Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.441
Filtrar
1.
J Enzyme Inhib Med Chem ; 35(1): 21-30, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619095

RESUMO

Trypanosoma cruzi carbonic anhydrase (TcCA) has recently emerged as an interesting target for the design of new compounds to treat Chagas disease. In this study we report the results of a structure-based virtual screening campaign to identify novel and selective TcCA inhibitors. The combination of properly validated computational methodologies such as comparative modelling, molecular dynamics and docking simulations allowed us to find high potency hits, with KI values in the nanomolar range. The compounds also showed trypanocidal effects against T. cruzi epimastigotes and trypomastigotes. All the candidates are selective for inhibiting TcCA over the human isoform CA II, which is encouraging in terms of possible therapeutic safety and efficacy.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Doença de Chagas/tratamento farmacológico , Ciclamatos/farmacologia , Tripanossomicidas/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Doença de Chagas/metabolismo , Ciclamatos/síntese química , Ciclamatos/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
2.
J Enzyme Inhib Med Chem ; 35(1): 199-210, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31752556

RESUMO

Previous reports have validated the glycogen synthase kinase-3 (GSK-3) as a druggable target against the human protozoan parasite Leishmania. This prompted us to search for new leishmanicidal scaffolds as inhibitors of this enzyme from our in-house library of human GSK-3ß inhibitors, as well as from the Leishbox collection of leishmanicidal compounds developed by GlaxoSmithKline. As a result, new leishmanicidal inhibitors acting on Leishmania GSK-3 at micromolar concentrations were found. These inhibitors belong to six different chemical classes (thiadiazolidindione, halomethylketone, maleimide, benzoimidazole, N-phenylpyrimidine-2-amine and oxadiazole). In addition, the binding mode of the most active compounds into Leishmania GSK-3 was approached using computational tools. On the whole, we have uncovered new chemical scaffolds with an appealing prospective in the development and use of Leishmania GSK-3 inhibitors against this infectious protozoan.


Assuntos
Antiprotozoários/farmacologia , Descoberta de Drogas , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Leishmania/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Leishmania/citologia , Leishmania/enzimologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
3.
Rev Bras Parasitol Vet ; 28(4): 644-651, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31800886

RESUMO

This study aimed to evaluate the anthelmintic activity of Eucalyptus citriodora essential oil and citronellal on sheep gastrointestinal nematodes. Essential oil composition was determined by gas chromatography mass spectrometry. The substances were evaluated in vitro using adult worm motility test (AWMT) and transmission electron microscopy (TEM). The acute toxicity test in mice and the fecal egg count reduction test (FECRT) in sheep were performed. Citronellal was confirmed as the essential oil major constituent (63.9%). According to the AWMT, 2 mg/mL of essential oil and citronellal completely inhibited Haemonchus contortus motility at 6 h post exposure. H. contortus exposed to essential oil and citronellal exhibited internal ultrastructural modifications. The lethal dose 50 values in mice were 5,000 and 2,609 mg/kg for essential oil and citronellal, respectively. E. citriodora essential oil reduced sheep epg at 14 days post treatment by 69.5% (P<0.05). No significant differences were observed in epg between the citronellal and negative control groups (P>0.05). The interaction between citronellal and other constituents in the essential oil may be relevant for its in vivo anthelmintic activity. Thus, E. citriodora essential oil and citronellal pharmacokinetic studies may help elucidate the anthelmintic activity of these compounds.


Assuntos
Anti-Helmínticos/farmacologia , Eucalyptus/química , Hemoncose/veterinária , Haemonchus/efeitos dos fármacos , Óleos Voláteis/farmacologia , Doenças dos Ovinos/parasitologia , Ovinos/parasitologia , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Hemoncose/parasitologia , Haemonchus/isolamento & purificação , Haemonchus/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Óleos Voláteis/isolamento & purificação , Contagem de Ovos de Parasitas , Testes de Sensibilidade Parasitária
4.
Rev Bras Parasitol Vet ; 28(4): 700-707, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31800888

RESUMO

The aim here is to present data on the efficacy of anthelmintics in sheep flocks in Rio de Janeiro, Brazil, and to discuss the interpretation of the fecal egg count reduction test (FECRT) for each nematode genus. Fecal eggs counts and pre- and post-treatment coprocultures were performed, the former to evaluate the efficacy of and the latter to determine the overall parasite prevalence. An additional efficacy test was performed at Farm # 1 a year after the initial test. Severe anthelmintic resistance was found for the flocks, with no FECRT sensitivity at any of the 22 farms evaluated. However, an analysis of the infective larvae showed that some drugs were effective against certain parasitic genera; i.e., levamisole was more effective against Haemonchus spp. and moxidectin against Trichostrongylus spp. In the additional FECRT performed at Farm # 1, moxidectin and nitroxynil were ineffective separately, but when applied in combination they were highly effective due to their efficacy against Haemonchus (nitroxynil) and Trichostrongylus (moxidectin), respectively. The use of the FECRT targeting the parasitic nematode species prevalent on farms may make it possible to choose more effective anthelmintics.


Assuntos
Anti-Helmínticos/uso terapêutico , Fezes/parasitologia , Nematoides/efeitos dos fármacos , Contagem de Ovos de Parasitas , Doenças dos Ovinos/parasitologia , Animais , Anti-Helmínticos/farmacologia , Resistência a Medicamentos , Nematoides/classificação , Nematoides/isolamento & purificação , Testes de Sensibilidade Parasitária , Ovinos
5.
Artigo em Inglês | MEDLINE | ID: mdl-31778389

RESUMO

Strongyloidiasis is a human parasitic disease caused by the helminth Strongyloides stercoralis whose treatment is particularly difficult in immunosuppressed patients due to their low responsiveness to conventional therapy. Carica papaya and its isolated compounds benzyl isothiocyanate, carpaine and carpasemine are promising compound for the treatment of Strongyloides infections due to their anthelmintic action. This study aims to examine the in vitro ovicidal and larvicidal activity of C. papaya seed hexane extract against Strongyloides venezuelensis, using egg hatching tests and larval motility tests as efficiency markers. The crude extract at the concentrations of 566 - 0.0566 mg/mL or the control with albendazole (0.025 mg/mL) and negative controls (water and PBS) were incubated with an equal volume of egg suspension (± 50 specimens) followed by counting of the specimens after 48 h. The same extract and dilutions were added to L3 larvae suspensions (±50 specimens) followed by analysis of larvae viability after 24, 48, and 72 h. The extract inhibited egg hatching with high efficiency at concentrations of 56.6 mg/mL (95.74%) and 5.66 mg/mL (92.16%). At the concentrations of 566 mg/mL (100%) and 56.66 mg/mL (97.32%), the extract inhibited larval motility as effectively as ivermectin (0.316 mg/mL; 100%), and more effectively than the other dilutions and the negative controls. The larvicidal effect depended on the extract concentration, but not on the treatment period. Therefore, C. papaya seed hexane extract has anthelmintic potential against S. venezuelensis and is a promising compound for the development of phytotherapies to treat strongyloidiasis.


Assuntos
Carica/química , Larva/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes/química , Strongyloides/efeitos dos fármacos , Animais , Testes de Sensibilidade Parasitária
6.
Eur J Med Chem ; 183: 111688, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542714

RESUMO

Leishmania braziliensis is one of the pathogenic agents of cutaneous and mucocutanoeous leishmaniasis. There are no validated vaccines to prevent the infection and the treatment relies on drugs that often present severe side effects, which justify the efforts to find new potential antileishmanial drugs. An alternative to promote the discovery of new drugs would be the association of different chemical groups of bioactive compounds. Here we describe the synthesis and bioactivity evaluation against L. braziliensis of cinnamic acid derivatives possessing isobenzofuranone and 1,2,3-triazole functionalities. We tested 25 compounds at 10 µM concentration against extracellular promastigotes and intracellular amastigotes during macrophage infection. Most compounds were more active against amastigotes than to promastigotes. The derivatives (E)-3-oxo-1,3-dihydroisobenzofuran-5-yl-(3,4,5-trimethoxy) cinnamate (5c), (1-(3,4-difluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl cinnamate (9g), and (1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl cinnamate (9l) were the most effective presenting over 80% toxicity on L. braziliensis amastigotes. While compound 5c is a cinnamate with an isobenzofuranone portion, 9g and 9l are triazolic cinnamic acid derivatives. The action of these compounds was comparable to amphotericin B used as positive control. Ultrastructural analysis revealed that 5c-treated parasites showed impaired cytokinesis and apoptosis triggering. Taken together, these results highlight the potential of cinnamic acid derivatives in development of novel anti-leishmanial drugs.


Assuntos
Antineoplásicos/farmacologia , Cinamatos/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Cinamatos/síntese química , Cinamatos/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
7.
Chem Biodivers ; 16(11): e1900359, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31544347

RESUMO

The objective of this study was to evaluate the chemical composition, and the trypanocidal and antibacterial activities of the essential oils from four species of Annonaceae: Bocageopsis multiflora (Mart.) R.E.Fr., Duguetia quitarensis Benth., Fusaea longifolia (Aubl.) Saff., and Guatteria punctata (Aubl.) R.A.Howard. The chemical composition of the essential oils from the aerial parts yielded 23, 20, 21 and 23 constituents, respectively, which were identified by GC/MS. The trypanocidal activity was evaluated against the amastigote and trypomastigote forms of T. cruzi. The antibacterial activity was evaluated by the microdilution method against enterohemorrhagic Escherichia coli, Pseudomonas aeruginosa, Streptococcus mutans, Streptococcus pyogenes, and methicillin-resistant Staphylococcus aureus. The results of trypanocidal activity showed that the essential oils of the four species were active at the tested concentrations, with G. punctata essential oil being the most active, with IC50 =0.029 µg/mL, and selectivity index (SI)=32, being 34 times more active than the reference drug benznidazole. All EOs showed strong antibacterial activity (minimum inhibitory concentrations of 4.68-37.5 µg/mL) against strains of S. mutans.


Assuntos
Annonaceae/química , Antibacterianos/farmacologia , Óleos Voláteis/farmacologia , Tripanossomicidas/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Testes de Sensibilidade Parasitária , Pseudomonas aeruginosa/efeitos dos fármacos , Especificidade da Espécie , Streptococcus mutans/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação , Trypanosoma cruzi/efeitos dos fármacos
9.
Curr Top Med Chem ; 19(14): 1201-1225, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509099

RESUMO

The significant spread of helminth and protozoan infections, the uncontrolled intake of the known drugs by a large population, the emergence of resistant forms of pathogens have prompted people to search for alternative drugs. In this review, we have focused attention on structures and synthesis of peroxides active against parasites causing neglected tropical diseases and toxoplasmosis. To date, promising active natural, semi-synthetic and synthetic peroxides compounds have been found.


Assuntos
Produtos Biológicos/farmacologia , Brugia Malayi/efeitos dos fármacos , Helmintos/efeitos dos fármacos , Doenças Negligenciadas/tratamento farmacológico , Peróxidos/farmacologia , Toxoplasmose/tratamento farmacológico , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Conformação Molecular , Testes de Sensibilidade Parasitária , Peróxidos/síntese química , Peróxidos/química
10.
Rev Bras Parasitol Vet ; 28(4): 807-811, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31483032

RESUMO

Gastrointestinal Nematode Infection (GIN) are the main constraint to the production of small ruminants. Studies of medicinal plants have been an important alternative in the effort to control these parasites. Therefore, the purpose of this study was to evaluate the in vitro ovicidal and larvicidal activity of essential oil of Rosmarinus officinalis. The oil was extracted, analyzed by gas chromatography and tested on GIN eggs and larvae in six concentrations, 227.5mg/mL, 113.7mg/mL, 56.8mg/mL, 28.4mg/mL, 14.2mg/mL and 7.1mg/mL. To determine the ovicidal activity, GIN eggs were recovered from sheep feces and incubated for 48h with different concentrations of the oil. For the evaluation of larval migration, third-stage larvae (L3) were obtained by fecal culture, and associated with the essential oil for 24h at the same concentrations, after which they were left for another 24 hours on microsieves, followed by the count of migrating and non-migrating larvae. The assays of R. officinalis oil showed a significant (p<0.05) 97.4% to 100% inhibition of egg hatching and a significant (p<0.05) 20% to 74% inhibition of larval migration. The main constituent revealed by gas chromatography was Eucalyptol. The results indicate that R. officinalis essential oil has ovicidal and larvicidal activity on sheep GINs.


Assuntos
Larva/efeitos dos fármacos , Nematoides/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óvulo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rosmarinus/química , Ovinos/parasitologia , Animais , Cromatografia Gasosa , Relação Dose-Resposta a Droga , Nematoides/isolamento & purificação , Óleos Voláteis/isolamento & purificação , Testes de Sensibilidade Parasitária
11.
Eur J Med Chem ; 182: 111632, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31499363

RESUMO

ß-amino acids and their analogues are gathering increased attention not only because of their antibacterial and antifungal activity, but also for their use in designing peptidomimetics with increased oral bioavailability and resistance to metabolic degradation. In this study, a series of α-phenyl substituted chalcones, α-phenyl, ß-amino substituted dihydrochalcones and ß-amino acid derivatives were synthesized and evaluated for their antileishmanial efficacy against experimental visceral leishmaniasis (VL). Among all synthesized derivatives, 10c showed promising antileishmanial efficacy against both extracellular promastigote and intracellular amastigote (IC50 8.2 µM and 20.5 µM respectively) of L. donovani with negligible cytotoxic effect towards J774 macrophages and Vero cells. 10c effectively reduced spleen and liver parasite burden (>90%) in both hamster and Balb/c model of VL without any hepatotoxicity. In vitro pharmacokinetic analysis showed that 10c was stable in gastric fluid and plasma of Balb/c mice at 10 µg/ml. Further analysis of the molecular mechanism revealed that 10c entered into the parasite by depolarizing the plasma membrane rather than forming nonspecific pores and induced molecular events like loss in mitochondrial membrane potential with a gradual decline in ATP production. This, in turn, did not induce programmed cell death of the parasite; rather 10c induced bioenergetic collapse of the parasite by decreasing ATP synthesis through specific inhibition of mitochondrial complex III activity. Altogether, our results allude to the therapeutic potential of ß-amino acid derivatives as novel antileishmanials, identifying them as lead compounds for further exploration in the design of potent candidates for the treatment of visceral leishmaniasis.


Assuntos
Aminoácidos/farmacologia , Antiprotozoários/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Aminoácidos/química , Animais , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Relação Dose-Resposta a Droga , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Leishmania donovani/metabolismo , Leishmaniose Visceral/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Células Vero
12.
Pestic Biochem Physiol ; 159: 51-58, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31400784

RESUMO

Isoquinoline alkaloids possess broad pharmacological activities. In this study, the antifungal activity of twelve isoquinoline alkaloids, including berberine (1), jatrorrhizine (2), coptisine (3), corydaline (4), tetrahydroberberine (5), chelidonine (6), dihydrosanguinarine (7), chelerythrine (8), sanguinarine (9), palmatine (10), tetrahydropalmatine (11) and columbamine (12) were evaluated against eight plant pathogenic fungi in vitro. All the tested compounds showed varying degrees of inhibition against the eight tested plant fungi. Among them, sanguinarine exhibited high antifungal activity (EC50 ranging from 6.96-59.36 µg/mL). It displayed the best inhibitory activity against Magnaporthe oryzae (EC50 = 6.96 µg/mL), compared with azoxystrobin (EC50 = 12.04 µg/mL), and significantly suppressed spore germination of M. oryzae with the inhibition rate reaching 100% (50 µg/mL). The optical microscopy and scanning electron microscopy observations revealed that after treating M. oryzae mycelia with sanguinarine at 10 µg/mL, the mycelia appeared curved, collapsed and the cell membrane integrity was eventually damaged. Furthermore, the reactive oxygen species production, mitochondrial membrane potential and nuclear morphometry of mycelia had been changed, and the membrane function and cell proliferation of mycelia were destroyed. These results will enrich our insights into action mechanisms of antifungal activity of sanguinarine against M. oryzae.


Assuntos
Alcaloides/farmacologia , Antifúngicos/farmacologia , Benzofenantridinas/farmacologia , Isoquinolinas/farmacologia , Berberina/análogos & derivados , Berberina/farmacologia , Alcaloides de Berberina/farmacologia , Magnaporthe/metabolismo , Magnaporthe/patogenicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Espécies Reativas de Oxigênio/metabolismo
13.
Molecules ; 24(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398901

RESUMO

The unique stereoelectronic properties of sp2-iminosugars enable their participation in glycosylation reactions, thereby behaving as true carbohydrate chemical mimics. Among sp2-iminosugar conjugates, the sp2-iminosugar glycolipids (sp2-IGLs) have shown a variety of interesting pharmacological properties ranging from glycosidase inhibition to antiproliferative, antiparasitic, and anti-inflammatory activities. Developing strategies compatible with molecular diversity-oriented strategies for structure-activity relationship studies was therefore highly wanted. Here we show that a reaction sequence consisting in stereoselective C-allylation followed by thiol-ene "click" coupling provides a very convenient access to α-C-glycoside sp2-IGLs. Both the glycone moiety and the aglycone tail can be modified by using sp2-iminosugar precursors with different configurational profiles (d-gluco or d-galacto in this work) and varied thiols, as well as by oxidation of the sulfide adducts (to the corresponding sulfones in this work). A series of derivatives was prepared in this manner and their glycosidase inhibitory, antiproliferative and antileishmanial activities were evaluated in different settings. The results confirm that the inhibition of glycosidases, particularly α-glucosidase, and the antitumor/leishmanicidal activities are unrelated. The data are also consistent with the two later activities arising from the ability of the sp2-IGLs to interfere in the immune system response in a cell line and cell context dependent manner.


Assuntos
Química Click , Glicolipídeos/síntese química , Glicolipídeos/farmacologia , Glicosídeos/química , Imino Açúcares/química , Compostos de Sulfidrila/química , Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicolipídeos/química , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Humanos , Testes de Sensibilidade Parasitária
14.
Mem Inst Oswaldo Cruz ; 114: e190054, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31411308

RESUMO

BACKGROUND: The central repetitive region (CRR) of the Plasmodium vivax circumsporozoite surface protein (CSP) is composed of a repetitive sequence that is characterised by three variants: VK210, VK247 and P. vivax-like. The most important challenge in the treatment of P. vivax infection is the possibility of differential response based on the parasite genotype. OBJECTIVES: To characterise the CSP variants in P. vivax isolates from individuals residing in a malaria-endemic region in Brazil and to profile these variants based on sensitivity to chloroquine and mefloquine. METHODS: The CSP variants were determined by sequencing and the sensitivity of the P. vivax isolates to chloroquine and mefloquine was determined by Deli-test. FINDINGS: Although five different allele sizes were amplified, the sequencing results showed that all of the isolates belonged to the VK210 variant. However, we observed substantial genetic diversity in the CRR, resulting in the identification of 10 different VK210 subtypes. The frequency of isolates that were resistant to chloroquine and mefloquine was 11.8 and 23.8%, respectively. However, we did not observe any difference in the frequency of the resistant isolates belonging to the VK210 subtypes. MAIN CONCLUSION: The VK210 variant is the most frequently observed in the studied region and there is significant genetic variability in the CRR of the P. vivax CSP. Moreover, the antimalarial drug sensitivity profiles of the isolates does not seem to be related to the VK210 subtypes.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Malária Vivax/parasitologia , Mefloquina/farmacologia , Plasmodium vivax/efeitos dos fármacos , Proteínas de Protozoários/genética , Genótipo , Humanos , Testes de Sensibilidade Parasitária , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase
15.
PLoS Negl Trop Dis ; 13(8): e0007633, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425516

RESUMO

BACKGROUND: Amoebiasis, caused by Entamoeba histolytica infection, is a global public health problem. However, available drugs to treat amoebiasis are currently limited, and no effective vaccine exists. Therefore, development of new preventive measures against amoebiasis is urgently needed. METHODOLOGY/PRINCIPAL FINDINGS: Here, to develop new drugs against amoebiasis, we focused on E. histolytica adenosine 5'-phosphosulfate kinase (EhAPSK), an essential enzyme in Entamoeba sulfolipid metabolism. Fatty alcohol disulfates and cholesteryl sulfate, sulfolipids synthesized in Entamoeba, play important roles in trophozoite proliferation and cyst formation. These processes are closely associated with clinical manifestation and severe pathogenesis of amoebiasis and with disease transmission, respectively. We validated a combination approach of in silico molecular docking analysis and an in vitro enzyme activity assay for large scale screening. Docking simulation ranked the binding free energy between a homology modeling structure of EhAPSK and 400 compounds. The 400 compounds were also screened by a 96-well plate-based in vitro APSK activity assay. Among fifteen compounds identified as EhAPSK inhibitors by the in vitro system, six were ranked by the in silico analysis as having high affinity toward EhAPSK. Furthermore, 2-(3-fluorophenoxy)-N-[4-(2-pyridyl)thiazol-2-yl]-acetamide, 3-phenyl-N-[4-(2-pyridyl)thiazol-2-yl]-imidazole-4-carboxamide, and auranofin, which were identified as EhAPSK inhibitors by both in silico and in vitro analyses, halted not only Entamoeba trophozoite proliferation but also cyst formation. These three compounds also dose-dependently impaired the synthesis of sulfolipids in E. histolytica. CONCLUSIONS/SIGNIFICANCE: Hence, the combined approach of in silico and in vitro-based EhAPSK analyses identified compounds that can be evaluated for their effects on Entamoeba. This can provide leads for the development of new anti-amoebic and amoebiasis transmission-blocking drugs. This strategy can also be applied to identify specific APSK inhibitors, which will benefit research into sulfur metabolism and the ubiquitous pathway terminally synthesizing essential sulfur-containing biomolecules.


Assuntos
Antiprotozoários/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Entamoeba histolytica/enzimologia , Inibidores Enzimáticos/isolamento & purificação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Entamebíase/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Testes de Sensibilidade Parasitária , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores
16.
Eur J Med Chem ; 182: 111604, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31425910

RESUMO

Immunomodulatory glycolipids, among which α-galactosylceramide (KRN7000) is an iconic example, have shown strong therapeutic potential in a variety of conditions ranging from cancer and infection to autoimmune or neurodegenerative diseases. A main difficulty for those channels is that they often provoke a cytokine storm comprising both pro- and anti-inflammatory mediators that antagonize each other and negatively affect the immune response. The synthesis of analogues with narrower cytokine secretion-inducing capabilities is hampered by the intrinsic difficulty at controlling the stereochemical outcome in glycosidation reactions, particularly if targeting the α-anomer, which seriously hampers drug optimization strategies. Here we show that replacing the monosaccharide glycone by a sp2-iminosugar glycomimetic moiety allows accessing N-linked sp2-iminosugar glycolipids (sp2-IGLs) with total α-stereocontrol in a single step with no need of protecting groups or glycosidation promotors. The lipid tail has been then readily tailored by incorporating polyfluoroalkyl segments of varied lengths in view of favouring binding to the lipid binding site of the master p38 mitogen activated protein kinase (p38 MAPK), thereby polarizing the immune response in a cell-context dependent manner. The compounds have been evaluated for their antiproliferative, anti-leishmanial and anti-inflammatory activities in different cell assays. The size of the fluorous segment was found to be critical for the biological activity, probably by regulating the aggregation and membrane-crossing properties, whereas the hydroxylation profile (gluco or galacto-like) was less relevant. Biochemical and computational data further support a mechanism of action implying binding to the allosteric lipid binding site of p38 MAPK and subsequent activation of the noncanonical autophosphorylation route. The ensemble of results provide a proof of concept of the potential of sp2-IGLs as immunoregulators.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Desenho de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Glicolipídeos/síntese química , Glicolipídeos/química , Glicolipídeos/farmacologia , Humanos , Imino Açúcares/síntese química , Imino Açúcares/química , Imino Açúcares/farmacologia , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Fosforilação/efeitos dos fármacos , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Mem Inst Oswaldo Cruz ; 114: e190111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31433006

RESUMO

BACKGROUND: In addition to the limited therapeutic arsenal and the side effects of antileishmanial agents, drug resistance hinders disease control. In Brazil, Leishmania braziliensis causes atypical (AT) tegumentary leishmaniasis lesions, frequently refractory to treatment. OBJECTIVES: The main goal of this study was to characterise antimony (Sb)-resistant (SbR) L. braziliensis strains obtained from patients living in Xakriabá indigenous community, Minas Gerais, Brazil. METHODS: The aquaglyceroporin 1-encoding gene (AQP1) from L. braziliensis clinical isolates was sequenced, and its function was evaluated by hypo-osmotic shock. mRNA levels of genes associated with Sb resistance were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Atomic absorption was used to measure Sb uptake. FINDINGS: Although clinical isolates presented delayed recovery time in hypo-osmotic shock, AQP1 function was maintained. Isolate 340 accumulated less Sb than all other isolates, supporting the 65-fold downregulation of AQP1 mRNA levels. Both 330 and 340 isolates upregulated antimony resistance marker (ARM) 56/ARM58 and multidrug resistant protein A (MRPA); however, only ARM58 upregulation was an exclusive feature of SbR field isolates. CA7AE seemed to increase drug uptake in L. braziliensis and represented a tool to study the role of glycoconjugates in Sb transport. MAIN CONCLUSIONS: There is a clear correlation between ARM56/58 upregulation and Sb resistance in AT-harbouring patients, suggesting the use of these markers as potential indicators to help the treatment choice and outcome, preventing therapeutic failure.


Assuntos
Antimônio/farmacologia , Resistência a Medicamentos/genética , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose Cutânea/parasitologia , Proteínas de Protozoários/genética , Tripanossomicidas/farmacologia , Aquagliceroporinas/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Humanos , Leishmania braziliensis/genética , Testes de Sensibilidade Parasitária , Proteínas de Protozoários/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
18.
Eur J Med Chem ; 182: 111610, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31434040

RESUMO

Drug therapy for Chagas disease remains a major challenge as potential candidate drugs have failed clinical trials. Currently available drugs have limited efficacy and induce serious side effects. Thus, the discovery of new drugs is urgently needed in the fight against Chagas' disease. Here, we synthesized and evaluated the biological effect of pyrazole-imidazoline (1a-i) and pyrazole-tetrahydropyrimidine (2a-i) derivatives against relevant clinical forms of Trypanosoma cruzi. The structure-activity relationship (SAR), drug-target search, physicochemical and ADMET properties of the major active compounds in vitro were also assessed in silico. Pyrazole derivatives showed no toxicity in Vero cells and also no cardiotoxicity. Phenotypic screening revealed two dichlorinated pyrazole-imidazoline derivatives (1c and 1d) with trypanocidal activity higher than that of benznidazole (Bz) against trypomastigotes; these were also the most potent compounds against intracellular amastigotes. Replacement of imidazoline with tetrahydropyrimidine in the pyrazole compounds completely abolished the trypanocidal activity of series 2(a-i) derivatives. The physicochemical and ADMET properties of the compounds predicted good permeability, good oral bioavailability, no toxicity and mutagenicity of 1c and 1d. Pyrazole nucleus had high frequency hits for cruzipain in drug-target search and structure activity relationship (SAR) analysis of pyrazole-imidazoline derivatives revealed enhanced activity when chlorine atom was inserted in meta-positions of the benzene ring. Additionally, we found evidence that both compounds (1c and 1d) have the potential to interact non-covalently with the active site of cruzipain and also inhibit the cysteine proteinase activity of T. cruzi. Collectively, the data presented here reveal pyrazole derivatives with promise for further optimization in the therapy of Chagas disease.


Assuntos
Doença de Chagas/tratamento farmacológico , Imidazolinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Imidazolinas/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Pirazóis/química , Pirimidinas/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Células Vero
19.
Eur J Med Chem ; 182: 111568, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31419778

RESUMO

The human protozoan parasites Leishmania donovani and L. infantum are the causative agents of visceral leishmaniasis, as such, responsible for approximately 30,000 deaths annually. The available chemotherapeutic treatments are reduced to a few drugs whose effectiveness is limited by rising drug resistance/therapeutic failure, and noxious side-effects. Therefore, new therapeutic hits are needed. Compounds displaying the imidazo[2,1-a]isoindole skeleton have shown antichagasic, anti-HIV, antimalarial and anorectic activities. Here, we report the leishmanicidal activity of thirty one imidazo[2,1-a]isoindol-5-ol derivatives on promastigotes and intracellular amastigotes of L. donovani. Eight out of thirty one assayed compounds showed EC50 values ranging between 1 and 2 µM with selectivity indexes from 29 to 69 on infected THP-1 cells. Six compounds were selected for further elucidation of their leishmanicidal mechanism. In this regard, compound 29, the imidazoisoindolol with the highest activity on intracellular amastigotes, induced an early decrease of intracellular ATP levels, as well as mitochondrial depolarization, together with a partial plasma membrane destructuration, as assessed by transmission electron microscopy. Consequently, the inhibition of the energy metabolism of Leishmania plays an important role in the leishmanicidal mechanism of this compound, even when other additional targets cannot be ruled out. In all, the results supported the inclusion of the imidazoisoindole scaffold for the development of new leishmanicidal drugs.


Assuntos
Antiprotozoários/farmacologia , Imidazóis/farmacologia , Indóis/farmacologia , Leishmania donovani/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Imidazóis/síntese química , Imidazóis/química , Indóis/síntese química , Indóis/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA