RESUMO
Bisphenol A (BPA) is a known endocrine disruptor mimicking natural estrogens with the potential to affect human health, especially during prenatal and postnatal exposure at or below current acceptable daily intake levels. Different adverse effects of BPA are still under investigation, and multiple mechanisms of action remain unexplored. This may be one of the reasons for the continuously changing tolerable daily intake (TDI) of BPA with the emergence of new adverse health effects over time. In addition, translational modelling through in vitro-in vivo extrapolation (IVIVE) can act as prerequisite bridge for translating in-vitro finding into human risk assessment. The objective of this study was to conduct in-vitro experiments and utilize an IVIVE-pregnancy physiologically based pharmacokinetic (P-PBPK) modeling to investigate developmental neurotoxicity and embryotoxicity in humans. The data obtained from human embryonic stem cells-based assays (study conducted between October 2020-2021) were used for the IVIVE-P-PBPK models to obtain the human equivalent doses (HEDs) which were further extrapolated to reference doses (RfDs). The results showed that simulated mean RfDs (µg/kg/day) derived from the HSD3B1 and NFATC2 gene of embryotoxicity and neurodevelopmental toxicity tests, respectively, were 4.94 and 5.18. The simulated RfDs were close to the temporary-tolerable daily intake (t-TDI) recommended by European Food Safety Authority (EFSA) in 2015 (t-TDI: 4⯵g/kg·bw) and higher than the TDI of 2023 (0.2â¯ng/kg·bw). In conclusion, in-vitro toxicogenomics dose-response data combined with PBPK modeling can become a promising alternative new approach methodology (NAM) to support decision-making in chemical risk assessment. Based on the simulated RfDs derived from this NAM, the t-TDI set by EFSA in 2015 may be considered a safe exposure limit for mothers and fetuses at the current BPA intake levels in Chinese mothers. This study provided an animal-free new strategy for NAMs based risk assessment by combining toxicogenomics and computational toxicology.
Assuntos
Compostos Benzidrílicos , Fenóis , Gravidez , Feminino , Humanos , Fenóis/toxicidade , Fenóis/farmacocinética , Compostos Benzidrílicos/toxicidade , Testes de Toxicidade , Inocuidade dos AlimentosRESUMO
The toxic potential of dithiocarbamates fungicides widely used in world agriculture is well known, among which Mancozeb is one of the most used. This study aimed to evaluate the toxicity of Mancozeb, determining the LC50% of the product and the behavioral and histological changes observed in fish of the Pacamã species through acute and sublethal toxicity tests. The first experiment was carried out on Pacamã fingerlings exposed to dosages of 0.5, 1, 2, 4, and 8mg/L of Mancozeb under the form ManzateWG®, for a total period of 96 hours in the acute experiment, and in the second experiment, fish were subjected to concentrations of 1/10 of those used in the acute experiment (0.05, 0.1, 0.2, 0.4 and 0.8mg/L, respectively), for 15 days in total. The 50% lethal concentration of ManzateWG® was calculated at the end of the acute experiment, presenting a value of 2.29mg/L at 96h for Pacamã fingerlings. A behavioral assessment was carried out through daily observation of the fish during both experiments, and an increase in mucus production was observed, as well as atypical social behavior in those exposed to the toxic agent. Histopathological evaluation was performed on livers collected after the end of the sublethal experiment, and the main hepatic alterations observed were cytoplasmic vacuolization, inflammatory infiltrate, and necrosis. Mancozeb has toxic potential and is capable of generating behavioral changes, as well as increasing the risk of liver damage in Pacamãs exposed to this compound.
Assuntos
Peixes-Gato , Fungicidas Industriais , Maneb , Zineb , Animais , Maneb/toxicidade , Zineb/toxicidade , Fungicidas Industriais/toxicidade , Testes de ToxicidadeRESUMO
Every test procedure, scientific and non-scientific, has inherent uncertainties, even when performed according to a standard operating procedure (SOP). In addition, it is prone to errors, defects, and mistakes introduced by operators, laboratory equipment, or materials used. Adherence to an SOP and comprehensive validation of the test method cannot guarantee that each test run produces data within the acceptable range of variability and with the precision and accuracy determined during the method validation. We illustrate here (part I) why controlling the validity of each test run is an important element of experimental design. The definition and application of acceptance criteria (AC) for the validity of test runs is important for the setup and use of test methods, particularly for the use of new approach methods (NAM) in toxicity testing. AC can be used for decision rules on how to handle data, e.g., to accept the data for further use (AC fulfilled) or to reject the data (AC not fulfilled). The adherence to AC has important requirements and consequences that may seem surprising at first sight: (i) AC depend on a test method's objectives, e.g., on the types/concentrations of chemicals tested, the regulatory context, the desired throughput; (ii) AC are applied and documented at each test run, while validation of a method (including the definition of AC) is only performed once; (iii) if AC are altered, then the set of data produced by a method can change. AC, if missing, are the blind spot of quality assurance: Test results may not be reliable and comparable. The establishment and uses of AC will be further detailed in part II of this series.
Assuntos
Disciplinas das Ciências Biológicas , Testes de Toxicidade , Humanos , Projetos de PesquisaRESUMO
BACKGROUND: Candida krusei is the cause of the fungal infection candidiasis, which has a high mortality rate. Intrinsic resistance to fluconazole can cause the failure of Krusei candidiasis treatment. Therefore, it is necessary to find alternative drugs to eliminate the fungus. Extracts of Syzygium aromaticum and Alpinia purpurata have been proven to be alternative solutions for treating Candida krusei resistance. OBJECTIVE: This study aims to explore the active compounds Syzygium aromaticum and Alpinia purpurata as treatments against Candida krusei through bioactivity tests, molecular modeling, and toxicity tests. METHODS: Determination of antifungal activity with the agar well diffusion and microbroth dilution method. Molecular modeling was conducted using the following software: Marvin Sketch, LigandScout 4.4.5, AutoDock ver 4.2.6, PyMOL, LigPlus, MOE ver 2008. RESULT: Bioactivity test results of the two natural extracts against C. krusei ATCC 6258, it was found that the S. aromaticum and A. purpurata extracts have MIC50 values of 0.031 µg/mL and 1.435x105 µg/mL. The molecular modeling found that the compounds Benzotriazole, 1-(4-methyl-3-nitrobenzoyl)-, 1,3,4-Eugenol Acetate, Stigmasta-5,22-dien-3-ol, acetate (3 beta)- and Farnesyl acetate from the two natural extracts, interacts with the active site of the enzyme lanosterol-14-α-demethylase with a binding energy of -8.91, -6.04, -13.53, and -7.15 kcal/mol. The oral acute toxicity test of S. aromaticum and A. purpurata extracts proved that the LD50 was >6000 mg/kg BW and >8000 mg/kg BW. The acute dermal toxicity test of the two extracts showed that the LD50 was >6000 mg/kg BW. CONCLUSION: S. aromaticum and A. purpurata extracts have been proven to be alternative solutions for treating Candida krusei resistance.
Assuntos
Alpinia , Candidíase , Syzygium , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Syzygium/química , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Testes de Toxicidade , AcetatosRESUMO
Road transportation significantly contributes to environmental pollution, both in terms of exhaust and non-exhaust (brake wear) emissions. As was proven, brake wear debris is released in a wide variety of sizes, shapes, and compositions. Although studies confirming the possible adverse health and environmental impact of brake wear debris were published, there is no standardized methodology for their toxicity testing, and most studies focus only on one type of brake pad and/or one test. The lack of methodology is also related to the very small amount of material released during the laboratory testing. For these reasons, this study deals with the mixture of airborne brake wear debris from several commonly used low-metallic brake pads collected following the dynamometer testing. The mixture was chosen for better simulation of the actual state in the environment and to collect a sufficient amount of particles for thorough characterization (SEM, XRPD, XRF, chromatography, and particle size distribution) and phytotoxicity testing. The particle size distribution measurement revealed a wide range of particle sizes from nanometers to hundreds of nanometers, elemental and phase analysis determined the standard elements and compounds used in the brake pad formulation. The Hordeum vulgare and Sinapis alba were chosen as representatives of monocotyledonous and dicotyledonous plants. The germination was not significantly affected by the suspension of brake wear debris; however, the root elongation was negatively influenced in both cases. Sinapis alba (IC50 = 23.13 g L-1) was more affected than Hordeum vulgare (IC50 was not found in the studied concentration range) the growth of which was even slightly stimulated in the lowest concentrations of brake wear debris. The plant biomass was also negatively affected in the case of Sinapis alba, where the IC50 values of wet and dry roots were determined to be 44.83 g L-1 and 86.86 g L-1, respectively.
Assuntos
Hordeum , Sinapis , Tamanho da Partícula , Emissões de Veículos , Testes de ToxicidadeRESUMO
To better understand endocrine disruption, the U.S. Environmental Protection Agency's (USEPA) Endocrine Disruptor Screening Program (EDSP) utilizes a two-tiered approach to investigate the potential of a chemical to interact with the estrogen, androgen, or thyroid systems. As in vivo testing lacks the throughput to address data gaps on endocrine bioactivity for thousands of chemicals, in vitro high-throughput screening (HTS) methods are being developed to screen larger chemical libraries. The primary objective of this work was to investigate for how many of the 52 chemicals with weight-of-evidence (WoE) determinations from EDSP Tier 1 screening there are available in vitro HTS data supporting a thyroid impact. HTS data from the USEPA ToxCast program and the EDSP WoE were collected for this analysis. Considering the complexity of endocrine disruption and interpreting HTS data, concordance between in vitro activity and in vivo effects ranges from 58 to 78%. Based on this evaluation, we conclude that the current suite of HTS assays is beneficial for prioritizing chemicals for further inquiry; however, without a more detailed analysis, one cannot conclude whether HTS results are the primary mode-of-action. Furthermore, development of in vitro assays for additional thyroid-relevant molecular initiating events is required to effectively predict in vivo thyroid impacts.
Assuntos
Disruptores Endócrinos , Glândula Tireoide , Estados Unidos , Testes de Toxicidade/métodos , Sistema Endócrino , Estrogênios , Androgênios , Disruptores Endócrinos/toxicidade , Ensaios de Triagem em Larga Escala/métodos , United States Environmental Protection AgencyRESUMO
Embryofetal toxicity studies are conducted to support inclusion of women of childbearing potential in clinical trials and to support labeling for the marketed pharmaceutical product. For biopharmaceuticals, which frequently lack activity in the rodent or rabbit, the nonhuman primate is the standard model to evaluate embryofetal toxicity. These studies have become increasingly challenging to conduct due to the small number of facilities capable of performing them and a shortage of sexually mature monkeys. The low number of animals per group and the high rate of spontaneous abortion in cynomolgus monkeys further complicate interpretation of the data. Recent FDA guidance has proposed a weight of evidence (WoE) approach to support product labeling for reproductive toxicity of products intended to be used for the treatment of cancer (Oncology Pharmaceuticals: Reproductive Toxicity Testing and Labeling Recommendations), an approach that has also supported the approval of biotherapeutics for non-cancer indications. Considerations to determine the appropriateness and content of a WoE approach to support product labeling for embryofetal risk include known class effects in humans; findings from genetically modified animals with or without drug administration; information from surrogate compounds; literature-based assessments about the developmental role of the pharmaceutical target; and the anticipated exposure during embryofetal development. This paper summarizes the content of a session presented at the 42nd annual meeting at the American College of Toxicology, which explored the conditions under which alternative approaches may be appropriate to support product labeling for reproductive risk, and how sponsors can best justify the use of this approach.
Assuntos
Produtos Biológicos , Toxicologia , Gravidez , Animais , Humanos , Feminino , Coelhos , Haplorrinos , Testes de Toxicidade , Reprodução , Preparações Farmacêuticas , Produtos Biológicos/toxicidadeRESUMO
The Expert Panel for Cosmetic Ingredient Safety reviewed newly available studies since their original assessment in 2002, along with updated information regarding product types and concentrations of use, and confirmed that these 17 glyceryl diesters are safe as cosmetic ingredients in the practices of use and concentration as described in this report.
Assuntos
Qualidade de Produtos para o Consumidor , Cosméticos , Testes de Toxicidade , Cosméticos/toxicidadeRESUMO
The Expert Panel for Cosmetic Ingredient Safety reviewed newly available studies since their original assessment in 2001, along with updated information regarding product types and concentrations of use, and confirmed that PPG-11 and PPG-15 Stearyl Ether are safe as cosmetic ingredients in the practices of use and concentration as described in this report.
Assuntos
Cosméticos , Testes de Toxicidade , Propilenoglicóis , Cosméticos/toxicidade , Éteres , Qualidade de Produtos para o ConsumidorRESUMO
The Expert Panel for Cosmetic Ingredient Safety reviewed newly available studies since their original assessment in 2001, along with updated information regarding product types and concentrations of use, and confirmed that Cottonseed Glyceride and Hydrogenated Cottonseed Glyceride are safe as cosmetic ingredients in the practices of use and concentration as described in this report, provided that established and imposed limits on gossypol, heavy metals, and pesticide concentrations are not exceeded.
Assuntos
Cosméticos , Gossipol , Óleo de Sementes de Algodão , Qualidade de Produtos para o Consumidor , Testes de Toxicidade , GlicerídeosRESUMO
The Expert Panel for Cosmetic Ingredient Safety reviewed information that has become available since their original assessment from 2001, along with updated information regarding product types, and frequency and concentrations of use, and reaffirmed their original conclusion that Lard, Hydrogenated Lard, Lard Glyceride, Hydrogenated Lard Glyceride, Lard Glycerides, and Hydrogenated Lard Glycerides are safe as cosmetic ingredients in the practices of use and concentration as described in this report.
Assuntos
Qualidade de Produtos para o Consumidor , Cosméticos , Testes de Toxicidade , Gorduras na Dieta , Cosméticos/toxicidade , GlicerídeosRESUMO
The Expert Panel for Cosmetic Ingredient Safety reviewed newly available studies since their original assessment in 1982, along with updated information regarding product types and concentrations of use, and confirmed that Glycol Stearate and Glycol Stearate SE are safe as cosmetic ingredients in the practices of use and concentration as described in this report.
Assuntos
Cosméticos , Testes de Toxicidade , Estearatos/toxicidade , Qualidade de Produtos para o Consumidor , Tensoativos , Cosméticos/toxicidade , GlicóisRESUMO
Structure-activity relationship (SAR)-based read-across is an important and effective method to establish the safety of a data-poor target chemical (structure of interest (SOI)) using hazard data from structurally similar source chemicals (analogues). Many methods use quantitative similarity scores to evaluate the structural similarity for searching and selecting analogues as well as for evaluating analogue suitability. However, studies suggest that read-across based purely on structural similarity cannot accurately predict the toxicity of an SOI. As mechanistic data become available, we gain a greater understanding of the mode of action (MOA), the relationship between structures and metabolism/bioactivation pathways, and the existence of "activity cliffs" in chemical chain length, which can improve the analogue rating process. For this purpose, the current work identifies a series of classes of chemicals where a small change at a key position can result in a significant change in metabolism and bioactivation pathways and may eventually result in significant changes in chemical toxicity that have a big impact on the suitability of analogues for read-across. Additionally, a series of SAR-based read-across case studies are presented, which cover a variety of chemical classes that commonly link to different toxic endpoints. The case study results indicate that SAR-based read-across can be refined and strengthened by considering MOAs or proposed reactive metabolite formation pathways, which can improve the overall accuracy, consistency, transparency, and confidence in evaluating analogue suitability.
Assuntos
Relação Estrutura-Atividade , Testes de ToxicidadeRESUMO
Many New Approach Methodologies (NAMs) have been developed for the safety assessment of new ingredients. Research into reproductive toxicity and teratogenicity is a particularly high priority, especially given their mechanistic complexity. Forty-six non-teratogenic and 39 teratogenic chemicals were screened for teratogenic potential using the in silico DART model from the OECD QSAR Toolbox; the devTox quickPredict™ (devTox assay) test and the Zebrafish Embryotoxicity Test (ZET). The sensitivity and specificity were 94.7% and 84.1%, respectively, for the DART tree (83 chemicals), 86.1% and 35.6% for the devTox (81 chemicals) and 77.8% and 76.7% for the ZET (57 chemicals). Fifty-three chemicals were tested in all three assays and when results were combined and based on a "2 out of 3 rule", the sensitivity and specificity were 96.0% and 71.4%, respectively. The specificity of the devTox assay for a sub-set of 43 chemicals was increased from 26.1% to 82.6% by incorporating human plasma concentrations into the assay interpretation. When all 85 chemicals were assessed in a decision tree approach, there was an excellent predictivity and assay robustness of 90%. In conclusion, all three models exhibited a good sensitivity and specificity, especially when outcomes from all three were combined or used in "2 out of 3" or a tiered decision tree approach. The latter is an interesting predictive approach for evaluating the teratogenic potential of new chemicals. Future investigations will extend the number of chemicals tested, as well as explore ways to refine the results and obtain a robust Integrated Testing Strategy to evaluate teratogenic potential.
Assuntos
Testes de Toxicidade , Peixe-Zebra , Animais , Humanos , Testes de Toxicidade/métodos , Teratógenos/toxicidade , Reprodução , BioensaioRESUMO
To justify investigations on learning and memory (L&M) function in extended one-generation reproductive toxicity studies (EOGRTS; Organization for Economic Co-operation and Development (OECD) test guideline (TG) 443) for registration under Registration, Evaluation, Authorization, and Restriction of Chemical (REACH), the European Chemicals Agency has referred to three publications based on which the Agency concluded that "perturbation of thyroid hormone signaling in offspring affects spatial cognitive abilities (learning and memory)" and "Therefore, it is necessary to conduct spatial learning and memory tests for F1 animals". In this paper, the inclusion of the requested L&M tests in an EOGRTS is challenged. In addition, next to the question on the validity of rodent models in general for testing thyroid hormone-dependent perturbations in brain development, the reliability of the publications specifically relied upon by the agency is questioned as these contain numerous fundamental errors in study methodology, design, and data reporting, provide contradicting results, lack crucial information to validate the results and exclude confounding factors, and finally show no causal relationship. Therefore, in our opinion, these publications cannot be used to substantiate, support, or conclude that decreases in blood thyroid (T4) hormone level on their own would result in impaired L&M in rats and are thus not adequate to use as fundament to ask for L&M testing as part of an EOGRTS.
Assuntos
Reprodução , Testes de Toxicidade , Ratos , Animais , Testes de Toxicidade/métodos , Reprodutibilidade dos Testes , CogniçãoRESUMO
Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.
Assuntos
Disruptores Endócrinos , Glândula Tireoide , Animais , Humanos , Disruptores Endócrinos/toxicidade , Testes de Toxicidade , Ecotoxicologia , Hormônios Tireóideos , Medição de RiscoRESUMO
Pesticide exposure is an important driver of bee declines. Laboratory toxicity tests provide baseline information on the potential effects of pesticides on bees, but current risk assessment schemes rely on one species, the highly social honey bee, Apis mellifera, and there is uncertainty regarding the extent to which this species is a suitable surrogate for other pollinators. For this reason, Osmia cornuta and Osmia bicornis have been proposed as model solitary bee species in the EU risk assessment scheme. The use of solitary bees in risk assessment requires the development of new methodologies adjusted to the biology of these species. For example, oral dosing methods used with honey bees cannot be readily applied to solitary bees due to differences in feeding behaviour and social interactions. In this study, we describe the "petal method", a laboratory feeding method, and validate its use in acute and chronic exposure oral tests with Osmia spp. We conducted five experiments in which we compared the performance of several artificial flowers combining visual and olfactory cues against the petal method, or in which variations of the petal method were confronted. We then use the results of these experiments to optimize the feeding arenas and propose standardized methods for both acute and chronic exposure tests. The petal method provides high levels of feeding success, thus reducing the number of bees needed. It works with a wide variety of petal species and with both female and male Osmia spp., thus ensuring reproducibility across studies. To validate the use of the petal method in ecotoxicology tests, we assess the toxicity of a standard reference insecticide, dimethoate, in O. cornuta adults and determine LD50 values for this species. The petal method should facilitate the inclusion of solitary bees in risk assessment schemes therefore increasing the protection coverage of pesticide regulation.
Assuntos
Inseticidas , Praguicidas , Masculino , Abelhas , Feminino , Animais , Praguicidas/toxicidade , Reprodutibilidade dos Testes , Inseticidas/toxicidade , Flores , Testes de ToxicidadeRESUMO
Benthic sediment toxicity is linked to harmful effects in marine organisms and humans, and an understanding of the link would require, in part, a comprehensive and exhaustive analysis of sediment toxicity data already in hand. One tool which could aid in the process is machine learning (ML), a supervised classification modeling technique that has transformed how actionable insight are acquired from large datasets. The current study is a test of concept in which an ML classifier is sought that can accurately extrapolate the characteristics of a 5437 California-wide coastal training dataset (assembled from 1635 samples) to predict sediment toxicity in southern California bight (SCB). Twelve classifiers were trained to recognize sediment toxicity using 70 % of the dataset and among them, a Gradient Boosting Classifier (GBC) model using latitude, longitude, and water depth was found to be the most accurate at predicting toxicity (83 %). Among the variables, latitude was found to be the most significant driver of prediction by GBC in this test ecosystem. The performance of the model was verified with the remaining 30 % of the dataset and found to be 83 % accurate. Presented with 884 unfamiliar data points assembled from 854 measurements at 346 stations across SCB, GBC was 87 % accurate post-training, thus demonstrating a role supervised learning can play in the southern California environmental analytics.
Assuntos
Sedimentos Geológicos , Testes de Toxicidade , Humanos , Testes de Toxicidade/métodos , Sedimentos Geológicos/análise , Ecossistema , California , Aprendizado de Máquina SupervisionadoRESUMO
For decades, there has been increasing concern about the potential developmental neurotoxicity (DNT) associated with chemicals. Regulatory agencies have historically utilized standardized in vivo testing to evaluate DNT. Owing to considerations including higher-throughput screening for DNT, reduction in animal use, and potential cost efficiencies, the development of alternative new approach methods (NAMs) occurred; specifically, the advent of the DNT in vitro test battery (DNT IVB). SciPinion convened an expert panel to address specific questions related to the interpretation of in vitro DNT test data. The consensus of the expert panel was that the DNT IVB might be used during initial screening, but it is not presently a complete or surrogate approach to determine whether a chemical is a DNT in humans. By itself, the DNT IVB does not have the ability to capture nuances and complexity of the developing nervous system and associated outcomes including behavioral ontogeny, motor activity, sensory function, and learning/memory. Presently, such developmental landmarks cannot be adequately assessed in the DNT IVB or by other NAMs. The expert panel (all who serve as co-authors of this review) recommended that additional data generation and validation is required before the DNT IVB can be considered for application within global regulatory frameworks for decision-making.
Assuntos
Síndromes Neurotóxicas , Testes de Toxicidade , Animais , Humanos , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais , Síndromes Neurotóxicas/diagnóstico , Síndromes Neurotóxicas/etiologia , Projetos de PesquisaRESUMO
Nonhuman primates (NHP) have become a commonly used nonrodent species for general toxicity testing for pharmaceuticals reviewed by CDER. Their increased use in pharmaceutical testing appears to have been driven by both increased use in small molecule drug development programs as well as a trend for biologics making up a greater percentage of pharmaceutical development programs. While always in limited supply, the COVID-19 pandemic acutely impaired the availability of NHPs for pharmaceutical testing due to disruptions in the supply and an increased demand to support COVID-19-directed research programs. Because this disruption in the NHP supply had the potential to significantly delay the development of new medications for the treatment of diseases currently without effective treatment options, FDA issued guidance in February of 2022, under its COVID-19 Public Health Emergency authority, that was intended to help mitigate the NHP supply issue by reducing the demand for NHPs. This guidance has been withdrawn with the expiration of the public health emergency. Here we discuss what impact we expect that the withdrawal of this guidance will have on efforts to minimize NHP use.