Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.966
Filtrar
1.
Molecules ; 26(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803601

RESUMO

Hypogonadism, associated with low levels of testosterone synthesis, has been implicated in several diseases. Recently, the quest for natural alternatives to prevent and treat hypogonadism has gained increasing research interest. To this end, the present study explored the effect of S-allyl cysteine (SAC), a characteristic organosulfur compound in aged-garlic extract, on testosterone production. SAC was administered at 50 mg/kg body weight intraperitoneally into 7-week-old BALB/c male mice in a single-dose experiment. Plasma levels of testosterone and luteinizing hormone (LH) and testis levels of proteins involved in steroidogenesis were measured by enzymatic immunoassay and Western blot, respectively. In addition, mouse testis-derived I-10 cells were also used to investigate the effect of SAC on steroidogenesis. In the animal experiment, SAC significantly elevated testosterone levels in both the plasma and the testis without changing the LH level in plasma and increased phosphorylated protein kinase A (p-PKA) levels. Similar results were also observed in I-10 cells. The findings demonstrating the increasing effect of SAC on p-PKA and mRNA levels of Cyp11a suggest that SAC increases the testosterone level by activating the PKA pathway and could be a potential target for hypogonadism therapeutics.


Assuntos
Cisteína/análogos & derivados , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/biossíntese , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cisteína/farmacologia , Ativação Enzimática/efeitos dos fármacos , Alho/química , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Testículo/citologia , Testosterona/sangue
2.
Biochem Biophys Res Commun ; 540: 83-89, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33450484

RESUMO

Intracrine androgen synthesis plays a critical role in the development of castration-resistant prostate cancer (CRPC). Aldo-keto reductase family 1 member C3 (AKR1C3) is a vital enzyme in the intracrine androgen synthesis pathway. In this study, mesoporous silica nanoparticles (MSNs) were employed to deliver small interfering RNA targeting AKR1C3 (siAKR1C3) to downregulate AKR1C3 expression in CPRC cells. The optimal weight ratio of MSNs/siAKR1C3 was determined by a gel retardation assay. Prostate cancer cells such as VCaP cells, which intracrinally express AKR1C3, and LNCaP-AKR1C3 cells stably transfected with AKR1C3 were used to investigate the antitumour effect of MSNs-siAKR1C3. Fluorescence detection and Western blot analyses were applied to confirm the entrance of MSNs-siAKR1C3 into the cells. A SRB (Sulforhodamine B) assay was employed to assess the cell viability, and a radioimmunoassay was used to measure the androgen concentration. Moreover, real-time PCR (RT-PCR), Western blot analysis and ELISA were used to determine the transcription and expression of prostate-specific antigen (PSA), AKR1C3 and androgen receptor (AR). Meanwhile, a reporter gene assay was performed to determine the AR activity. Additionally, a castrated nude mouse xenograft tumour model was produced to verify the inhibitory effect of MSNs-siAKR1C3 in vivo. The results showed that the optimal weight ratio of MSNs/siAKR1C3 was 140:1, and the complex could effectively enter cells, downregulate AKR1C3 expression, reduce the androgen concentration, inhibit AR activation, and inhibit CRPC development both in vitro and in vivo. These results indicate that decreasing intracrine androgen synthesis and inactivating AR signals by MSNs-siAKR1C3 may be a potential effective method for CRPC treatment.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Androgênios/biossíntese , Nanopartículas/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/terapia , RNA Interferente Pequeno/uso terapêutico , Dióxido de Silício/uso terapêutico , Membro C3 da Família 1 de alfa-Ceto Redutase/deficiência , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , RNA Interferente Pequeno/genética , Receptores Androgênicos/genética , Testosterona/biossíntese , Transcrição Genética/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Toxicology ; 449: 152663, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359577

RESUMO

Perfluorooctane sulfonate (PFOS), a stable end-product of perfluorinated compounds (PFCs), is associated with male reproductive disorders, but its underlying mechanisms are still unclear. We used in vivo and in vitro models to investigate the effects of PFOS on testosterone biosynthesis and related mechanisms. First, male ICR mice were orally administered PFOS (0-10 mg/kg/bw) for 4 weeks. Bodyweight, sperm count, reproductive hormones, mRNA expression of the genes related to testosterone biosynthesis, and the protein expression of protein kinase A (PKA), p38 mitogen-activated protein kinase (MAPK), cAMP-response element binding protein (CREB), CREB regulated transcription coactivator 2 (CRTC2) and steroidogenic acute regulatory protein (StAR) were evaluated. Furthermore, mouse primary Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently decreased sperm count, testosterone level, CRTC2/StAR expression, and damaged testicular interstitium morphology, paralleled by increase in phosphorylated PKA, CREB and p38 in testes. Additionally, similar to the in vivo results, PFOS significantly decreased testosterone secretion, CRTC2/StAR expression, interaction between CREB and CRTC2 and binding of CREB/CRTC2 to StAR promoter region, paralleled by increase in phosphorylated-p38, PKA, and CREB expression. Meanwhile, inhibition of p38 by SB203580, or inhibition of PKA by H89 can significantly alleviate the above PFOS-induced effects. As such, the present study highlights a role of the CREB/CRTC2/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fluorcarbonetos/toxicidade , Células Intersticiais do Testículo/metabolismo , Fosfoproteínas/metabolismo , Testosterona/biossíntese , Fatores de Transcrição/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Relação Dose-Resposta a Droga , Células Intersticiais do Testículo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fosfoproteínas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Testosterona/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores
4.
Int J Nanomedicine ; 15: 3415-3431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523341

RESUMO

Purpose: Lanthanum oxide (La2O3) nanoparticles (NPs) have been widely used in catalytic and photoelectric applications, but the reproductive toxicity is still unclear. This study evaluated the reproductive toxicity of two different-sized La2O3 particles in the testes. Materials and Methods: Fifty Kunming mice were randomly divided into five groups. Mice were treated with La2O3 NPs by repeated intragastric administration for 90 days (control, nano-sized with 5, 10, 50 mg/kg BW and micro-sized with 50 mg/kg BW). Mice in the control group were treated with de-ionised water without La2O3 NPs. Sperm parameters, testicular histopathology, TEM assessment, hormone assay and nuclear factor erythroid 2-related factor 2 (Nrf-2) pathway were performed and evaluated. Results: The body weight of mice treated with La2O3 NPs or not had no difference; sperm parameters and histological assessment showed that La2O3 NPs could induce reproductive toxicity in the testicle. Serum testosterone and gonadotropin-releasing hormone (GnRH) in the NH (nano-sized with 50 mg/kg BW) group were markedly decreased relative to control group, and an increase of luteinizing hormone (LH) in NH group was detected . Additionally, transmission electron microscopy revealed that the ultrastructural abnormalities induced by La2O3 NPs were more severe than La2O3 MPs in the testes. Furthermore, La2O3 NPs treatment inhibited the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm into the nucleus as well as the expression of downstream genes NAD(P)H quinone oxidoreductase1 (NQO1), hemeoxygenase 1 (HO-1) and (glutathione peroxidase) GSH-Px, thus abrogating Nrf-2-mediated defense mechanisms against oxidative stress. Conclusions: The results of this study demonstrated that La2O3 NPs improved the spermatogenesis defects in mice. La2O3 NPs inhibited Nrf-2/ARE signaling pathway that resulted in apoptosis in the mice testes.


Assuntos
Elementos de Resposta Antioxidante/genética , Lantânio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Nanopartículas/toxicidade , Óxidos/toxicidade , Reprodução/efeitos dos fármacos , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Inflamação/patologia , Lantânio/sangue , Masculino , Camundongos , Nanopartículas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Óxidos/sangue , Transdução de Sinais/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Testículo/ultraestrutura , Testosterona/biossíntese , Testosterona/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-32437254

RESUMO

Copper is an environmental risk factor, which has various effects on reproductive endocrinology. In this study human adrenocortical carcinoma (NCI-H295R) cell line was used as an in vitro biological model to study the effect of copper sulfate (CuSO4.5H2O) on steroidogenesis and cytotoxicity. The cell cultures were exposed to different concentrations (3.90, 62.50, 250, 500, 1000 µM) of CuSO4.5H2O and compared to control group (medium without CuSO4.5H2O). Cell viability was measured by the metabolic activity assay. Quantification of sexual steroid production directly from the medium was performed by ELISA assay. Following 48 h culture of NCI-H295R cell line in the presence of CuSO4.5H2O a dose-dependent depletion of progesterone release was observed even at the lower concentrations of CuSO4.5H2O. The lowest levels of progesterone were detected in groups with the higher doses (≥ 250 µM) of CuSO4.5H2O, which elicited significant cytotoxic action. Testosterone production decreased significantly, and this decline was more prominent in comparison to that of progesterone. The lowest release of testosterone was recorded at 1000 µM of CuSO4.5H2O. The cytotoxic effect of CuSO4.5H2O was evident at all concentrations used in the study. The presented data suggest that copper has detrimental effects on sexual steroid hormones and consecutively on reproductive physiology.


Assuntos
Sulfato de Cobre/toxicidade , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Progesterona/biossíntese , Testosterona/biossíntese , Bioensaio , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Humanos
6.
PLoS Genet ; 16(5): e1008586, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463816

RESUMO

The strength of bone depends on bone quantity and quality. Osteocalcin (Ocn) is the most abundant noncollagenous protein in bone and is produced by osteoblasts. It has been previously claimed that Ocn inhibits bone formation and also functions as a hormone to regulate insulin secretion in the pancreas, testosterone synthesis in the testes, and muscle mass. We generated Ocn-deficient (Ocn-/-) mice by deleting Bglap and Bglap2. Analysis of Ocn-/-mice revealed that Ocn is not involved in the regulation of bone quantity, glucose metabolism, testosterone synthesis, or muscle mass. The orientation degree of collagen fibrils and size of biological apatite (BAp) crystallites in the c-axis were normal in the Ocn-/-bone. However, the crystallographic orientation of the BAp c-axis, which is normally parallel to collagen fibrils, was severely disrupted, resulting in reduced bone strength. These results demonstrate that Ocn is required for bone quality and strength by adjusting the alignment of BAp crystallites parallel to collagen fibrils; but it does not function as a hormone.


Assuntos
Apatitas/metabolismo , Calcificação Fisiológica/genética , Metabolismo dos Carboidratos/genética , Glucose/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Osteocalcina/fisiologia , Testosterona/biossíntese , Animais , Apatitas/química , Osso e Ossos/metabolismo , Colágeno/metabolismo , Cristalização , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Tamanho do Órgão/genética , Osteoblastos/metabolismo , Osteocalcina/genética , Osteogênese/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
7.
Gene ; 747: 144672, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305634

RESUMO

Brain and muscle Arnt-like protein-1 (BMAL1) is a clock gene that plays an important role in hormone secretion and apoptosis, but its effect on Leydig cells is unidentified. Here the role of BMAL1 in apoptosis and testosterone secretion in TM3 Leydig cell line were investigated by inhibiting its expression using small interfering RNA (siRNA). Results showed that BMAL1 knockdown promoted the apoptosis of Leydig cells and expression of (BCL2 associated X) BAX mRNA and protein, and reduced the expression of (B-cell lymphoma-2) BCL-2 mRNA and protein. BMAL1 inhibition resulted in decreased testosterone secretion and reduced expression of key genes during hormone synthesis, specifically steroidogenic acute regulatory protein (STAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD). In addition, BMAL1 knockdown reduced the expression of phosphorylated p85 and AKT as confirmed by western blot. In conclusion, BMAL1 may affect testosterone secretion and apoptosis in mouse Leydig cells through regulation of the PI3K/AKT signaling pathway.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Apoptose , Técnicas de Silenciamento de Genes , Testosterona/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Apoptose/genética , Linhagem Celular , Regulação da Expressão Gênica , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Testosterona/biossíntese , Transcrição Genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-32178576

RESUMO

The objective of present study was to investigate in vitro protective potential of resveratrol in TM3 Leydig cells with induced oxidative stress using hydrogen peroxide (H2O2). Leydig cells experiencing oxidative stress exhibit reduced activities in androgens production, and become hypofunctional with age, which is also related to growing oxidative stress, while resveratrol has received growing attention as a cytoprotective agent. TM3 mouse Leydig cells were cultivated during 24 h in the presence of resveratrol (5, 10, 25, 50 and 100 µM) alone, or in combination with H2O2 (300/600 µM) to induce oxidative stress. Mitochondrial activity was evaluated using MTT test, triple assay was used in order to assess cell viability parameters, intracellular generation of superoxide was determined by the nitroblue-tetrazolium assay, and quantification of steroid hormones was performed by the enzyme- linked immunosorbent assay. Resveratrol alone treatment led to the most significantly improved values of all tested parameters in the cells of experimental group with addition of 10 µM of resveratrol in comparison to the control group. In the case of cells with induced oxidative stress (300 µM H2O2) resveratrol administration resulted in significantly increased (P < 0.05) metabolic activity, as well as cell membrane integrity at concentration 10 µM. Significantly improved (P < 0.001) lysosomal activity showed cells treated with 5 and 10 µM of resveratrol, and the level of both measured hormones was significantly higher (P < 0.05) in cells supplemented with 10 µM of resveratrol. Significant decline of superoxide radical production was observed in all experimental groups in comparison to the control exposed to H2O2 alone. With respect to cells exposed to higher concentration of H2O2 (600 µM), results showed positive effect of resveratrol only in biosynthesis of both androgens with significant increased values in experimental group treated with 5 µM (P < 0.05) and 10 µM (P < 0.01) of resveratrol, in addition, in the case of testosterone we recorded significant higher (P < 0.05) values in cells with addition of 25 and 50 µM resveratrol when compared to H2O2 control. More specific and systematic research focused especially on androgen biosynthesis is necessary related to the biological activity of resveratrol in male reproductive system due to inconsistent results of studies.


Assuntos
Peróxido de Hidrogênio/toxicidade , Células Intersticiais do Testículo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/farmacologia , Animais , Antioxidantes/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Testosterona/biossíntese
9.
J Steroid Biochem Mol Biol ; 199: 105614, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32007561

RESUMO

Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) plays a pivotal role in the regulation of adrenal and gonadal steroid hormone biosynthesis. More recent studies highlighted the enzyme's role in the backdoor pathway leading to androgen production. Increased CYP17A1 activity in endocrine disorders and diseases are associated with elevated C21 and C19 steroids which include 17α-hydroxyprogesterone and androgens, as well as C11-oxy C21 and C11-oxy C19 steroids. We previously reported that 11ß-hydroxyprogesterone (11OHP4), 21-deoxycortisol (21dF) and their keto derivatives are converted by 5α-reductases and hydroxysteroid dehydrogenases yielding C19 steroids in the backdoor pathway. In this study the 17α-hydroxylase and 17,20-lyase activity of CYP17A1 towards the unconventional C11-oxy C21 steroid substrates and their 5α- and 3α,5α-reduced metabolites was investigated in transfected HEK-293 cells. CYP17A1 catalysed the 17α-hydroxylation of 11OHP4 to 21dF and 11-ketoprogesterone (11KP4) to 21-deoxycortisone (21dE) with negligible hydroxylation of their 5α-reduced metabolites while no lyase activity was detected. The 3α,5α-reduced C11-oxy C21 steroids-5α-pregnan-3α,11ß-diol-20-one (3,11diOH-DHP4) and 5α-pregnan-3α-ol-11,20-dione (alfaxalone) were rapidly hydroxylated to 5α-pregnan-3α,11ß,17α-triol-20-one (11OH-Pdiol) and 5α-pregnan-3α,17α-diol-11,20-dione (11K-Pdiol), with the lyase activity subsequently catalysing to conversion to the C11-oxy C19 steroids, 11ß-hydroxyandrosterone and 11-ketoandrosterone, respectively. Docking of 11OHP4, 11KP4 and the 5α-reduced metabolites, 5α-pregnan-11ß-ol-3,20-dione (11OH-DHP4) and 5α-pregnan-3,11,20-trione (11K-DHP4) with human CYP17A1 showed minimal changes in the orientation of these C11-oxy C21 steroids in the active pocket when compared with the binding of progesterone suggesting the 17,20-lyase is impaired by the C11-hydroxyl and keto moieties. The structurally similar 3,11diOH-DHP4 and alfaxalone showed a greater distance between C17 and the heme group compared to the natural substrate, 17α-hydroxypregnenolone potentially allowing more orientational freedom and facilitating the conversion of the C11-oxy C21 to C11-oxy C19 steroids. In summary, our in vitro assays showed that while CYP17A1 readily hydroxylated 11OHP4 and 11KP4, the enzyme was unable to catalyse the 17,20-lyase reaction of these C11-oxy C21 steroid products. Although CYP17A1 exhibited no catalytic activity towards the 5α-reduced intermediates, once the C4-C5 double bond and the keto group at C3 were reduced, both the hydroxylation and lyase reactions proceeded efficiently. These findings show that the C11-oxy C21 steroids could potentially contribute to the androgen pool in tissue expressing steroidogenic enzymes in the backdoor pathway.


Assuntos
Hidroxiprogesteronas/metabolismo , Progesterona/análogos & derivados , Esteroide 17-alfa-Hidroxilase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Androgênios/biossíntese , Androgênios/genética , Linhagem Celular Tumoral , Hormônios Esteroides Gonadais/biossíntese , Hormônios Esteroides Gonadais/genética , Células HEK293 , Humanos , Masculino , Progesterona/biossíntese , Progesterona/genética , Progesterona/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Testosterona/biossíntese
10.
J Steroid Biochem Mol Biol ; 199: 105589, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31953167

RESUMO

Production of testosterone is under tight control by human chorion gonadotropin (hCG) during fetal life and luteinizing hormone (LH) in adulthood. Several animal and human studies have linked vitamin D status with sex steroid production although it is not clear whether there exist a direct or indirect involvement in androgen production. Few studies have investigated this crosslink in young healthy men and putative direct or synergistic effect of activated vitamin D (1,25(OH)2D3) and LH/hCG on sex steroid production in vitro. Here, we present cross-sectional data from 300 young men and 41 hCG-stimulated men with impaired Leydig cell function combined with data from an ex vivo culture of human testicular tissue exposed to 1,25(OH)2D3 alone or in combination with hCG. Serum 25-OHD was positively associated with SHBG (ß:0.002; p = 0.023) and testosterone/estradiol-ratio (ß:0.001; p = 0.039), and inversely associated with free testosterone (%) (free testosterone/total testosterone) (ß:-0.002; p = 0.016) in young men. Vitamin D deficient men had higher total and free estradiol concentrations than men with higher vitamin D status (19% and 18%, respectively; p < 0.01). Interestingly, men with impaired Leydig cell function and vitamin D deficiency had a significantly lower hCG-mediated increase in total and free testosterone compared with vitamin D sufficient men (p < 0.05). Accordingly, testicular tissue exposed to 100 nM 1,25(OH)2D3 had a 15% higher testosterone release into the media compared with vehicle treated specimens (p = 0.030). In conclusion, vitamin D deficiency is associated with lower testosterone/estradiol ratio in young men and lower Leydig cell sensitivity after hCG-stimulation in men with impaired gonadal function. The significant effect of 1,25(OH)2D3 on testosterone production in a human testis model supports that the stimulatory effect at least in part may be direct. Larger placebo-controlled studies are needed to determine whether vitamin D supplementation can influence testosterone production.


Assuntos
Hormônios Esteroides Gonadais/genética , Células Intersticiais do Testículo/metabolismo , Testosterona/biossíntese , Vitamina D/metabolismo , Adulto , Androgênios/biossíntese , Androgênios/genética , Animais , Gonadotropina Coriônica/genética , Estradiol/genética , Hormônios Esteroides Gonadais/biossíntese , Hormônios Esteroides Gonadais/metabolismo , Humanos , Células Intersticiais do Testículo/patologia , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Masculino , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Testosterona/genética , Vitamina D/genética , Deficiência de Vitamina D/genética , Deficiência de Vitamina D/metabolismo , Deficiência de Vitamina D/patologia , Adulto Jovem
11.
J Steroid Biochem Mol Biol ; 198: 105550, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31778803

RESUMO

The production of 11-ketotestosterone (11KT), an important steroid hormone in piscine spermatogenesis, is regulated by the pituitary gonadotropins [Gths: follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh)] and it is synthesized by catalytic reactions involving several steroidogenic enzymes. Among these enzymes, the role of 17ß-hydroxysteroid dehydrogenases (Hsd17bs) that exhibited 17-ketosteroid reducing activity (17KSR activity) responsible for 11KT synthesis is still poorly understood. In the present study, for the deeper understanding of testicular 11KT biosynthesis, we first investigated the steroidogenic pathway to produce 11KT in Japanese eel testis. In vitro incubation of the testis with androstenedione (A4) and the subsequent analysis of the metabolites by thin-layer chromatography indicated that 11KT was synthesized from A4 via 11ß-hydroxyandrostenedione (11OHA4) and 11-ketoandrostenedione (11KA4), which indicated that the steroidogenic enzyme exhibiting the 17KSR activity responsible for converting 11KA4 to 11KT is crucial for 11KT production. Subsequently, cDNAs encoding three candidate enzymes, Hsd17b type3 (Hsd17b3), Hsd17b type12a (Hsd17b12a), and 20ß-hydroxysteroid dehydrogenase type2 (Hsd20b2), potentially with the 17KSR activity were isolated and characterized in the Japanese eel. The isolated hsd17b3, hsd17b12a, and hsd20b2 cDNAs putatively encoded 308, 314, and 327 amino acid residues with high homology to those of other vertebrate counterparts, respectively. The Hsd17b3, Hsd17b12a, and Hsd20b2 expressed either in HEK293T or in Hepa-E1 converted 11KA4 to 11KT. Tissue-distribution analysis by quantitative real time PCR revealed that hsd17b12a and hsd20b2 mRNAs were detected in the testis, while hsd17b3 mRNA was not detectable. Furthermore, we examined the effects of Gths on the 17KSR activity and the expression of the candidate genes in the immature testis. The 17KSR activity was upregulated by administration of Gths. Furthermore, only expression of hsd17b12a among three candidates was upregulated by Gths as well as the 17KSR activity. These findings strongly suggested that Hsd17b12a is one of the enzymes with 17KSR activity responsible for 11KT synthesis in the testis of Japanese eel.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Anguilla/metabolismo , Testículo/efeitos dos fármacos , Testosterona/análogos & derivados , Androstenodiona/farmacologia , Animais , Cromatografia em Camada Delgada , Etiquetas de Sequências Expressas , Masculino , Proteínas Recombinantes/química , Esteroides/metabolismo , Testículo/metabolismo , Testosterona/biossíntese , Regulação para Cima
12.
Gen Comp Endocrinol ; 288: 113371, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857076

RESUMO

Mammalian bombesin-related peptide, neuromedin B (NMB) action is mediated by its receptor (NMBR), and NMB/NMBR system plays a major role in regulating hormone secretions, reproduction and cell growth. Here we report the functions of NMB in regulating steroidogenesis (testosterone synthesis), cell viability and apoptosis. The primary rabbit Leydig cells were employed as the paradigm for this research. We initially confirmed that NMBR is distributed in Leydig cells of rabbit testis, and a certain dose of NMB could increase the secretion of testosterone in primary cultured rabbit Leydig cells. Subsequently, the accumulated NMBR, StAR, CYP11A1, 3ß-HSD and PKC protein could be induced by a certain dose of NMB in Leydig cells. Moreover, we found that NMB could decrease the cell viability, and decreased the expression of PCNA protein in Leydig cells; meanwhile, except for 100 nM, other doses of NMB could suppress the cell apoptosis, and regulate Caspase-3 protein expression in Leydig cells, respectively. These results identify that NMB may be a key factor in regulating testosterone synthesis through taking part in NMBR/PKC/steroidogenesis signaling pathway, as well as the cell viability and proliferation in rabbit Leydig cells.


Assuntos
Apoptose/efeitos dos fármacos , Hormônios Esteroides Gonadais/biossíntese , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/fisiologia , Neurocinina B/análogos & derivados , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Lipogênese/efeitos dos fármacos , Lipogênese/fisiologia , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Neurocinina B/farmacologia , Coelhos , Receptores da Bombesina/metabolismo , Testosterona/biossíntese , Testosterona/metabolismo
13.
Food Chem Toxicol ; 135: 111057, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31846720

RESUMO

Prenatal nicotine exposure (PNE) may lead to offspring's testicular dysplasia. Here, we confirmed the intergenerational effect of PNE on testosterone synthetic function and explored its epigenetic programming mechanism. Pregnant Wistar rats were injected subcutaneously with nicotine (2 mg/kg.d) from gestational day 9-20. Some dams were anesthetized to obtain fetal rats, the rest were allowed to spontaneous labor to generate F1 and F2 generation. In utero, PNE impaired testicular development and testosterone production. Meanwhile, the expression of steroidogenic acute regulatory protein (StAR) and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) were decreased both in F1 and F2 generations. Furthermore, PNE enhanced the expression of fetal testicular nicotinic acetylcholine receptors (nAChRs) and histone deacetylase 4 (HDAC4), while obviously weakened histone 3 lysine 9 acetylation (H3K9ac) level of StAR/3ß-HSD promoter from GD20 to postnatal week 12 and even in F2 generation. In vitro, nicotine increased nAChRs and HDAC4 expression, and decreased the StAR/3ß-HSD H3K9ac level and expression, as well as the testosterone production in Leydig cells. Antagonism of nAChRs and inhibition of HDAC4 reversed the aforementioned changes. In conclusion, PNE programmed testicular low steroidogenesis and its heritability in male offspring rats. The underlying mechanism was associated to the low-level programming of StAR/3ß-HSD H3K9ac via nAChR/HDAC4.


Assuntos
Epigênese Genética/efeitos dos fármacos , Histona Desacetilases/metabolismo , Comportamento Materno , Nicotina/administração & dosagem , Receptores Nicotínicos/metabolismo , Testículo/efeitos dos fármacos , Testosterona/biossíntese , Idoso , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Nicotina/farmacologia , Gravidez , Ratos , Ratos Wistar , Testículo/embriologia , Testículo/metabolismo
14.
Endocrinology ; 161(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31875919

RESUMO

Testosterone production occurs in the Leydig cells of the testes and is essential for virilization, development, reproduction, and quality of life. Although the steroidogenic proteins involved in cholesterol conversion to testosterone (T) are well characterized, the causes of reduced T during fetal, neonatal, and adult life remain uncertain. It is well established that normal cellular function is achieved through fine-tuning of multiple rather than single protein networks. Our objective was to use mass spectrometry (MS)-based proteomics to identify which cellular pathways, other than the steroidogenic machinery, influence testosterone production in MA-10 mouse tumor Leydig cells. The 14-3-3 family of scaffolds mediate protein-protein interactions facilitating the crosstalk between protein networks. We previously showed that in MA-10 cells, 14-3-3γ is a critical regulator of steroidogenesis. Therefore, identifying proteins that interact with 14-3-3γ during steroidogenesis could provide clues into the other networks involved. Using liquid chromatography (LC)-MS, we identified 688 proteins that interact with 14-3-3γ and thus potentially impact MA-10 cell steroidogenesis. The identified proteins belong to multiple protein networks, including endoplasmic reticulum-Golgi cargo sorting and vesicle biogenesis, micro ribonucleic acid-induced gene silencing, inflammation, and vesicle trafficking, to name a few. We found that silencing one of the candidates, Sec23ip, a protein known to be involved in vesicle trafficking, resulted in decreased steroidogenesis. We further showed that in Sec23ip-silenced MA-10 cells, cholesterol mobilization from the cytoplasmic membrane to mitochondria is impaired. Taken together these data suggest that Sec23ip is involved in cholesterol trafficking to supply cholesterol for acute steroidogenesis through its interactions with 14-3-3γ.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Transporte/metabolismo , Células Intersticiais do Testículo/metabolismo , Testosterona/biossíntese , Animais , Linhagem Celular Tumoral , Colesterol/metabolismo , Masculino , Camundongos
15.
Hum Reprod ; 34(12): 2443-2455, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31858131

RESUMO

STUDY QUESTION: Can the organ culture method be applied to both fresh and cryopreserved human (pre)pubertal testicular tissue as a strategy for in vitro spermatogenesis? SUMMARY ANSWER: Although induction of spermatogenesis was not achieved in vitro, testicular architecture, endocrine function and spermatogonial proliferation were maintained in both fresh and cryopreserved testicular tissues. WHAT IS KNOWN ALREADY: Cryopreservation of a testicular biopsy is increasingly offered as a fertility preservation strategy for prepubertal cancer patients. One of the proposed experimental approaches to restore fertility is the organ culture method, which, in the mouse model, successfully allows for in vitro development of spermatozoa from testicular biopsies. However, complete spermatogenesis from human prepubertal testicular tissue in such an organ culture system has not been demonstrated. STUDY DESIGN, SIZE, DURATION: Testicular tissue was collected from nine (pre)pubertal boys diagnosed with cancer (ranging from 6 to 14 years of age) admitted for fertility preservation before treatment. Testicular biopsies were either immediately processed for culture or first cryopreserved, using a controlled slow freezing protocol, and thawed before culture. Organ culture of testicular fragments was performed in two different media for a maximum period of 5 weeks, targeting early cellular events (viability, meiosis and somatic differentiation) in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS: Fresh and cryopreserved-thawed testis fragments (1-2 mm3) were cultured at a gas-liquid interphase (34°C, 5% CO2) in Minimum Essential Medium alpha + 10% knock-out serum replacement medium containing 10-7 M melatonin and 10-6 M retinoic acid, with or without 3 IU/L FSH/LH supplementation. The effect of culture conditions on testicular fragments was weekly assessed by histological evaluation of germ cell development and immunohistochemical identification of spermatogonia (using MAGEA4), proliferative status of spermatogonia and Sertoli cells (using proliferating cell nuclear antigen [PCNA]), intratubular cell apoptosis (by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) and Sertoli cells maturation (using Anti-Müllerian Hormone [AMH] versus Androgen Receptor [AR]). Additionally, Leydig cells' functionality was determined by measuring testosterone concentration in the culture media supernatants. MAIN RESULTS AND THE ROLE OF CHANCE: Neither fresh nor cryopreserved human (pre)pubertal testicular fragments were able to initiate spermatogenesis in our organ culture system. Nonetheless, our data suggest that fresh and cryopreserved testicular fragments have comparable functionality in the described organ culture conditions, as reflected by the absence of significant differences in any of the weekly evaluated functional parameters. Additionally, no significant differences were found between the two tested media when culturing fresh and cryopreserved human testicular fragments. Although spermatogonia survived and remained proliferative in all culture conditions, a significant reduction of the spermatogonial population (P ≤ 0.001) was observed over the culture period, justified by a combined reduction of proliferation activity (P ≤ 0.001) and increased intratubular cell apoptosis (P ≤ 0.001). We observed a transient increase in Sertoli cell proliferative activity, loss of AMH expression (P ≤ 0.001) but no induction of AR expression. Leydig cell endocrine function was successfully stimulated in vitro as indicated by increased testosterone production in all conditions throughout the entire culture period (P ≤ 0.02). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Although not noticeable in this study, we cannot exclude that if an optimized culture method ensuring complete spermatogenesis in human testicular fragments is established, differences in functional or spermatogenic efficiency between fresh and cryopreserved tissue might be found. WIDER IMPLICATIONS OF THE FINDINGS: The current inability to initiate spermatogenesis in vitro from cryopreserved human testicular fragments should be included in the counselling of patients who are offered testicular tissue cryopreservation to preserve fertility. STUDY FUNDING/COMPETING INTEREST(S): This project was funded by EU-FP7-PEOPLE-2013-ITN 603568 `Growsperm'. None of the authors have competing interests. TRIAL REGISTRATION NUMBER: Not applicable.


Assuntos
Criopreservação , Preservação da Fertilidade/métodos , Técnicas de Cultura de Órgãos , Testículo , Adolescente , Sobrevivência Celular , Criança , Humanos , Masculino , Células de Sertoli/fisiologia , Espermatogônias/fisiologia , Testosterona/biossíntese
16.
Biomolecules ; 9(10)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561560

RESUMO

In female mammals, germ cells enter meiosis in the fetal ovaries, while in males, meiosis is prevented until postnatal development. Retinoic acid (RA) is considered the main inducer of meiotic entry, as it stimulates Stra8 which is required for the mitotic/meiotic switch. In fetal testes, the RA-degrading enzyme CYP26B1 prevents meiosis initiation. However, the role of endogenous RA in female meiosis entry has never been demonstrated in vivo. In this study, we demonstrate that some effects of RA in mouse fetal gonads are not recapitulated by the invalidation or up-regulation of CYP26B1. In organ culture of fetal testes, RA stimulates testosterone production and inhibits Sertoli cell proliferation. In the ovaries, short-term inhibition of RA-signaling does not decrease Stra8 expression. We develop a gain-of-function model to express CYP26A1 or CYP26B1. Only CYP26B1 fully prevents STRA8 induction in female germ cells, confirming its role as part of the meiotic prevention machinery. CYP26A1, a very potent RA degrading enzyme, does not impair the formation of STRA8-positive cells, but decreases Stra8 transcription. Collectively, our data reveal that CYP26B1 has other activities apart from metabolizing RA in fetal gonads and suggest a role of endogenous RA in amplifying Stra8, rather than being the initial inducer of Stra8. These findings should reactivate the quest to identify meiotic preventing or inducing substances.


Assuntos
Gônadas/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Gônadas/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Receptores do Ácido Retinoico/metabolismo , Testosterona/análise , Testosterona/biossíntese
17.
Anim Genet ; 50(6): 705-711, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31476086

RESUMO

The genetic background of disorders of sex development (DSD) in dogs with a normal male sex chromosome set (78,XY) is poorly described. In this study, we present for the first time, an analysis of six genes of the testosterone pathway, encoding enzymes (CYP17A1, HSD3B2, HSD17B3, SRD5A2) and transcription factors (NR5A1, AR). The entire coding sequence and flanking regions of the introns, 5'-UTR and 3'-UTR were analyzed in five DSD dogs (78,XY, SRY-positive) with ambiguous external genitalia and in 15 control dogs. A homozygous deletion of 2 bp in exon 2 of HSD17B3 (hydroxysteroid 17-beta dehydrogenase 3) was found in a Dachshund dog with enlarged clitoris, vulva and abdominal gonads and decreased serum testosterone level. In silico analysis revealed that this deleterious variant causes truncation of the encoded polypeptide (from 306 to 65 amino acids) and deprivation of the active site of the encoded enzyme. Genotyping of 23 control Dachshund dogs showed a normal homozygous genotype. Thus, we assumed that the 2-bp deletion is the causative variant. Moreover, 24 SNPs (four in CYP17A1, three in HSD3B2, six in HSD17B3, five in SRD5A2, one in AR and five in NR5A1), two intronic indels (one in HSD3B2 and one in SRD5A2) and two microsatellite polymorphisms in exon 1 of AR were found. Six SNPs appeared to be novel. No association with DSD phenotype was observed. Identification of the first case of DSD in domestic animals caused by a deleterious variant of a gene involved in testosterone synthesis showed that these genes are important candidates in such studies.


Assuntos
Transtornos do Desenvolvimento Sexual/veterinária , Doenças do Cão/genética , Testosterona/biossíntese , 17-Hidroxiesteroide Desidrogenases/genética , Animais , Códon de Terminação , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/patologia , Cães , Feminino , Deleção de Genes , Genitália/patologia , Masculino , Testosterona/sangue
18.
Int J Toxicol ; 38(6): 493-500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31451011

RESUMO

Trimethyltin (TMT) is widely used as a plastic heat stabilizer and can cause severe toxicity. Here, the effects of TMT on testosterone production by adult Leydig cells and the related mechanisms of action were investigated. Eighteen adult male Sprague Dawley rats (56 days old) were randomly divided into 3 groups and given intraperitoneal injection of TMT for 21 consecutive days at the doses of 0 (vehicle control), 5, or 10 mg/kg/d. After treatment, trunk blood was collected for hormonal analysis. In addition, related gene and protein expression in testes was detected. At 10 mg/kg, TMT significantly reduced serum testosterone levels but increased serum luteinizing and follicle-stimulating hormone levels. The messenger RNA and protein levels of luteinizing hormone/chorionic gonadotropin receptor, steroidogenic acute regulatory protein, cytochrome P450 17-hydroxylase/17,20-lyase, follicle-stimulating hormone receptor, and SRY box 9 were significantly lower in the TMT-treated testes than in controls. Immunohistochemical study showed that TMT decreased adult Leydig cell number. In conclusion, these findings indicate that TMT reduced adult Leydig cell testosterone production in vivo by directly downregulating the expression of steroidogenic enzymes and decreasing adult Leydig cell number in the testis.


Assuntos
Células Intersticiais do Testículo/efeitos dos fármacos , Testosterona/biossíntese , Compostos de Trimetilestanho/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intraperitoneais , Células Intersticiais do Testículo/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células de Sertoli/metabolismo , Testículo/efeitos dos fármacos , Testosterona/sangue , Compostos de Trimetilestanho/administração & dosagem
19.
Int J Nanomedicine ; 14: 4601-4611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31296989

RESUMO

Introduction: The ratio of Ce3+/Ce4+ in their structure confers unique functions on cerium oxide nanoparticles (CeO2NPs) containing rare earth elements in scavenging free radicals and protecting against oxidative damage. The potential of CeO2NPs to protect testosterone synthesis in primary mouse Leydig cells during exposure to 1,800 MHz radiofrequency (RF) radiation was examined in vitro. Methods: Leydig cells were treated with different concentrations of CeO2NPs to identify the optimum concentration for cell proliferation. The cells were pretreated with the optimum dose of CeO2NPs for 24 hrs and then exposed to 1,800 MHz RF at a power density of 200.27 µW/cm2 (specific absorption rate (SAR), 0.116 W/kg) for 1 hr, 2 hrs, or 4 hrs. The medium was used to measure the testosterone concentration. The cells were collected to determine the antioxidant indices (catalase [CAT], malondialdehyde [MDA], and total antioxidant capacity [T-AOC]), and the mRNA expression of the testosterone synthase genes (Star, Cyp11a1, and Hsd-3ß) and clock genes (Clock, Bmal1, and Rorα). Results: Our preliminary result showed that 128 µg/mL CeO2NPs was the optimum dose for cell proliferation. Cells exposed to RF alone showed reduced levels of testosterone, T-AOC, and CAT activities, increased MDA content, and the downregulated genes expression of Star, Cyp11a1, Hsd-3ß, Clock, Bmal1, and Rorα. Pretreatment of the cells with 128 µg/mL CeO2NPs for 24 hrs followed by RF exposure significantly increased testosterone synthesis, upregulated the expression of the testosterone synthase and clock genes, and increased the resistance to oxidative damage in Leydig cells compared with those in cells exposed to RF alone. Conclusion: Exposure to 1,800 MHz RF had adverse effects on testosterone synthesis, antioxidant levels, and clock gene expression in primary Leydig cells. Pretreatment with CeO2NPs prevented the adverse effects on testosterone synthesis induced by RF exposure by regulating their antioxidant capacity and clock gene expression in vitro. Further studies of the mechanism underlying the protective function of CeO2NPs against RF in the male reproductive system are required.


Assuntos
Antioxidantes/farmacologia , Cério/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Ondas de Rádio/efeitos adversos , Testosterona/biossíntese , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Proliferação de Células/efeitos dos fármacos , Cério/química , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Intersticiais do Testículo/fisiologia , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Nanopartículas/química
20.
Toxicol Lett ; 314: 53-62, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31319113

RESUMO

Benzyl butyl phthalate (BBP) is a widely used plasticizer and has raised public health concerns. Here, we report the effects of BBP on the testis development during rat puberty. BBP (0, 10, 100 or 1000 mg/kg) was gavaged to 35-day-old male Sprague Dawley rats for 21 days. The serum testosterone levels, Leydig cell number, the expressions of Leydig and Sertoli cell genes and proteins were measured. The in vitro effects on steroidogenesis and gene expression in immature Leydig cells were observed. BBP significantly increased serum testosterone level at 10 mg/kg but lowered its level at 1000 mg/kg without affecting serum luteinizing hormone and follicle-stimulating hormone levels. BBP increased Leydig cell number at all doses but inhibited steroidogenic capacity per Leydig cell at 1000 mg/kg. BBP significantly increased the ratio of phosphos-AKT2 (pAKT2)/AKT2, and phosphos-ERK1/2 (pERK1/2)/ERK1/2 in the testis. Mono-benzyl phthalate (the metabolite of BBP) inhibited steroidogenesis but BBP did not affect androgen production in immature Leydig cells in vitro. In conclusion, BBP non-linearly regulates Leydig cell development by increasing Leydig cell number but inhibiting steroidogenesis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Plastificantes/toxicidade , Desenvolvimento Sexual/efeitos dos fármacos , Testosterona/biossíntese , Fatores Etários , Animais , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Masculino , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...