Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.041
Filtrar
1.
Nat Commun ; 11(1): 3958, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769971

RESUMO

Catalytic versatility is an inherent property of many enzymes. In nature, terpene cyclases comprise the foundation of molecular biodiversity as they generate diverse hydrocarbon scaffolds found in thousands of terpenoid natural products. Here, we report that the catalytic activity of the terpene cyclases AaTPS and FgGS can be switched from cyclase to aromatic prenyltransferase at basic pH to generate prenylindoles. The crystal structures of AaTPS and FgGS provide insights into the catalytic mechanism of this cryptic function. Moreover, aromatic prenyltransferase activity discovered in other terpene cyclases indicates that this cryptic function is broadly conserved among the greater family of terpene cyclases. We suggest that this cryptic function is chemoprotective for the cell by regulating isoprenoid diphosphate concentrations so that they are maintained below toxic thresholds.


Assuntos
Dimetilaliltranstransferase/metabolismo , Liases Intramoleculares/metabolismo , Alternaria/enzimologia , Domínio Catalítico , Dimetilaliltranstransferase/química , Ensaios Enzimáticos , Escherichia coli/metabolismo , Fusarium/enzimologia , Indóis/química , Indóis/metabolismo , Liases Intramoleculares/química , Cinética , Ligantes , Modelos Moleculares , Prenilação , Terpenos/metabolismo
2.
Plant Mol Biol ; 104(1-2): 203-215, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32683610

RESUMO

KEY MESSAGE: Distinct catalytic features of the Poaceae TPS-a subfamily arose early in grass evolution and the reactions catalyzed have become more complex with time. The structural diversity of terpenes found in nature is mainly determined by terpene synthases (TPS). TPS enzymes accept ubiquitous prenyl diphosphates as substrates and convert them into the various terpene skeletons by catalyzing a carbocation-driven reaction. Based on their sequence similarity, terpene synthases from land plants can be divided into different subfamilies, TPS-a to TPS-h. In this study, we aimed to understand the evolution and functional diversification of the TPS-a subfamily in the Poaceae (the grass family), a plant family that contains important crops such as maize, wheat, rice, and sorghum. Sequence comparisons showed that aside from one clade shared with other monocot plants, the Poaceae TPS-a subfamily consists of five well-defined clades I-V, the common ancestor of which probably originated very early in the evolution of the grasses. A survey of the TPS literature and the characterization of representative TPS enzymes from clades I-III revealed clade-specific substrate and product specificities. The enzymes in both clade I and II function as sesquiterpene synthases with clade I enzymes catalyzing initial C10-C1 or C11-C1 ring closures and clade II enzymes catalyzing C6-C1 closures. The enzymes of clade III mainly act as monoterpene synthases, forming cyclic and acyclic monoterpenes. The reconstruction and characterization of clade ancestors demonstrated that the differences among clades I-III were already present in their ancestors. However, the ancestors generally catalyzed simpler reactions with less double-bond isomerization and fewer cyclization steps. Overall, our data indicate an early origin of key enzymatic features of TPS-a enzymes in the Poaceae, and the development of more complex reactions over the course of evolution.


Assuntos
Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Poaceae/enzimologia , Poaceae/genética , Alquil e Aril Transferases/classificação , Clonagem Molecular , Escherichia coli/genética , Evolução Molecular , Genes de Plantas/genética , Liases Intramoleculares/metabolismo , Proteínas de Plantas/genética , Análise de Sequência , Terpenos/metabolismo
3.
Gene ; 758: 144961, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32693148

RESUMO

Ginkgo biloba L. is regarded as the most ancient living tree, and its kernel has been used as a traditional Chinese medicine for more than 2,000 years. The leaf extracts of this tree have been among the bestselling herbal remedies in Western countries since the last century. To understand the biosynthesis of the pharmacologically active ingredients in G. biloba, flavonoids and terpenoid trilactones (TTLs), we sequenced the transcriptomes of G. biloba leaves, kernels and testae with Iso-Seq and RNA-Seq technologies and obtained 152,524 clean consensus reads. When these reads were used to improve the annotation of the G. biloba genome, 4,856 novel genes, 25,583 new isoforms of previously annotated genes and 4,363 lncRNAs were discovered. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that genes involved in growth, regulation and response to stress were more likely to be regulated by alternative splicing (AS) or alternative polyadenylation (APA), which represent the two most important posttranscriptional regulation mechanisms. It was found that some of the characterized genes involved in the biosynthesis of flavonoids and TTLs were also possibly regulated by AS and APA. Using phylogenetic and gene expression pattern analyses, some candidate genes for the biosynthesis of flavonoids and TTLs were screened. After qRT-PCR validation, the final candidate genes for flavonoid biosynthesis included three UDP-glycosyltransferases and one MYB transcription factor, while the candidate genes for TTL biosynthesis included two cytochrome P450 and one WRKY transcription factor. Our study suggested that Iso-Seq may play an important role in improving genome annotation, elucidating AS and APA mechanisms and discovering candidate genes involved in the biosynthesis of some secondary metabolites.


Assuntos
Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas/genética , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Lactonas/metabolismo , Terpenos/metabolismo , Processamento Alternativo/genética , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Genoma de Planta/genética , Extratos Vegetais , Transcriptoma , Sequenciamento Completo do Genoma
4.
Food Chem ; 332: 127426, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619948

RESUMO

A selected Pichia fermentans strain was simultaneously and sequentially inoculated in synthetic and real juice with S. cerevisiae strains of different antagonistic activities in a ratio 1:1 to observe the correlation between varietal odorants and glycosidase activities. Fermentations using pure S. cerevisiae strains were used for comparison. Yeast biomass and glycosidase activities were monitored, varietal odorants were detected using HS-SPME-GC/MS during fermentation. The final wine aroma attributes were analyzed by trained panelists. Results showed that co-inoculation with high antagonistic S. cerevisiae resulted in higher glycosidase activities than others. Pearson correlation analysis indicated that yeast biomass was positively related to glycosidase activities during fermentation. The increase in glycosidase activities was the main reason for the higher production of terpenes and C13-norisoprenoids, and for the lower C6 compound content, which lead to superior fruity and floral aromas in the final wine samples of the high antagonistic S. cerevisiae group.


Assuntos
Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Fermentação , Frutas/química , Sucos de Frutas e Vegetais/análise , Sucos de Frutas e Vegetais/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Norisoprenoides/análise , Norisoprenoides/metabolismo , Odorantes/análise , Pichia/enzimologia , Pichia/crescimento & desenvolvimento , Terpenos/análise , Terpenos/metabolismo
5.
Food Chem ; 331: 127286, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32562978

RESUMO

Nowadays, novel tools have been developed for efficient analysis and visualization of large-scale metabolite profile data associated with metabolic pathways. A high-throughput platform using PathVisio 3 combined with multivariate analysis is proposed for the first time. Additionally, this is the first analysis of the relationships among terpenoids monoterpene, sesquiterpene, triterpene, and tetraterpene during pepper fruit ripening, and their changes. This platform was successfully applied to interpret large-scale data related to 131 metabolites from mature and immature fruits of 13 pepper phenotypes. The carotenoid-derived volatiles, such as dihydroactinidiolide and ß-ionone were closely correlated with carotenoids, indicating that the synthesis and degradation of carotenoids occurred in pepper fruit mature stage. Using PathVisio 3, the metabolic changes in pathway could be presented quickly, revealing the accumulation of stress-related metabolites, such as proline, capsaicin, and phenylalanine, in the mature stage. This approach could provide useful information about comprehensive biochemical regulation of fruit ripening.


Assuntos
Capsicum/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Metabolômica/métodos , Capsaicina/análise , Capsaicina/metabolismo , Capsicum/química , Capsicum/crescimento & desenvolvimento , Carotenoides/análise , Carotenoides/metabolismo , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Ensaios de Triagem em Larga Escala , Metabolômica/estatística & dados numéricos , Análise Multivariada , Fenótipo , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo
6.
PLoS One ; 15(4): e0232220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353014

RESUMO

Terpenes are the largest class of natural products with extensive structural diversity and are widely used as pharmaceuticals, herbicides, flavourings, fragrances, and biofuels. While they have mostly been isolated from plants and fungi, the availability and analysis of bacterial genome sequence data indicates that bacteria also possess many putative terpene synthase genes. In this study, we further explore this potential for terpene synthase activity in bacteria. Twenty two potential class I terpene synthase genes (TSs) were selected to represent the full sequence diversity of bacterial synthase candidates and recombinantly expressed in E. coli. Terpene synthase activity was detected for 15 of these enzymes, and included mono-, sesqui- and diterpene synthase activities. A number of confirmed sesquiterpene synthases also exhibited promiscuous monoterpene synthase activity, suggesting that bacteria are potentially a richer source of monoterpene synthase activity then previously assumed. Several terpenoid products not previously detected in bacteria were identified, including aromandendrene, acora-3,7(14)-diene and longiborneol. Overall, we have identified promiscuous terpene synthases in bacteria and demonstrated that terpene synthases with substrate promiscuity are widely distributed in nature, forming a rich resource for engineering terpene biosynthetic pathways for biotechnology.


Assuntos
Alquil e Aril Transferases/genética , Bactérias/genética , Vias Biossintéticas/genética , Genoma Bacteriano/genética , Filogenia , Terpenos/metabolismo
7.
Nat Chem Biol ; 16(7): 740-748, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424305

RESUMO

Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by 'hijacking' an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.


Assuntos
Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glicosiltransferases/genética , Proteínas de Plantas/genética , Saponinas/biossíntese , Spinacia oleracea/metabolismo , Terpenos/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Retículo Endoplasmático/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucosiltransferases/metabolismo , Ácido Glucurônico/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Spinacia oleracea/genética
8.
Plant Sci ; 294: 110457, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32234216

RESUMO

Plant specialized terpenoids are natural products that have no obvious role in growth and development, but play many important functional roles to improve the plant's overall fitness. Besides, plant specialized terpenoids have immense value to humans due to their applications in fragrance, flavor, cosmetic, and biofuel industries. Understanding the fundamental aspects involved in the biosynthesis and regulation of these high-value molecules in plants not only paves the path to enhance plant traits, but also facilitates homologous or heterologous engineering for overproduction of target molecules of importance. Recent developments in functional genomics and high-throughput analytical techniques have led to unraveling of several novel aspects involved in the biosynthesis and regulation of plant specialized terpenoids. The knowledge thus derived has been successfully utilized to produce target specialized terpenoids of plant origin in homologous or heterologous host systems by metabolic engineering and synthetic biology approaches. Here, we provide an overview and highlights on advances related to the biosynthetic steps, regulation, and metabolic engineering of plant specialized terpenoids.


Assuntos
Engenharia Metabólica/métodos , Terpenos/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Família Multigênica/genética , Biologia Sintética/métodos
9.
PLoS One ; 15(4): e0231178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32320403

RESUMO

An assessment of the production, distribution and fate of highly branched isoprenoid (HBI) biomarkers produced by sea ice and pelagic diatoms is necessary to interpret their detection and proportions in the northern Bering and Chukchi Seas. HBIs measured in surface sediments collected from 2012 to 2017 were used to determine the distribution and seasonality of the biomarkers relative to sea ice patterns. A northward gradient of increasing ice algae deposition was observed with localized occurrences of elevated IP25 (sympagic HBI) concentrations from 68-70°N and consistently strong sympagic signatures from 71-72.5°N. A declining sympagic signature was observed from 2012 to 2017 in the northeast Chukchi Sea, coincident with declining sea ice concentrations. HBI fluxes were investigated on the northeast Chukchi shelf with a moored sediment trap deployed from August 2015 to July 2016. Fluxes of sea ice exclusive diatoms (Nitzschia frigida and Melosira arctica) and HBI-producing taxa (Pleurosigma, Haslea and Rhizosolenia spp.) were measured to confirm HBI sources and ice associations. IP25 was detected year-round, increasing in March 2016 (10 ng m-2 d-1) and reaching a maximum in July 2016 (1331 ng m-2 d-1). Snowmelt triggered the release of sea ice algae into the water column in May 2016, while under-ice pelagic production contributed to the diatom export in June and July 2016. Sea ice diatom fluxes were strongly correlated with the IP25 flux, however associations between pelagic diatoms and HBI fluxes were inconclusive. Bioturbation likely facilitates sustained burial of sympagic organic matter on the shelf despite the occurrence of pelagic diatom blooms. These results suggest that sympagic diatoms may sustain the food web through winter on the northeast Chukchi shelf. The reduced relative proportions of sympagic HBIs in the northern Bering Sea are likely driven by sea ice persistence in the region.


Assuntos
Diatomáceas/isolamento & purificação , Camada de Gelo/microbiologia , Microalgas/isolamento & purificação , Análise Espaço-Temporal , Terpenos/análise , Regiões Árticas , Biomarcadores/análise , Diatomáceas/metabolismo , Cadeia Alimentar , Microalgas/metabolismo , Oceanos e Mares , Estações do Ano , Terpenos/metabolismo
10.
Plant Mol Biol ; 103(4-5): 489-505, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32306368

RESUMO

KEY MESSAGE: Cucumber plants adapt their transcriptome and metabolome as result of spider mite infestation with opposite consequences for direct and indirect defences in two genotypes. Plants respond to arthropod attack with the rearrangement of their transcriptome which lead to subsequent phenotypic changes in the plants' metabolome. Here, we analysed transcriptomic and metabolite responses of two cucumber (Cucumis sativus) genotypes to chelicerate spider mites (Tetranychus urticae) during the first 3 days of infestation. Genes associated with the metabolism of jasmonates, phenylpropanoids, terpenoids and L-phenylalanine were most strongly upregulated. Also, genes involved in the biosynthesis of precursors for indirect defence-related terpenoids were upregulated while those involved in the biosynthesis of direct defence-related cucurbitacin C were downregulated. Consistent with the observed transcriptional changes, terpenoid emission increased and cucurbitacin C content decreased during early spider-mite herbivory. To further study the regulatory network that underlies induced defence to spider mites, differentially expressed genes that encode transcription factors (TFs) were analysed. Correlation analysis of the expression of TF genes with metabolism-associated genes resulted in putative identification of regulators of herbivore-induced terpenoid, green-leaf volatiles and cucurbitacin biosynthesis. Our data provide a global image of the transcriptional changes in cucumber leaves in response to spider-mite herbivory and that of metabolites that are potentially involved in the regulation of induced direct and indirect defences against spider-mite herbivory.


Assuntos
Cucumis sativus/imunologia , Cucumis sativus/metabolismo , Metaboloma , Infestações por Ácaros/imunologia , Infestações por Ácaros/metabolismo , Tetranychidae , Transcriptoma , Animais , Vias Biossintéticas/genética , Cucumis sativus/genética , Cucumis sativus/parasitologia , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genoma de Planta , Genótipo , Herbivoria , Oxilipinas/metabolismo , Fenilalanina/metabolismo , Fenilpropionatos/metabolismo , Doenças das Plantas , Folhas de Planta/metabolismo , Metabolismo Secundário/genética , Terpenos/metabolismo , Fatores de Transcrição/genética , Triterpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo
11.
PLoS Comput Biol ; 16(4): e1007799, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32287281

RESUMO

13C-metabolic flux analysis (13C-MFA) allows metabolic fluxes to be quantified in living organisms and is a major tool in biotechnology and systems biology. Current 13C-MFA approaches model label propagation starting from the extracellular 13C-labeled nutrient(s), which limits their applicability to the analysis of pathways close to this metabolic entry point. Here, we propose a new approach to quantify fluxes through any metabolic subnetwork of interest by modeling label propagation directly from the metabolic precursor(s) of this subnetwork. The flux calculations are thus purely based on information from within the subnetwork of interest, and no additional knowledge about the surrounding network (such as atom transitions in upstream reactions or the labeling of the extracellular nutrient) is required. This approach, termed ScalaFlux for SCALAble metabolic FLUX analysis, can be scaled up from individual reactions to pathways to sets of pathways. ScalaFlux has several benefits compared with current 13C-MFA approaches: greater network coverage, lower data requirements, independence from cell physiology, robustness to gaps in data and network information, better computational efficiency, applicability to rich media, and enhanced flux identifiability. We validated ScalaFlux using a theoretical network and simulated data. We also used the approach to quantify fluxes through the prenyl pyrophosphate pathway of Saccharomyces cerevisiae mutants engineered to produce phytoene, using a dataset for which fluxes could not be calculated using existing approaches. A broad range of metabolic systems can be targeted with minimal cost and effort, making ScalaFlux a valuable tool for the analysis of metabolic fluxes.


Assuntos
Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Engenharia Metabólica , Fosfatos de Poli-Isoprenil/metabolismo , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas , Terpenos/metabolismo
12.
Food Chem ; 320: 126608, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32229396

RESUMO

The postharvest ripening behaviour of mangoes (Mangifera indica L.) and particularly the development of colour, volatiles, sensory properties and texture, were investigated. Mangoes cv. Kent from Peru were arranged in a postharvest ripening chamber in two different ways enabling different ventilation of the fruits. Fruit properties were investigated in comparison to reference fruits after postharvest ripening for 78 h. Volatile compounds were analysed by HS-SPME GC-MS; an expert panel performed sensory analysis using descriptive methods. The arrangement of the mangoes significantly impacted the ripening procedures. Dense fruit arrangement induced a degradation of terpenes, a reduced formation of reaction products from the lipoxygenase pathway and less pronounced fruitiness and mango flavour. Principal component analysis based on volatile compounds and sensory properties showed a high correlation with the position in the ripening chamber. These data demonstrate the urgent need for further investigations of the postharvest ripening processes to increase mango quality.


Assuntos
Aromatizantes/análise , Frutas/química , Mangifera/química , Compostos Orgânicos Voláteis/análise , Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Peru , Paladar , Terpenos/análise , Terpenos/química , Terpenos/metabolismo
13.
Food Funct ; 11(2): 1692-1701, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32037413

RESUMO

To investigate the bioactive compounds that contribute to the α-glucosidase inhibitory activity of rosemary, phenolics and triterpene acids were characterized and quantified using quadrupole-Orbitrap mass spectrometry and enzyme assay. Two phenolic diterpenes (carnosol and hydroxy p-quinone carnosic acid) and two triterpene acids (betulinic acid and ursolic acid) were identified as potent α-glucosidase inhibitors. Carnosol, a major diterpene in rosemary, showed significant α-glucosidase inhibitory activity with IC50 value of 12 µg mL-1, and its inhibition mode was competitive. The inhibition mechanism of carnosol on α-glucosidase was further investigated by a combination of surface plasmon resonance (SPR) spectroscopy, fluorescence quenching studies and molecular-modeling techniques. The SPR assay suggested that carnosol had a high affinity to α-glucosidase with equilibrium dissociation constant (KD) value of 72.6 M. Fluorescence quenching studies indicated that the binding between carnosol and α-glucosidase was spontaneous and mainly driven by hydrophobic forces. Molecular docking studies revealed that carnosol bound to the active site of α-glucosidase. Furthermore, the oral administration of carnosol at 30 mg kg-1 significantly reduced the postprandial blood glucose levels of normal mice. This is the first report on the α-glucosidase inhibition and hypoglycemic activity of phenolic diterpenes, and these results could facilitate the utilization of rosemary as a dietary supplement for the treatment of diabetes.


Assuntos
Inibidores de Glicosídeo Hidrolases , Extratos Vegetais , Rosmarinus , Animais , Glicemia/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Fenóis/química , Fenóis/metabolismo , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Terpenos/química , Terpenos/metabolismo , Terpenos/farmacologia , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
14.
Mol Biol Rep ; 47(3): 1979-1990, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32040708

RESUMO

Trans-polyisoprene rubber is produced in the tissues of leaves, bark, and fruit of Eucommia ulmoides and is considered an important energy source. Transcript profiles of two tissues from E. ulmoides cv. Qinzhong No. 3, leaf and fruit, were analysed using the Illumina HiSeq 2000 system. In total, 104 million clean reads were obtained and assembled into 58,863 unigenes. Through gene functional classification, 28,091 unigenes (47.72%) were annotated and 65 unigenes have been hypothesized to encode proteins involved in terpenoid biosynthesis. In addition, 10,041 unigenes were detected as differentially expressed unigenes, and 29 of them were putatively related to terpenoid biosynthesis. The synthesis of trans-polyisoprene rubbers in E. ulmoides was hypothesised to be dominated by the mevalonate pathway. Farnesyl diphosphate synthase 2 (FPPS2) was considered a key component in the biosynthesis of trans-polyprenyl diphosphate. Rubber elongation factor 3 (REF3) might be involved in stabilising the membrane of rubber particles in E. ulmoides. To date, 351 simple sequence repeats (SSRs) were validated as polymorphisms from eight E. ulmoides plants (two parent plants and six F1 individuals), and these could act as molecular markers for genetic map density increase and breeding improvement of E. ulmoides.


Assuntos
Vias Biossintéticas , Eucommiaceae/genética , Perfilação da Expressão Gênica/métodos , Repetições de Microssatélites , DNA de Plantas , Eucommiaceae/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Análise de Sequência de RNA , Terpenos/metabolismo
15.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32024007

RESUMO

Taiwania (Taiwania cryptomerioides) is an important tree species in Taiwan because of the excellent properties of its wood and fascinating color qualities of its heartwood (HW), as well as the bioactive compounds therein. However, limited information is available as to the HW formation of this species. The objective of this research is to analyze the differentially expressed genes (DEGs) during the HW formation process from specific Taiwania xylem tissues, and to obtain genes that might be closely associated with this process. The results indicated that our analyses have captured DEGs representative to the HW formation process of Taiwania. DEGs related to the terpenoid biosynthesis pathway were all up-regulated in the transition zone (TZ) to support the biosynthesis and accumulation of terpenoids. Many DEGs related to lignin biosynthesis, and two DEGs related to pinoresinol reductase (PrR)/pinoresinol lariciresinol reductase (PLR), were up-regulated in TZ. These DEGs together are likely involved in providing the precursors for the subsequent lignan biosynthesis. Several transcription factor-, nuclease-, and protease-encoding DEGs were also highly expressed in TZ, and these DEGs might be involved in the regulation of secondary metabolite biosynthesis and the autolysis of the cellular components of ray parenchyma cells in TZ. These results provide further insights into the process of HW formation in Taiwania.


Assuntos
Cupressaceae/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Madeira/metabolismo , Cupressaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Metabolismo Secundário , Terpenos/metabolismo , Xilema/metabolismo
16.
PLoS One ; 15(2): e0228675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32049975

RESUMO

Aspergillus tubingensis is an important pathogen of economically important crops. Different biotic stresses strongly influence the balance of metabolites in plants. The aim of this study was to understand the function and response of resistance associated metabolites which, in turn are involved in many secondary metabolomics pathways to influence defense mechanism of cotton plant. Analysis of non-targeted metabolomics using ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) revealed abundant accumulation of key metabolites including flavonoids, phenylpropanoids, terpenoids, fatty acids and carbohydrates, in response to leaf spot of cotton. The principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and partial least squares discriminant analysis (PLS-DA) score plots illustrated the evidences of variation between two varieties of cotton under mock and pathogen inoculated treatments. Primary metabolism was affected by the up regulation of pyruvate and malate and by the accumulation of carbohydrates like cellobiose and inulobiose. Among 241 resistance related (RR) metabolites, 18 were identified as resistance related constitutive (RRC) and 223 as resistance related induced (RRI) metabolites. Several RRI metabolites, identified in the present study were the precursors for many secondary metabolic pathways. These included phenylpropanoids (stilbenes and furanocoumarin), flavonoids (phlorizin and kaempferol), alkaloids (indolizine and acetylcorynoline) and terpenoids (azelaic acid and oleanolic acid). Our results demonstrated that secondary metabolism, primary metabolism and energy metabolism were more active in resistant cultivar, as compared to sensitive cultivar. Differential protein and fatty acid metabolism was also depicted in both cultivars. Accumulation of these defense related metabolites in resistant cotton cultivar and their suppression in susceptible cotton cultivar revealed the reason of their respective tolerance and susceptibility against A. tubingensis.


Assuntos
Aspergillus/patogenicidade , Resistência à Doença , Gossypium/metabolismo , Metaboloma , Folhas de Planta/metabolismo , Cumarínicos/metabolismo , Ácidos Graxos/metabolismo , Flavonoides/metabolismo , Gossypium/microbiologia , Folhas de Planta/microbiologia , Estilbenos/metabolismo , Terpenos/metabolismo
17.
BMC Genomics ; 21(1): 169, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070270

RESUMO

BACKGROUND: Matricaria recutita (German chamomile) and Chamaemelum nobile (Roman chamomile) belong to the botanical family Asteraceae. These two herbs are not only morphologically distinguishable, but their secondary metabolites - especially the essential oils present in flowers are also different, especially the terpenoids. The aim of this project was to preliminarily identify regulatory mechanisms in the terpenoid biosynthetic pathways that differ between German and Roman chamomile by performing comparative transcriptomic and metabolomic analyses. RESULTS: We determined the content of essential oils in disk florets and ray florets in these two chamomile species, and found that the terpenoid content in flowers of German chamomile is greater than that of Roman chamomile. In addition, a comparative RNA-seq analysis of German and Roman chamomile showed that 54% of genes shared > 75% sequence identity between the two species. In particular, more highly expressed DEGs (differentially expressed genes) and TF (transcription factor) genes, different regulation of CYPs (cytochrome P450 enzymes), and rapid evolution of downstream genes in the terpenoid biosynthetic pathway of German chamomile could be the main reasons to explain the differences in the types and levels of terpenoid compounds in these two species. In addition, a phylogenetic tree constructed from single copy genes showed that German chamomile and Roman chamomile are closely related to Chrysanthemum nankingense. CONCLUSION: This work provides the first insights into terpenoid biosynthesis in two species of chamomile. The candidate unigenes related to terpenoid biosynthesis will be important in molecular breeding approaches to modulate the essential oil composition of Matricaria recutita and Chamaemelum nobile.


Assuntos
Chamaemelum/genética , Chamaemelum/metabolismo , Matricaria/genética , Matricaria/metabolismo , Compostos Fitoquímicos/metabolismo , Terpenos/metabolismo , Transcriptoma , Vias Biossintéticas , Chamaemelum/química , Biologia Computacional/métodos , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Matricaria/química , Anotação de Sequência Molecular , Óleos Voláteis/metabolismo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Análise de Sequência de RNA
18.
Chem Commun (Camb) ; 56(22): 3329-3332, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083260

RESUMO

Taxodisones A and B, C30-terpenes with an unprecedented tetracyclo[12.4.0.0.2,709,14]octodecane core, were isolated from the seeds of Taxodium distichum. Their structures, including their configurations, were unambiguously determined. Their biomimetic synthesis suggests that they stem from diterpenes and monoterpenes, and not from squalene or oxidosqualene. In addition, their bioactivities were also evaluated.


Assuntos
Diterpenos/química , Taxodium/química , Biomimética , Catálise , Complexos de Coordenação/química , Cristalografia por Raios X , Reação de Cicloadição , Diterpenos/metabolismo , Érbio/química , Conformação Molecular , Sementes/química , Sementes/metabolismo , Taxodium/metabolismo , Terpenos/química , Terpenos/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(3): 1596-1605, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31907313

RESUMO

Hybrid-poplar tree plantations provide a source for biofuel and biomass, but they also increase forest isoprene emissions. The consequences of increased isoprene emissions include higher rates of tropospheric ozone production, increases in the lifetime of methane, and increases in atmospheric aerosol production, all of which affect the global energy budget and/or lead to the degradation of air quality. Using RNA interference (RNAi) to suppress isoprene emission, we show that this trait, which is thought to be required for the tolerance of abiotic stress, is not required for high rates of photosynthesis and woody biomass production in the agroforest plantation environment, even in areas with high levels of climatic stress. Biomass production over 4 y in plantations in Arizona and Oregon was similar among genetic lines that emitted or did not emit significant amounts of isoprene. Lines that had substantially reduced isoprene emission rates also showed decreases in flavonol pigments, which reduce oxidative damage during extremes of abiotic stress, a pattern that would be expected to amplify metabolic dysfunction in the absence of isoprene production in stress-prone climate regimes. However, compensatory increases in the expression of other proteomic components, especially those associated with the production of protective compounds, such as carotenoids and terpenoids, and the fact that most biomass is produced prior to the hottest and driest part of the growing season explain the observed pattern of high biomass production with low isoprene emission. Our results show that it is possible to reduce the deleterious influences of isoprene on the atmosphere, while sustaining woody biomass production in temperate agroforest plantations.


Assuntos
Atmosfera , Hemiterpenos/biossíntese , Hibridização Genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Poluição do Ar , Arizona , Biocombustíveis , Biomassa , Butadienos , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Clima , Oregon , Fotossíntese , Folhas de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Proteoma , Interferência de RNA , Estações do Ano , Estresse Fisiológico , Terpenos/metabolismo , Termotolerância/fisiologia , Madeira
20.
BMC Plant Biol ; 20(1): 7, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906915

RESUMO

BACKGROUND: Previous reports have mainly focused on the volatiles in citrus fruits, and there have been few reports about the volatiles in citrus leaves and flowers. However, citrus leaves and flowers are also rich in volatile compounds with unique aromas. Here, to investigate the volatiles in citrus leaves and flowers, volatile profiling was performed on leaves from 62 germplasms and flowers from 25 germplasms. RESULTS: In total, 196 and 82 volatile compounds were identified from leaves of 62 citrus germplasms and flowers of 25 citrus germplasms, respectively. The dominant volatile terpenoids were more diverse in citrus leaves than in peels. A total of 34 volatile terpenoids were commonly detected in the leaves of at least 20 germplasms, among which 31 were overaccumulated in the leaves of wild or semiwild germplasms. This result was consistent with the high expression levels of five genes and one key gene of the mevalonate and 2-C-methyl-D-erythritol-4-phosphate (MEP) biosynthetic pathways, respectively, as well as the low expression levels of geranylgeranyl diphosphate synthase of the MEP pathway, relative to the levels in cultivars. Fully open flowers showed increased levels of four terpene alcohols and a decrease in sabinene content compared with balloon-stage flowers, especially in sweet orange. A monoterpene synthase gene was identified and functionally characterized as a sabinene synthase in vitro. CONCLUSIONS: Collectively, our results suggest that 31 important terpenoids are abundant in wild or semiwild citrus germplasms, possibly because of a negative effect of domestication on the volatiles in citrus leaves. The sweet smell of fully open flowers may be attributed to increased levels of four terpene alcohols. In addition, a sabinene synthase gene was identified by combined transcriptomic and metabolomic analyses.


Assuntos
Citrus/genética , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Citrus/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Metabolômica , Odorantes , Folhas de Planta/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA