditions, which could be fitted according to the multilevel relational (MLR) model. Furthermore, the reduced interface energy was probably the driving force for myofibril protein-flavour compounds adsorption behaviour at the gas-liquid interface.


Assuntos
Aromatizantes/química , Micro-Ondas , Miofibrilas/química , Adsorção , Aldeídos/química , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Compostos de Sulfidrila/química , Tensão Superficial
2.
Adv Exp Med Biol ; 1267: 101-115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894479

RESUMO

Pathogenic bacteria colonize or disseminate into cells and tissues by inducing large-scale remodeling of host membranes. The physical phenomena underpinning these massive membrane extension and deformation are poorly understood. Invasive strategies of pathogens have been recently enriched by the description of a spectacular mode of opening of large transendothelial cell macroaperture (TEM) tunnels correlated to the dissemination of EDIN-producing strains of Staphylococcus aureus via a hematogenous route or to the induction of gelatinous edema triggered by the edema toxin from Bacillus anthracis. Remarkably, these highly dynamic tunnels close rapidly after they reach a maximal size. Opening and closure of TEMs in cells lasts for hours without inducing endothelial cell death. Multidisciplinary studies have started to provide a broader perspective of both the molecular determinants controlling cytoskeleton organization at newly curved membranes generated by the opening of TEMs and the physical processes controlling the dynamics of these tunnels. Here we discuss the analogy between the opening of TEM tunnels and the physical principles of dewetting, stemming from a parallel between membrane tension and surface tension. This analogy provides a broad framework to investigate biophysical constraints in cell membrane dynamics and their diversion by certain invasive microbial agents.


Assuntos
Bactérias/patogenicidade , Membrana Celular/microbiologia , Membrana Celular/patologia , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Molhabilidade , Membrana Celular/metabolismo , Edema/metabolismo , Edema/microbiologia , Edema/patologia , Células Endoteliais/metabolismo , Humanos , Tensão Superficial
3.
Nat Commun ; 11(1): 4800, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968072

RESUMO

Out-of-equilibrium molecular systems hold great promise as dynamic, reconfigurable matter that executes complex tasks autonomously. However, translating molecular scale dynamics into spatiotemporally controlled phenomena emerging at mesoscopic scale remains a challenge-especially if one aims at a design where the system itself maintains gradients that are required to establish spatial differentiation. Here, we demonstrate how surface tension gradients, facilitated by a linear amphiphile molecule, generate Marangoni flows that coordinate the positioning of amphiphile source and drain droplets floating at air-water interfaces. Importantly, at the same time, this amphiphile leads, via buckling instabilities in lamellar systems of said amphiphile, to the assembly of millimeter long filaments that grow from the source droplets and get absorbed at the drain droplets. Thereby, the Marangoni flows and filament organization together sustain the autonomous positioning of interconnected droplet-filament networks at the mesoscale. Our concepts provide potential for the development of non-equilibrium matter with spatiotemporal programmability.


Assuntos
Citoesqueleto/química , Bainha de Mielina/química , Fenômenos Físicos , Cinética , Microscopia , Simulação de Dinâmica Molecular , Tensão Superficial , Água/química
4.
Mar Pollut Bull ; 160: 111663, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32927185

RESUMO

An earlier paper demonstrated a methodology for modeling the spreading process with a Gaussian random walk procedure, but was limited to the gravity-viscous spreading regime. Here we extend the methodology of representing spread and transport of oil slicks on calm sea surface by updated Voronoi diagrams to account for the surface tension-viscous spreading regime as well. We have utilized the analogy between diffusion and spreading processes by defining a step length for the particle-based random walk scheme. In this study, calculation of the diffusive length is improved by including the surface tension term in the numerical solution method. The results from the numerical simulation of the spreading oil slick agree very well with the analytical solutions. The solution is robust in that good agreement is achieved for a large range of model and numerical solution parameters. This modeling procedure remains valid only for passive, quiescent spreading. The inclusion of spreading due to important horizontal and vertical turbulent shear processes in the Voronoi diagram paradigm remains a challenge for future work.


Assuntos
Gravitação , Difusão , Previsões , Tensão Superficial , Viscosidade
5.
PLoS One ; 15(8): e0236063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756567

RESUMO

The primary objective of this research was to extract the essential information needed for setting atomization break up models, specifically, the Linear Instability Sheet Atomization (LISA) breakup model, and alternative hollow cone models. A secondary objective was to gain visualization and insight into the atomization break up mechanism caused by the effects of viscosity and surface tension on primary break-up, sheet disintegration, ligament and droplet formation. High speed imaging was used to capture the near-nozzle characteristics for water and drug formulations. This demonstrated more rapid atomization for lower viscosities. Image processing was used to analyze the near-nozzle spray characteristics during the primary break-up of the liquid sheet into ligament formation. Edges of the liquid sheet, spray break-up length, break-up radius, cone angle and dispersion angle were obtained. Spray characteristics pertinent for primary breakup modelling were determined from high speed imaging of multiple spray actuations. The results have established input data for computational modelling involving parametrical analysis of nasal drug delivery.


Assuntos
Sprays Nasais , Nebulizadores e Vaporizadores , Administração Intranasal , Aerossóis/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Desenho de Equipamento , Humanos , Tamanho da Partícula , Tensão Superficial , Viscosidade , Água/química
6.
Nat Commun ; 11(1): 3805, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732886

RESUMO

The study of organoids, artificially grown cell aggregates with the functionality and small-scale anatomy of real organs, is one of the most active areas of research in biology and biophysics, yet the basic physical origins of their different morphologies remain poorly understood. Here, we propose a mechanistic theory of epithelial shells which resemble small-organoid morphologies. Using a 3D surface tension-based vertex model, we reproduce the characteristic shapes from branched and budded to invaginated structures. We find that the formation of branched morphologies relies strongly on junctional activity, enabling temporary aggregations of topological defects in cell packing. To elucidate our numerical results, we develop an effective elasticity theory, which allows one to estimate the apico-basal polarity from the tissue-scale modulation of cell height. Our work provides a generic interpretation of the observed epithelial shell morphologies, highlighting the role of physical factors such as differential surface tension, cell rearrangements, and tissue growth.


Assuntos
Forma Celular/fisiologia , Células Epiteliais/citologia , Organoides/citologia , Organoides/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos , Proliferação de Células/fisiologia , Simulação por Computador , Modelos Biológicos , Tensão Superficial
7.
Nat Cell Biol ; 22(8): 947-959, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32753669

RESUMO

The plasma membrane tension strongly affects cell surface processes, such as migration, endocytosis and signalling. However, it is not known whether the membrane tension of organelles regulates their functions, notably intracellular traffic. The endosomal sorting complexes required for transport (ESCRT)-III complex is the major membrane remodelling complex that drives intra-lumenal-vesicle (ILV) formation on endosomal membranes. Here we used a fluorescent membrane-tension probe to show that ESCRT-III subunits are recruited onto endosomal membranes when the membrane tension is reduced. We find that tension-dependent recruitment is associated with ESCRT-III polymerization and membrane deformation in vitro and correlates with increased ILV formation in ESCRT-III-decorated endosomes in vivo. Finally, we find that the endosomal membrane tension decreases when ILV formation is triggered by EGF under physiological conditions. These results indicate that membrane tension is a major regulator of ILV formation and endosome trafficking, leading us to conclude that membrane tension can control organelle functions.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Biogênese de Organelas , Endossomos/fisiologia , Corantes Fluorescentes , Células HeLa , Humanos , Soluções Hipertônicas , Tensão Superficial
8.
J Oleo Sci ; 69(9): 1021-1030, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32788513

RESUMO

A novel jellyfish-shaped triazine hexamer quaternary ammonium chloride surfactant (TH12QC) was synthesized, which consisted of one triazine spacer group and six long flexible hydrophobic chains. The molecular structure and aggregation behavior of TH12QC was investigated by nuclear magnetic resonance (NMR), surface tension, electrical conductivity, dynamic light scattering (DLS), transmission electron microscope (TEM), etc. The results show that the jellyfish-shaped TH12QC has better surface activity and lower surface tension than traditional ionic and Gemini surfactants in aqueous solution. There are two inflection points in the curve of conductivity versus concentration of the TH12QC aqueous solution, which correspond to the critical aggregation concentration (CAC) and the critical micelle concentration (CMC) respectively. The existence of CAC indicates that there is a pre-aggregation process before TH12QC forms micelles. The results of DLS and TEM show that network pre-aggregation, spherical aggregation and dense spherical aggregation were observed in different concentration of TH12QC aqueous solution, and the electrostatic equilibrium of the system subtly depends on the concentration of the solution. In addition, intramolecular and intermolecular hydrogen bonding is also an important factor. This study provides a method for studying the aggregation behavior and morphology of oligomeric surfactants with rigid spacer groups.


Assuntos
Cloreto de Amônio/química , Cloreto de Amônio/síntese química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/síntese química , Tensoativos/química , Tensoativos/síntese química , Triazinas/química , Triazinas/síntese química , Fenômenos Químicos , Difusão Dinâmica da Luz , Condutividade Elétrica , Ligação de Hidrogênio , Micelas , Estrutura Molecular , Soluções , Tensão Superficial , Água/química
9.
Proc Natl Acad Sci U S A ; 117(28): 16154-16159, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601228

RESUMO

The metaphase spindle is a dynamic structure orchestrating chromosome segregation during cell division. Recently, soft matter approaches have shown that the spindle behaves as an active liquid crystal. Still, it remains unclear how active force generation contributes to its characteristic spindle-like shape. Here we combine theory and experiments to show that molecular motor-driven forces shape the structure through a barreling-type instability. We test our physical model by titrating dynein activity in Xenopus egg extract spindles and quantifying the shape and microtubule orientation. We conclude that spindles are shaped by the interplay between surface tension, nematic elasticity, and motor-driven active forces. Our study reveals how motor proteins can mold liquid crystalline droplets and has implications for the design of active soft materials.


Assuntos
Metáfase/fisiologia , Fuso Acromático/fisiologia , Animais , Fenômenos Biomecânicos , Dineínas/antagonistas & inibidores , Dineínas/metabolismo , Elasticidade , Cristais Líquidos , Metáfase/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/fisiologia , Mitose , Fuso Acromático/química , Fuso Acromático/efeitos dos fármacos , Tensão Superficial , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis
10.
Food Chem ; 332: 127381, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603917

RESUMO

In this work, three different polyether-modified siloxanes (PMS1, PMS2, and PMS3) were applied to stabilize water-in-oil emulsions, and sodium caseinate (SC) was used to establish water-in-oil-in-water (W/O/W) emulsions. Here, PMS polymers were modified by Isolan GPS and SC by Tween 80. The impact of modifications on the physical stability and controlled release of W/O/W emulsions were investigated. It was found that the storage stability and control release of double emulsions were dependent on the types of PMS used, percent of Isolan GPS, and Tween 80. When PMS1 and PMS2 were combined with low percent of Isolan GPS and Tween 80, the dispersed droplet sizes were reduced, lower percent in the gravitational sedimentation were achieved than using PMS3 emulsions. The controlled releases of Mg2+ from W/O/W emulsions by using PMS3 were slower than using other PMS. PMS3 had a strong influence in controlling the release of Mg2+ from the double emulsions.


Assuntos
Emulsões/química , Siloxanas/química , Caseínas/química , Condutividade Elétrica , Magnésio/metabolismo , Óleos/química , Tamanho da Partícula , Polissorbatos/química , Tensão Superficial , Água/química
11.
J Oleo Sci ; 69(8): 865-870, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32641610

RESUMO

We studied the physicochemical properties of 1:1 stoichiometric complexes of acylglutamic acids (CnGlu) with tertiary alkylamines (CnDMA) in water at their low and high concentrations. Static surface tensiometry suggested that the critical micelle concentration (cmc) decreased with increasing hydrophobic chain length of the complexes. In addition, CnGlu-CnDMA yielded lower cmc than the C12Glu single system. In the region of high concentrations, several phase states including isotropic liquid (L1) phase, hexagonal liquid crystal (H1) phase, bicontinuous cubic liquid crystal (V1) phase, and lamellar liquid crystal (Lα) phase were observed. Assemblies with lesser positive curvature tend to be formed with increasing complex concentration, increasing temperature, and increasing hydrophobic chain length. Additionally, the complex formation resulted in the molecular assemblies with lesser positive curvature.


Assuntos
Aminas/química , Fenômenos Químicos , Ácido Glutâmico/química , Tensoativos/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Cristais Líquidos , Micelas , Tensão Superficial , Temperatura
12.
J Oleo Sci ; 69(8): 883-891, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32641611

RESUMO

Ion specific effect, which is also known as Hofmeister effect, has been reported in numerous systems including ionic surfactant aggregates. Acyl amino acid surfactants have attracted growing attentions in the field of novel surfactants research due to their environmentally benign characteristics. The objective of this study was to investigate the effect of different salts containing NH4+ and tetraalkylammonium (TAA+), where alkyl = methyl (TMA+), ethyl (TEA+), and propyl (TPA+), cations on the dilational rheological properties of interfacial film are stabilized by potassium N-cocoyl glycinate (KCGl). The interfacial behaviors were studied using oscillating drop shape analysis method. The interfacial tensions (IFTs) and dilational rheological parameters results illustrate that KCGl in the presence of salts has better interfacial activity and stronger intermolecular interaction, indicating that added cations contribute to denser molecular packing at oil-water interface. Ion specific effects were observed in the system. Among the cations, KCGl shows highest dilational modulus in the presence of NH4+. The overall interaction between cations and headgroups of KCGl decreases in the sequence NH4+ >TMA+ >TEA+ ≈TPA+, which follows Hofmeister series. The increasing hydrophobicity of TAA+ prevents the interaction between cations and KCGl's headgroup, and therefore prevent amphiphiles from packing closely at interface. The results present a theoretical origin for useful application of KCGl in cosmetics, petroleum and daily chemical industries.


Assuntos
Compostos de Amônio/química , Glicina/química , Reologia , Tensão Superficial , Tensoativos/química , Cátions , Interações Hidrofóbicas e Hidrofílicas
13.
PLoS One ; 15(7): e0236837, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730369

RESUMO

Recent developments propose renewed use of surface-modified nanoparticles (NPs) for enhanced oil recovery (EOR) due to improved stability and reduced porous media retention. The enhanced surface properties render the nanoparticles more suitable compared to bare nanoparticles, for increasing the displacement efficiency of waterflooding. However, the EOR mechanisms using NPs are still not well established. This work investigates the effect of in-situ surface-modified silica nanoparticles (SiO2 NPs) on interfacial tension (IFT) and wettability behavior as a prevailing oil recovery mechanism. For this purpose, the nanoparticles have been synthesized via a one-step sol-gel method using surface-modification agents, including Triton X-100 (non-ionic surfactant) and polyethylene glycol (polymer), and characterized using various techniques. These results exhibit the well-defined spherical particles, particularly in the presence of Triton X-100 (TX-100), with particle diameter between 13 to 27 nm. To this end, SiO2 nanofluids were formed by dispersing nanoparticles (0.05 wt.%, 0.075 wt.%, 0.1 wt.%, and 0.2 wt.%) in 3 wt.% NaCl to study the impact of surface functionalization on the stability of the nanoparticle suspension. The optimal stability conditions were obtained at 0.1 wt.% SiO2 NPs at a basic pH of 10 and 9.5 for TX-100/ SiO2 and PEG/SiO nanofluids, respectively. Finally, the surface-treated SiO2 nanoparticles were found to change the wettability of treated (oil-wet) surface into water-wet by altering the contact angle from 130° to 78° (in case of TX-100/SiO2) measured against glass surface representing carbonate reservoir rock. IFT results also reveal that the surfactant treatment greatly reduced the oil-water IFT by 30%, compared to other applied NPs. These experimental results suggest that the use of surface-modified SiO2 nanoparticles could facilitate the displacement efficiency by reducing IFT and altering the wettability of carbonate reservoir towards water-wet, which is attributed to more homogeneity and better dispersion of surface-treated silica NPs compared to bare-silica NPs.


Assuntos
Nanopartículas/química , Óleos/isolamento & purificação , Dióxido de Silício/química , Tensoativos/química , Óleos/análise , Óleos/química , Tensão Superficial , Molhabilidade
14.
PLoS One ; 15(6): e0235067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32559226

RESUMO

The aim of this study was to investigate whether and how the biological media which are in contact with silicone oil play a role in the silicone emulsification process. Commercially available Oxane 1300 silicone oil and potential hydrophilic phases of the emulsions in the eye (porcine aqueous humor, porcine vitreous and balanced salt solution) were investigated separately and in a mixture or emulsions by means of surface tension, rheological, zeta potential measurements and microscopic investigation. The surface tension of biological media (vitreous and aqueous humor) was significantly lower than that of non-biological media, especially in the case of aqueous humor, which indicates a remarkable emulsification tendency with these phases. The biological media are able to form both oil-in-water and water-in-oil emulsions, which can be observed in the clinical practice as well. It was established that the vitreous has a more expressed emulsification ability compared with the aqueous humor because smaller and more stable droplets can form with silicon oil when the vitreous is still there. It can be concluded that the vitreous has a higher impact on emulsification than the aqueous medium, which can predict that the vitreous remaining after vitrectomy has a key role in emulsion formation in the eye with silicone oil endotamponade.


Assuntos
Humor Aquoso/química , Soluções Isotônicas/química , Óleos de Silicone/química , Corpo Vítreo/química , Animais , Emulsões , Reologia , Tensão Superficial , Suínos , Vitrectomia/métodos
15.
AAPS PharmSciTech ; 21(5): 177, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32592045

RESUMO

Food and drinks are commonly used to facilitate administration of paediatric medicines to improve palatability and enhance patient compliance. However, the impact of this practice on drug solubility and on oral drug bioavailability is not usually studied. Based on recommended strategies for oral administration of paediatric medicines with food and drink vehicles, the aims of this study were (i) to measure the physicochemical properties of (soft) food and drink vehicles, commonly mixed with paediatric medicines prior to administration, and (ii) to assess the impact of the co-administered vehicles on the solubility of two poorly soluble paediatric drugs. Montelukast (sodium) and mesalazine were selected as the model compounds. Distinct differences were observed between the physicochemical properties (i.e. pH, surface tension, osmolality, viscosity and buffer capacity) and macronutrient composition (i.e. fat, sugar and protein content) of the different soft foods and drinks, not only among vehicle type but also within vehicles of the same subtype. Solubility studies of the two model compounds in selected drinks and soft foods resulted in considerably different drug solubility values in each vehicle. The solubility of the drugs was significantly affected by the vehicle physicochemical properties and macronutrient composition, with the solubility of montelukast being driven by the pH, fat and protein content of the vehicles and the solubility of mesalazine by vehicle osmolality, viscosity and sugar content. This vehicle-dependent impact on drug solubility could compromise its bioavailability, and ultimately affect the safety and/or efficacy of the drug and should be taken into consideration during paediatric product development.


Assuntos
Bebidas , Composição de Medicamentos , Alimentos , Preparações Farmacêuticas/administração & dosagem , Administração Oral , Disponibilidade Biológica , Criança , Excipientes , Humanos , Solubilidade , Tensão Superficial , Viscosidade
16.
Chemosphere ; 252: 126349, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32443257

RESUMO

Biosurfactants have potential applications in the remediation of petroleum-contaminated sites. Several strategies can be used to reduce the production costs of these surfactants and make the process more environmentally friendly. In this study, we combined some of these strategies to produce the rhamnolipid-type biosurfactant, including the use of the genetically modified strain Pseudomonas aeruginosa-estA, an industrial coproduct as a carbon source, a simple and low-cost medium, and a simple downstream process. The process resulted in a high yield (17.6 g L-1), even using crude glycerin as the carbon source, with substrate in product conversion factor (YRML/s) of 0.444. The cell-free supernatant (CFS) was not toxic to Artemia salina and selected mammalian cell lineages, suggesting that it can be used directly in the environment without further purification steps. Qualitative analysis showed that CFS has excellent dispersion in the oil-displacement test, emulsifying (IE24 = 65.5%), and tensoactive properties. When salinity, temperature and pressure were set to seawater conditions, the values for interfacial tension between crude oil and water were below 1.0 mN m-1. Taken together, these results demonstrate that it is possible to obtain a nontoxic crude rhamnolipid product, with high productivity, to replace petroleum-based surfactants in oil spill cleanups and other environmental applications.


Assuntos
Biodegradação Ambiental , Glicolipídeos/metabolismo , Petróleo/metabolismo , Animais , Artemia , Carbono , Emulsões , Petróleo/análise , Poluição por Petróleo/análise , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Tensão Superficial , Tensoativos/química , Temperatura
17.
Environ Sci Pollut Res Int ; 27(22): 27762-27772, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32399884

RESUMO

A biosurfactant (BS) is a surface-active metabolite that is secreted by microbial metabolism, and can be used as a substitute for chemically synthesized surfactants. The first and most critical step to the successful application of BSs is to isolate bacterial strains with strong BS-producing capabilities. In this study, a BS-producing Serratia marcescens ZCF25 was isolated from the sludge of an oil tanker. Through polyphasic characterization using Fourier-transform infrared spectroscopy, thin layer chromatography, and gas chromatography-mass spectrometry, the produced BS was classified as a lipopeptide; it can decrease the water surface tension from 72.0 to 29.50 mN m-1 and has a critical micelle concentration of 220 mg/L. The BS showed a high tolerance over a wide range of pH (2-12), temperature (50-100 °C), and salinity (10-100 g/L). Furthermore, the inoculation of S. marcescens ZCF25 with fracturing flowback fluids could significantly (P < 0.05) reduce the chemical oxygen demand, concentration of alkanes, and concentration of polycyclic aromatic hydrocarbons, with removal efficiencies of 48.9%, 65.57%, and 64%, respectively. This is the first study on the application of BS-producing S. marcescens to treat fracturing flowback fluids. S. marcescens ZCF25 is a promising candidate for use in various industrial and bioremediation applications. Graphical abstract.


Assuntos
Serratia marcescens , Esgotos , Biodegradação Ambiental , Tensão Superficial , Tensoativos
18.
PLoS One ; 15(5): e0229889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32396555

RESUMO

The purpose of the study involves the development of an anaerobic, thermophilic microbial consortium TERIK from the high temperature reservoir of Gujarat for enhance oil recovery. To isolate indigenous microbial consortia, anaerobic baltch media were prepared and inoculated with the formation water; incubated at 65°C for 10 days. Further, the microbial metabolites were analyzed by gas chromatography, FTIR and surface tension. The efficiency of isolated consortia towards enhancing oil recovery was analyzed through core flood assay. The novelty of studied consortia was that, it produces biomass (600 mg/l), bio-surfactant (325 mg/l), and volatile fatty acids (250 mg/l) at 65°C in the span of 10 days, that are adequate to alter the surface tension (70 to 34 mNm -1) and sweep efficiency of zones facilitating the displacement of oil. TERIK was identified as Clostridium sp. The FTIR spectra of biosurfactant indicate the presence of N-H stretch, amides and polysaccharide. A core flooding assay was designed to explore the potential of TERIK towards enhancing oil recovery. The results showed an effective reduction in permeability at residual oil saturation from 2.14 ± 0.1 to 1.39 ± 0.05 mD and 19% incremental oil recovery.


Assuntos
Archaea/metabolismo , Microbiologia Industrial , Consórcios Microbianos , Campos de Petróleo e Gás/microbiologia , Clostridium/metabolismo , Temperatura Alta , Humanos , Petróleo/microbiologia , Tensão Superficial , Tensoativos/farmacologia
19.
AAPS PharmSciTech ; 21(5): 146, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32435989

RESUMO

The objective of this work was to study the effect of the physiologically relevant enzymes pepsin, pancreatin, and the synthetic surfactant sodium lauryl sulfate (SLS) on the surface tension of the dissolution media and the solubility and dissolution of the weakly basic drug carvedilol. Compendial dissolution media and buffer solutions that simulate the gastrointestinal fluid, prepared with and without the addition of SLS, were used in this study. The surface tension of the dissolution media; critical micelle concentration (CMC) of SLS in buffer solutions; and size, polydispersity index, and zeta potential of SLS micelles loading carvedilol were determined. The solubility and dissolution of carvedilol were investigated and compared with those of the corresponding media prepared without the addition of pepsin, pancreatin, and SLS. Results showed that the addition of pepsin, pancreatin, and SLS lowered the surface tension of the dissolution media to 54.8, 55.7, and ~ 30 mN/m, respectively. The solubility of carvedilol was significantly enhanced with pepsin and SLS; however, no significant difference was found with pancreatin. The dissolution rate of carvedilol was fast in simulated gastric fluid with and without pepsin. The dissolution was further enhanced in media with pancreatin and SLS. The dissolution data were corroborated with the molar micellar solubilization (X) of SLS, ranging between 0.02 and 3.09. Understanding the effect of pepsin, pancreatin, and SLS on the surface tension of the dissolution media and the solubility and dissolution of poorly soluble drugs can improve our knowledge of the performance of these drugs in vivo.


Assuntos
Carvedilol/química , Dodecilsulfato de Sódio/farmacologia , Tensoativos/farmacologia , Micelas , Pancreatina/química , Pepsina A/química , Solubilidade , Tensão Superficial
20.
Food Chem ; 327: 127062, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32454279

RESUMO

Soy glycinin (11S) was mixed with soyasaponin (Ssa) to elucidate the mechanism(s) involved in the stabilization of emulsions by mixed systems based on dynamic interfacial tension and dilatational rheology at the oil-water interface. The short/long-term properties of oil-in-water emulsions stabilized by 11S-Ssa mixtures included droplet-size distribution, droplet ζ-potential, microstructure, and Turbiscan stability index. The combination of Ssa (0.05%) with 11S significantly affected the interfacial dilatational and emulsion properties although the interfacial properties were still dominated by the protein. Higher concentrations (0.1% and 0.2%) of Ssa combined with 11S synergistically decreased the interfacial tension, which was attributed to the interaction between 11S and Ssa. Using high Ssa concentrations (0.25%-0.5%) enhanced the long-term stability of emulsions (in response to external deformations) after 42 d. These results will aid the basic understanding of protein-Ssa interfacial adsorption during emulsion formation and can help prepare natural food additives for designing emulsions.


Assuntos
Globulinas/química , Saponinas/química , Proteínas de Soja/química , Soja/química , Adsorção , Óleo de Milho/química , Emulsões/química , Tensão Superficial , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA