Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.955
Filtrar
1.
J Chem Ecol ; 46(1): 84-98, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31858366

RESUMO

Non-nutritive phytochemicals (secondary metabolites and fibre) can influence plant resistance to herbivores and have ecological impacts on animal and plant population dynamics. A major hindrance to the ecological study of these phytochemicals is the uncertainty in the compounds one should measure, especially when limited by cost and expertise. With the underlying goal of identifying proxies of plant resistance to herbivores, we performed a systematic review of the effects of non-nutritive phytochemicals on consumption by leporids (rabbits and hares) and cervids (deer family). We identified 133 out of 1790 articles that fit our selection criteria (leporids = 33, cervids = 97, both herbivore types = 3). These articles cover 18 species of herbivores, on four continents. The most prevalent group of phytochemicals in the selected articles was phenolics, followed by terpenes for leporids and by fibre for cervids. In general, the results were variable but phenolic concentration seems linked with high resistance to both types of herbivores. Terpene concentration is also linked to high plant resistance; this relationship seems driven by total terpene content for cervids and specific terpenes for leporids. Tannins and fibre did not have a consistent positive effect on plant resistance. Because of the high variability in results reported and the synergistic effects of phytochemicals, we propose that the choice of chemical analyses must be tightly tailored to research objectives. While researchers pursuing ecological or evolutionary objectives should consider multiple specific analyses, researchers in applied studies could focus on a fewer number of specific analyses. An improved consideration of plant defence, based on meaningful chemical analyses, could improve studies of plant resistance and allow us to predict novel or changing plant-herbivore interactions.


Assuntos
Herbivoria/fisiologia , Compostos Fitoquímicos/metabolismo , Plantas/química , Animais , Cervos , Evolução Molecular , Folhas de Planta/química , Folhas de Planta/metabolismo , Plantas/metabolismo , Coelhos , Terpenos/metabolismo
2.
Phys Chem Chem Phys ; 21(46): 25658-25668, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31725143

RESUMO

PrhA from Penicillium brasilianum and AusE from Aspergillus nidulans are nonheme Fe(ii)/α-ketoglutarate-dependent oxygenases, which are involved in the fungal meroterpenoid biosynthetic pathways. Both enzymes use preaustinoid A1 as a common substrate to form divergent products through dynamic skeletal rearrangement. Importantly, structure-guided mutagenesis results in the successful interconversion of AusE and PrhA functions, for example, the PrhA(V150L/A232S) double mutant carried out the same catalysis as AusE. Here, on the basis of the crystal structure of the PrhA (V150L/A232S) double mutant in complex with Fe(ii), αKG and the substrate preaustinoid A1, computational models were constructed, and combined quantum mechanics/molecular mechanics (QM/MM) calculations were performed to illuminate the reaction mechanism at the atomistic level. According to our calculation results, the whole reaction occurs on the quintet state surface. All three steps, including desaturation, ring rearrangement and hydroxylation, require three hydrogen abstractions by FeIV[double bond, length as m-dash]O to trigger the reaction. Owing to the relative position of FeIV[double bond, length as m-dash]O to the hydrogen atoms in the substrate to be extracted, the three H-abstractions correspond to different energy barriers, which are 17.9, 23.6 and 21.8 kcal mol-1, respectively. For the ring rearrangement, as soon as the H5 is extracted, the skeletal rearrangement is very easy. However, in the hydroxylation of intermediate preaustinoid A3, the final O-rebound corresponds to a high barrier, which is mainly caused by the long distance between the Fe-OH and -CH2 radical. It is the relative orientation of the substrate to the highly reactive FeIV[double bond, length as m-dash]O that controls the catalytic chemistry of these enzymes. The reaction barriers are sensitive to the geometry of FeIV[double bond, length as m-dash]OHx (Hx is the hydrogen atom to be extracted). These results may provide useful information for understanding the mechanisms of AusE and PrhA as well as other nonheme Fe(ii)/α-ketoglutarate-dependent oxygenases.


Assuntos
Aspergillus nidulans/química , Vias Biossintéticas , Mutação , Oxigenases/metabolismo , Penicillium/química , Teoria Quântica , Terpenos/metabolismo , Aspergillus nidulans/metabolismo , Biocatálise , Conformação Molecular , Oxigenases/química , Penicillium/metabolismo , Terpenos/química
3.
J Chem Ecol ; 45(11-12): 993-1003, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31755019

RESUMO

Terpenes, volatile plant secondary compounds produced by woody plants, have historically been thought to act as feeding deterrents for mammalian herbivores. However, three species of woodrats, Neotoma stephensi, N. lepida, and N. albigula, regularly consume juniper, which is high in terpenes, and N. stephensi and N. lepida are considered juniper specialists. By investigating the terpene profiles in Juniperus monosperma and J. osteosperma, which are browsed or avoided by woodrats in the field, and recording the caching and consumption of juniper foliage by woodrats in the lab, we have evidence that terpenes may serve as feeding and/or foraging cues. The obligate specialist N. stephensi chose to forage on trees higher in p-cymene and preferred to consume juniper rather than caching it in a laboratory setting. These observations provide evidence that terpenes serve as a feeding cue and that the obligate specialist's physiological mechanism for metabolizing the terpenes present in juniper may negate the need for caching. The facultative specialist N. lepida chose to forage on trees lower in four terpenes and cached more juniper than the obligate specialist N. stephensi, providing evidence that terpenes serve as a feeding deterrent for N. lepida and that this woodrat species relies on behavioral mechanisms to minimize terpene intake. The generalist N. albigula foraged on trees with higher terpenes levels but consumed the least amount of juniper in the lab and preferred to cache juniper rather than consume it, evidence that terpenes act as foraging but not feeding cues in the generalist. Our findings suggest that volatile plant secondary compounds can act as feeding and/or foraging cues and not just feeding deterrents in mammalian herbivores.


Assuntos
Juniperus/química , Terpenos/química , Terpenos/metabolismo , Animais , Peso Corporal , Ingestão de Alimentos/fisiologia , Feminino , Masculino , Avaliação Nutricional , Óleos Voláteis/química , Óleos Voláteis/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Coelhos , Roedores/metabolismo , Sigmodontinae/metabolismo , Especificidade da Espécie
4.
J Chem Ecol ; 45(11-12): 934-945, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31755021

RESUMO

The African citrus triozid, Trioza erytreae Del Guercio (Hemiptera: Triozidae) is one of the primary vectors of the bacterium Candidatus Liberibacter spp. which causes citrus greening, a disease of global economic importance in citrus production. Despite its economic importance, little is known about its chemical ecology. Here, we used behavioral assays and chemical analysis to study the chemical basis of interaction between T. erytreae and one of its preferred host plants, Citrus jambhiri. In dual choice Y-tube olfactometer assays, lemon leaf odors attracted females but not males compared to plain air or solvent controls. However, in a petri dish arena assay, both sexes were arrested by lemon leaf odors. Coupled gas chromatography-mass spectrometry (GC/MS) analysis revealed quantitative differences in the odors of flushing and mature leaves, dominated by terpenes. Twenty-six terpenes were identified and quantified. In Petri dish arena assays, synthetic blends of the most abundant terpenes mimicking lemon flushing leaf odors elicited varying behavioral responses from both sexes of T. erytreae. A nine-component blend and a blend of the three most abundant terpenes; limonene, sabinene and ß-ocimene arrested both sexes of T. erytreae. In contrast, a six-component blend lacking in these three components elicited an avoidance response in both sexes. Furthermore, both sexes of T. erytreae preferred the three-component synthetic blend to lemon crude volatile extract. These results suggest that lemon terpenes might be used in the management of T. erytreae.


Assuntos
Citrus/química , Hemípteros/fisiologia , Extratos Vegetais/química , Terpenos/química , Compostos Orgânicos Voláteis/química , Animais , Comportamento Animal , Citrus/parasitologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Insetos Vetores , Masculino , Odorantes , Doenças das Plantas/microbiologia , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo
5.
Chem Commun (Camb) ; 55(88): 13255-13258, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31621716

RESUMO

The products of three terpene synthases from two social amoebae, Dictyostelium discoideum and Dictyostelium purpureum, were identified, showing sesquiterpene synthase activity for one and diterpene synthase activity for the other two enzymes. Site-directed mutagenesis experiments revealed the importance of a newly identfied highly conserved residue for catalytic activity. For one of the enzyme products, ß-araneosene, a bromonium ion induced transannular cyclisation was investigated, yielding the first brominated derivatives of this diterpene.


Assuntos
Alquil e Aril Transferases/metabolismo , Dictyostelium/enzimologia , Terpenos/metabolismo , Alquil e Aril Transferases/biossíntese , Biocatálise , Estrutura Molecular , Terpenos/química
6.
Biochemistry (Mosc) ; 84(8): 963-977, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31522678

RESUMO

Cucumber target leaf spot (TLS) disease caused by Corynespora cassiicola has become one of the most important fungal foliar diseases of cultivated cucumbers. However, the defense mechanisms of cucumber plants (Cucumis sativus) against C. cassiicola are still poorly understood. Here, proteins from resistant cucumber plants were analyzed using iTRAQ (isobaric tags for relative and absolute quantification) method. A total of 286 differentially expressed proteins were identified (p < 0.05, ratio > 1.2 or < 0.83) 6 and 24 h after pathogen inoculation in the resistant cultivar Jinyou 38 (the data are available via ProteomeXchange; identifier, PXD012903). Some of the early responses to C. cassiicola infection were revealed, and four factors related to the resistance of cucumber plants to TLS were discovered. First, the proteomic approach revealed modulation of signaling pathways in resistant cucumber plants in response to C. cassiicola infection. Second, the plant immune system recognizes the pathogen and initiates expression of immune response proteins, including those related to plant defense, stress response, signal transduction, cell metabolism, and redox regulation. Third, C. cassiicola activates common stress response pathways; in particular, mildew resistance locus O (MLO) proteins were found to play a crucial role in the TLS prevention. Fourth, rapid activation of the carbohydrate and secondary metabolic pathways, modification and reinforcement of cell walls, and adjustment of the apoplastic environment to the highly stressful conditions were crucial in the cucumber resistance to TLS. Overall, our data contribute to the understanding of interactions between plants and their pathogens and provide new insight into molecular processes involved in the resistance of cucumber plants to disease.


Assuntos
Ascomicetos/patogenicidade , Cucumis sativus/metabolismo , Cucumis sativus/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/biossíntese , Proteínas de Ligação a Calmodulina , Parede Celular/metabolismo , Cromatografia por Troca Iônica , Bases de Dados de Proteínas , Resistência à Doença/fisiologia , Células Vegetais/metabolismo , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/isolamento & purificação , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , Terpenos/metabolismo
7.
Plant Sci ; 287: 110187, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31481200

RESUMO

Almond (Prunus dulcis) is an agricultural and economically important fruit tree from the Rosaceae family used in the food industry. The monoterpenes and sesquiterpenes perform important ecological functions such as insecticidal and antifeedant activities against various insects. The young fruits of the different almond varieties were found to produce considerable amounts of terpene volatiles, including linalool and geraniol. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, existing genome databases of the Rosaceae were screened for almond genes with significant sequence similarity to other plants TPSs. Bioinformatics analysis led to the identification of seven putative TPSs genes with complete open reading frames. We characterized the enzymes encoded by these seven complementary DNAs: the monoterpene synthases PdTPS1, PdTPS3, PdTPS5, and PdTPS6 belong to the TPS-b clade, which catalyzes the formation of ß-phellandrene, geraniol, linalool, and farnesene, respectively. The sesquiterpene synthases PdTPS2 and PdTPS4, which belong to the TPS-a clade mainly catalyze the formation of bergamotene, while another sesquiterpene synthase, PdTPS7, from the TPS-g clade showed nerolidol synthase activity. The qRT-PCR analysis revealed that the various tissues of almond varieties showed differential transcription for all these PdTPSs genes.


Assuntos
Alquil e Aril Transferases/metabolismo , Prunus dulcis/enzimologia , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , /metabolismo , Alquil e Aril Transferases/genética , Biologia Computacional , Frutas/enzimologia , Frutas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus dulcis/genética
8.
Planta ; 250(5): 1687-1702, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31414203

RESUMO

MAIN CONCLUSION: The study performed genome-wide identification, characterization and evolution analysis of gene clusters for phytoalexin terpenoid biosynthesis in tobacco, and specifically illustrated ones for capsidiol, an efficient defensive specialized metabolite. Terpenoid phytoalexins play an important role in plant self-defense against pest and pathogen attack. Terpenoid biosynthesis involves terpene synthase and cytochrome P450, which always locate and function as cluster(s). In this study, we performed genome-wide investigation of metabolic gene clusters involved in terpenoid production in tobacco (Nicotiana tabacum). Due to the complexity of the tobacco genome, we modified a published prediction pipeline to reduce the influence of the large number of repeats and to improve the annotation of tobacco genes with respect to their metabolic functions. We identified 1181 metabolic gene clusters with 34 of them potentially being involved in terpenoid biosynthesis. Through integration with transcriptome and metabolic pathway annotation analyses, 3 of the 34 terpenoid biosynthesis-related gene clusters were determined to be high-confidence ones, with 2 involved in biosynthesis of capsidiol, a terpenoid recognized as 1 of the effective resistance compounds in the Nicotiana species. The capsidiol-related gene cluster was conserved in N. sylvestris, N. tomentosiformis and N. attenuate. Our findings demonstrate that phytoalexins in tobacco can arise from operon-like gene clusters, a genomic pattern characterized as being beneficial for rapid stress response, gene co-regulation, co-function and co-heredity.


Assuntos
Alquil e Aril Transferases/metabolismo , Regulação da Expressão Gênica de Plantas , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Tabaco/genética , Transcriptoma , Alquil e Aril Transferases/genética , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tabaco/metabolismo
9.
Fitoterapia ; 138: 104293, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31398447

RESUMO

Herbal medicines (HMs) have attracted widespread attention because of their significant contributions to the prevention and treatment of many human diseases. Recently, gut microbiota has become an important frontier to understand the therapeutic mechanisms of medicines. Gut microbiota-mediated transformation is a microbial metabolic form after oral administrations of HMs compounds. A great number of studies showed that gut microbiota could transform some HMs compounds by the variation of chemical structures into several active metabolites, which exerted better bioavailabilities and therapeutic activities than their parent compounds. Among these HMs compounds, alkaloids, flavonoids, polyphenols and terpenoids were the representative ones. However, there is no systemic review focusing on the potential improved therapeutic activities of these natural compounds caused by gut microbial transformation. Here, this review summarizes the therapeutic activities that are more potent in microbial transformed metabolites than in their parent compounds (alkaloids, flavonoids, polyphenols and terpenoids) from HMs. We hope this review will be conducive to deepening the understanding of the relationship between gut microbial transformation and therapeutic activities of HMs compounds.


Assuntos
Alcaloides/metabolismo , Flavonoides/metabolismo , Microbioma Gastrointestinal , Preparações de Plantas/metabolismo , Polifenóis/metabolismo , Terpenos/metabolismo , Alcaloides/farmacologia , Disponibilidade Biológica , Flavonoides/farmacologia , Humanos , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Preparações de Plantas/farmacologia , Plantas Medicinais/química , Polifenóis/farmacologia , Terpenos/farmacologia
10.
Plant Physiol Biochem ; 142: 405-414, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31408844

RESUMO

Chamaecyparis formosensis (Cupressaceae) is among the most precious endemic conifers in Taiwan. Field study was conducted on seasonal variations in emission rates and compositions of terpenoids from this tree species of two different ages. A total of 21 terpenoids were detected, of which there were 13 monoterpenoids (MTs), 4 sesquiterpenoids (STs), and 4 diterpenoids (DTs). MTs dominated the emissions in both saplings and adult trees and produced more than 80% of terpene emissions. Contrasting seasonal pattern between saplings and adult trees was found. Total actual emissions from saplings were higher in cold seasons (range, 64.40 ±â€¯13.18 to 140.74 ±â€¯18.90 ng g-1 h-1) than in warm seasons (range, 55.63 ±â€¯15.84 to 63.48 ±â€¯11.85 ng g-1 h-1). Photosynthetically active radiation (PAR) was found to be the most important factor affecting terpene emissions from saplings. On the contrary, higher emissions were found in warm seasons for adult trees (range, 101.49 ±â€¯12.29 to 181.35 ±â€¯80.15 ng g-1 h-1), and the emissions were mainly in response to temperature. Some compounds in C. formosensis of both ages (e.g., ß-myrcene, α-terpinene, trans-ß-ocimene, terpinen-4-ol, α-cedrene and trans-ß-farnesene) showed comparably higher contents in cold seasons. Results presented here provide important fundamental information for better understanding of forest bathing and estimating air quality in Taiwan.


Assuntos
Chamaecyparis/metabolismo , Terpenos/metabolismo , Envelhecimento , Chamaecyparis/fisiologia , Diterpenos/metabolismo , Monoterpenos/metabolismo , Fotossíntese/fisiologia , Estações do Ano , Taiwan , Temperatura Ambiente
11.
Genes (Basel) ; 10(8)2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430866

RESUMO

Eucommia ulmoides has attracted much attention as a valuable natural rubber (Eu-rubber) production tree. As a strategic material, Eu-rubber plays a vital role in general and defence industries. However, the study of Eu-rubber biosynthesis at a molecular level is scarce, and the regulatory network between microRNAs (miRNAs) and messenger RNAs (mRNAs) in Eu-rubber biosynthesis has not been assessed. In this study, we comprehensively analyzed the transcriptomes, small RNAs (sRNAs) and degradome to reveal the regulatory network of Eu-rubber biosynthesis in E. ulmoides. A total of 82,065 unigenes and 221 miRNAs were identified using high-throughput sequencing; 20,815 targets were predicted using psRNATarget software. Of these targets, 779 miRNA-target pairs were identified via degradome sequencing. Thirty-one miRNAs were differentially expressed; 22 targets of 34 miRNAs were annotated in the terpenoid backbone biosynthesis pathway (ko00900) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG). These miRNAs were putatively related to Eu-rubber biosynthesis. A regulatory network was constructed according to the expression profiles of miRNAs and their targets. These results provide a comprehensive analysis of transcriptomics, sRNAs and degradome to reveal the Eu-rubber accumulation, and provide new insights into genetic engineering techniques which may improve the content of Eu-rubber in E. ulmoides.


Assuntos
Eucommiaceae/genética , Látex/biossíntese , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma , Eucommiaceae/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Terpenos/metabolismo
12.
Insect Biochem Mol Biol ; 113: 103212, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31425853

RESUMO

Larvae of the leaf beetle Phaedon cochleariae synthesize the iridoid chysomelidial via the mevalonate pathway to repel predators. The normal terpenoid biosynthesis is integrated into the dedicated defensive pathway by the ω-hydroxylation of geraniol to (2E,6E)-2,6-dimethylocta-2,6-diene-1,8-diol (ω-OH-geraniol). Here we identify and characterize the P450 monooxygenase CYP6BH5 as the geraniol hydroxylase using integrated transcriptomics, proteomics and RNA interference (RNAi). In the fat body, 73 cytochrome P450s were identified, and CYP6BH5 was among those that were expressed specifically in fat body. Double stranded RNA mediated knockdown of CYP6BH5 led to a significant reduction of ω-hydroxygeraniol glucoside in the hemolymph and, later, of the chrysomelidial in the defensive secretion. Heterologously expressed CYP6BH5 converted geraniol to ω-OH-geraniol. In addition to geraniol, CYP6BH5 also catalyzes hydroxylation of other monoterpenols, such as nerol and citronellol to the corresponding α,ω-dihydroxy compounds.


Assuntos
/metabolismo , Besouros/genética , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética , Terpenos/metabolismo , Animais , Besouros/enzimologia , Besouros/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Proteínas de Insetos/metabolismo , Iridoides/metabolismo , Larva/enzimologia , Larva/genética
13.
Genes (Basel) ; 10(8)2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426352

RESUMO

Among the Lamiaceae family, the genus Thymus is an economically important genera due to its medicinal and aromatic properties. Most Thymus molecular research has focused on the determining the phylogenetic relationships between different species, but no published work has focused on the evolution of the transcriptome across the genus to elucidate genes involved in terpenoid biosynthesis. Hence, in this study, the transcriptomes of five different Thymus species were generated and analyzed to mine putative genes involved in thymol and carvacrol biosynthesis. High-throughput sequencing produced ~43 million high-quality reads per sample, which were assembled de novo using several tools, then further subjected to a quality evaluation. The best assembly for each species was used as queries to search within the UniProt, KEGG (Kyoto Encyclopedia of Genes and Genomes), COG (Clusters of Orthologous Groups) and TF (Transcription Factors) databases. Mining the transcriptomes resulted in the identification of 592 single-copy orthogroups used for phylogenetic analysis. The data showed strongly support a close genetic relationship between Thymus vulgaris and Thymus daenensis. Additionally, this study dates the speciation events between 1.5-2.1 and 9-10.2 MYA according to different methodologies. Our study provides a global overview of genes related to the terpenoid pathway in Thymus, and can help establish an understanding of the relationship that exists among Thymus species.


Assuntos
Thymus (Planta)/genética , Transcriptoma , Especiação Genética , Filogenia , Polimorfismo Genético , Terpenos/metabolismo , Thymus (Planta)/classificação
14.
BMC Plant Biol ; 19(1): 337, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375064

RESUMO

BACKGROUND: Cymbidium goeringii belongs to the Orchidaceae, which is one of the most abundant angiosperm families. Cymbidium goeringii consist with high economic value and characteristics include fragrance and multiple flower colors. Floral scent is one of the important strategies for ensuring fertilization. However, limited genetic data is available in this non-model plant, and little known about the molecular mechanism responsible for floral scent in this orchid. Transcriptome and expression profiling data are needed to identify genes and better understand the biological mechanisms of floral scents in this species. Present transcriptomic data provides basic information on the genes and enzymes related to and pathways involved in flower secondary metabolism in this plant. RESULTS: In this study, RNA sequencing analyses were performed to identify changes in gene expression and biological pathways related scent metabolism. Three cDNA libraries were obtained from three developmental floral stages: closed bud, half flowering stage and full flowering stage. Using Illumina technique 159,616,374 clean reads were obtained and were assembled into 85,868 final unigenes (average length 1194 nt), 33.85% of which were annotated in the NCBI non redundant protein database. Among this unigenes 36,082 were assigned to gene ontology and 23,164 were combined with COG groups. Total 33,417 unigenes were assigned in 127 pathways according to the Kyoto Encyclopedia of Genes and Genomes pathway database. According these transcriptomic data we identified number of candidates genes which differentially expressed in different developmental stages of flower related to fragrance biosynthesis. In q-RT-PCR most of the fragrance related genes highly expressed in half flowering stage. CONCLUSIONS: RNA-seq and DEG data provided comprehensive gene expression information at the transcriptional level that could be facilitate the molecular mechanisms of floral biosynthesis pathways in three developmental phase's flowers in Cymbidium goeringii, moreover providing useful information for further analysis on C. goeringii, and other plants of genus Cymbidium.


Assuntos
Flores/metabolismo , Genes de Plantas/genética , Odorantes , Orchidaceae/genética , Acetatos/metabolismo , Ciclopentanos/metabolismo , Farneseno Álcool/metabolismo , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Orchidaceae/metabolismo , Oxilipinas/metabolismo , Filogenia , Análise de Sequência de RNA , Sesquiterpenos/metabolismo , Terpenos/metabolismo
15.
Plant Mol Biol ; 101(3): 297-313, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31368003

RESUMO

KEY MESSAGE: An enzyme is crucial for the formation of Hedychium coronarium scent and defense responses, which may be responsible for the biosynthesis of allo-ocimene in H. coronarium. Hedychium coronarium can emit a strong scent as its main scent constituents are monoterpenes and their derivatives. Among these derivatives, allo-ocimene is not only a very important volatile substance in flower aroma, but is also crucial to plant defense. However, the molecular mechanism of allo-ocimene biosynthesis has not been characterized in plants. In this study, a new alcohol dehydrogenase gene, HcADH, was cloned. The amino acid sequences encoded by HcADH contained the most conserved motifs of short chain alcohol dehydrogenase/reductases (SDRs), which included NAD+ binding domain, TGxxx[AG]xG and active site YxxxK. Real-time PCR analyses showed that the HcADH was highly expressed in the outer labellum but was almost undetectable in vegetative organs. The change in its expression level in petals was positively correlated with the emission pattern of allo-ocimene during flower development. HcADH expression coincides also the release level of allo-ocimene among different Hedychium species. Although HcADH is not expressed in the leaves, HcADH expression and allo-ocimene release in leaves can be induced by mechanical wounding or methyl jasmonate (MeJA) treatment. In addition, the expression of HcADH induced by mechanical wounding can be prevented by acetylsalicylic acid, a jasmonic acid biosynthesis inhibitor, suggesting that jasmonic acid might participate in the transmission of wounding signals. Using the Barley stripe mosaic virus (BSMV)-VIGS method, it was found that BSMV:HcADH335 inoculation was able to down-regulate HcADH expression, decreasing only the release of allo-ocimene in flowers while the content of other volatile substances did not decrese. In vitro characterization showed that recombinant HcADH can catalyze geraniol into citral, and citral is an intermediate of allo-ocimene biosynthesis. HcADH may be responsible for the biosynthesis of allo-ocimene in H. coronarium, which is crucial for the formation of H. coronarium scent and defense function.


Assuntos
Proteínas de Plantas/metabolismo , Polienos/metabolismo , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Zingiberaceae/enzimologia , Acetatos/metabolismo , Ciclopentanos/metabolismo , Flores/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Redutases-Desidrogenases de Cadeia Curta/genética , Transdução de Sinais , Terpenos/metabolismo , Zingiberaceae/genética
16.
Chemosphere ; 233: 843-851, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31340410

RESUMO

The bioremediation efficiency of petroleum hydrocarbons in natural soil-water systems is regulated by active microbial populations and other system parameters. Relevant factors include the transfer rate of petroleum contaminants from a medium into microorganisms, the partitioning behavior of contaminants from water into the soil organic matter (SOM), and the influence of the dissolved organic matter (DOM) on the contaminant level in water. The objectives of this study was aimed to determine the correlation among bioavailability of petroleum hydrocarbons, SOM content, and DOM level in soil-water systems. Heptadecane, pristane, and decylcyclohexane were selected as model hydrocarbon contaminants. The bioavailability of target contaminants in soil was examined using soils of different SOM contents (2% and 20%) in slurry bioreactors. In addition, the contaminant bioavailability as affected by various DOM levels (0-100 mgC/L) was also examined. The results showed that the SOM content affected the degrading rate of hydrocarbons significantly, where the rate constant was 4 times higher in 2% SOM microcosm than in the 20% SOM bioreactor for heptadecane degradation. Similarly, the pristane degrading efficiency after 240 h operation was 95% for the 2% SOM microcosm and only 38% for the 20% SOM microcosm. The hydrocarbon degradation rates in water phase were found to be enhanced by the added DOM level. A positive correlation existed between the contaminant bioavailability and the contaminant level in water as impacted by the SOM content in soil and the DOM level in water.


Assuntos
Alcanos/metabolismo , Cicloexanos/metabolismo , Gordonia (Bactéria)/metabolismo , Petróleo/metabolismo , Poluentes do Solo/análise , Terpenos/metabolismo , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Disponibilidade Biológica , Reatores Biológicos/microbiologia , Solo/química , Microbiologia do Solo , Água/química
17.
Food Chem ; 299: 125101, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31323442

RESUMO

Terpenes and their derivatives, terpenoids, are important biomarkers of grape quality as they contribute to flavor and aroma of grape and wine. The evolution of terpene and terpenoids throughout grapevine phenological development cycles is not well understood. The current study investigated the volatile profiles of free terpene and terpenoid of five widely grown Vitis vinifera L. cultivars (Shiraz, Cabernet Sauvignon, Riesling, Chardonnay and Pinot Gris), at different phenological stages from fruit-set to harvest. 17 Monoterpenoids, 3 norisoprenoid and 13 sesquiterpenoids were identified and quantified. Discriminant analysis revealed that for each grape cultivar, free terpene profiles at different E-L stages were distinctive. When integrating total sugar, total terpenes and the cumulated heat index, it could be found that flavor ripening was more consistent with sugar ripening in the warmer vintage 2016. Comparing the two red wine varieties, the overall development patterns of total monoterpenes, norisoprenoids and sesquiterpenes were similar.


Assuntos
Terpenos/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Austrália , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Norisoprenoides/análise , Norisoprenoides/metabolismo , Sesquiterpenos/análise , Sesquiterpenos/metabolismo , Especificidade da Espécie , Terpenos/análise , Compostos Orgânicos Voláteis/análise , Vinho/análise
18.
Molecules ; 24(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31324047

RESUMO

Quinoa (Chenopodium quinoa Willd.) was known as the "golden grain" by the native Andean people in South America, and has been a source of valuable food over thousands of years. It can produce a variety of secondary metabolites with broad spectra of bioactivities. At least 193 secondary metabolites from quinoa have been identified in the past 40 years. They mainly include phenolic acids, flavonoids, terpenoids, steroids, and nitrogen-containing compounds. These metabolites exhibit many physiological functions, such as insecticidal, molluscicidal and antimicrobial activities, as well as various kinds of biological activities such as antioxidant, cytotoxic, anti-diabetic and anti-inflammatory properties. This review focuses on our knowledge of the structures, biological activities and functions of quinoa secondary metabolites. Biosynthesis, development and utilization of the secondary metabolites especially from quinoa bran were prospected.


Assuntos
Chenopodium quinoa/química , Chenopodium quinoa/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Metabolismo Secundário , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/farmacologia , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Hidroxibenzoatos/farmacologia , Compostos Fitoquímicos/metabolismo , Relação Estrutura-Atividade , Terpenos/química , Terpenos/metabolismo , Terpenos/farmacologia
19.
Food Chem ; 299: 125138, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31302430

RESUMO

As an environmentally friendly approach for fruit quality improvement, the effect of preharvest UV-C on the physiology of strawberry fruit during postharvest storage remains to be assessed. Strawberry fruit developed with supplementary UV-C were stored at room temperature for 2 weeks. Preharvest UV-C attenuated fruit postharvest senescence and altered phytochemicals composition. Higher ester titer was found in the treated fruit at harvest, whereas higher terpene and furanone contents were detected after 72 h of storage. At harvest, polyphenolics accumulated to a higher level in UV-C group, but the difference disappeared after 24 h of storage. Meanwhile, the intrinsic level of abscisic acid and the expressions of FaPYR1, SnRK2, and FaASR in the UV-C-treated fruit was enhanced at harvest but returned to a lower level as storage proceeded. This study highlights the time-dependent effect of preharvest UV-C on strawberry fruit postharvest biochemical indexes and the possible involvement of abscisic acid signaling factors.


Assuntos
Ácido Abscísico/metabolismo , Armazenamento de Alimentos/métodos , Fragaria/fisiologia , Frutas/fisiologia , Compostos Fitoquímicos/metabolismo , Ácido Abscísico/genética , Fragaria/química , Fragaria/efeitos da radiação , Frutas/química , Frutas/metabolismo , Frutas/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Compostos Fitoquímicos/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polifenóis/análise , Polifenóis/metabolismo , Terpenos/análise , Terpenos/metabolismo , Raios Ultravioleta
20.
BMC Plant Biol ; 19(1): 313, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307374

RESUMO

BACKGROUND: Essential oils (EOs) of Lavandula angustifolia, mainly consist of monoterpenoids and sesquiterpenoids, are of great commercial value. The multi-flower spiciform thyrse of lavender not only determines the output of EOs but also reflects an environmental adaption strategy. With the flower development and blossom in turn, the fluctuation of the volatile terpenoids displayed a regular change at each axis. However, the molecular mechanism underlying the regulation of volatile terpenoids during the process of flowering is poorly understood in lavender. Here, we combine metabolite and RNA-Seq analyses of flowers of five developmental stages at first- and second-axis (FFDSFSA) and initial flower bud (FB0) to discover the active terpenoid biosynthesis as well as flowering-related genes. RESULTS: A total of 56 mono- and sesquiterpenoids were identified in the EOs of L. angustifolia 'JX-2'. FB0' EO consists of 55 compounds and the two highest compounds, ß-trans-ocimene (20.57%) and (+)-R-limonene (17.00%), can get rid of 74.71 and 78.41% aphids in Y-tube olfactometer experiments, respectively. With sequential and successive blossoms, temporally regulated volatiles were linked to pollinator attraction in field and olfaction bioassays. In three characteristic compounds of FFDSFSA' EOs, linalyl acetate (72.73%) and lavandulyl acetate (72.09%) attracted more bees than linalool (45.35%). Many transcripts related to flowering time and volatile terpenoid metabolism expressed differently during the flower development. Similar metabolic and transcriptomic profiles were observed when florets from the two axes were maintained at the same maturity grade. Besides both compounds and differentially expressed genes were rich in FB0, most volatile compounds were significantly correlated with FB0-specific gene module. Most key regulators related to flowering and terpenoid metabolism were interconnected in the subnetwork of FB0-specific module, suggesting the cross-talk between the two biological processes to some degree. CONCLUSIONS: Characteristic compounds and gene expression profile of FB0 exhibit ecological value in pest control. The precise control of each-axis flowering and regular emissions at transcriptional and metabolic level are important to pollinators attraction for lavender. Our study sheds new light on lavender maximizes its fitness from "gene-volatile terpenoid-insect" three layers.


Assuntos
Flores/genética , Redes Reguladoras de Genes , Lavandula/genética , Terpenos/metabolismo , Acetatos/metabolismo , Animais , Ecossistema , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Insetos , Lavandula/crescimento & desenvolvimento , Lavandula/metabolismo , Monoterpenos/metabolismo , Odorantes , Óleos Voláteis/metabolismo , Óleos Vegetais/metabolismo , Polinização , RNA de Plantas , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA