Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.268
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 69(9): 854-861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34470949

RESUMO

Proviral integration site for Moloney murine leukemia virus (PIM) kinases are proto-oncogenic kinases involved in the regulation of several cellular processes. PIM kinases are promising targets for new drug development because they play a major role in many cancer-specific pathways, such as survival, apoptosis, proliferation, cell cycle regulation, and migration. Here, 2-thioxothiazolidin-4-one derivatives were synthesized and evaluated as potent pan-PIM kinase inhibitors. Optimized compounds showed single-digit nanomolar IC50 values against all three PIM kinases with high selectivity over 14 other kinases. Compound 17 inhibited the growth of Molm-16 cell lines (EC50 = 14 nM) and modulated the expression of pBAD and p4EBP1 in a dose-dependent manner.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Tiazolidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/química , Células Tumorais Cultivadas
2.
Nat Commun ; 12(1): 4969, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404787

RESUMO

Multimeric cytoskeletal protein complexes orchestrate normal cellular function. However, protein-complex distributions in stressed, heterogeneous cell populations remain unknown. Cell staining and proximity-based methods have limited selectivity and/or sensitivity for endogenous multimeric protein-complex quantification from single cells. We introduce micro-arrayed, differential detergent fractionation to simultaneously detect protein complexes in hundreds of individual cells. Fractionation occurs by 60 s size-exclusion electrophoresis with protein complex-stabilizing buffer that minimizes depolymerization. Proteins are measured with a ~5-hour immunoassay. Co-detection of cytoskeletal protein complexes in U2OS cells treated with filamentous actin (F-actin) destabilizing Latrunculin A detects a unique subpopulation (~2%) exhibiting downregulated F-actin, but upregulated microtubules. Thus, some cells may upregulate other cytoskeletal complexes to counteract the stress of Latrunculin A treatment. We also sought to understand the effect of non-chemical stress on cellular heterogeneity of F-actin. We find heat shock may dysregulate filamentous and globular actin correlation. In this work, our assay overcomes selectivity limitations to biochemically quantify single-cell protein complexes perturbed with diverse stimuli.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Heterogeneidade Genética , Actinas/genética , Actinas/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Diferenciação Celular , Linhagem Celular , Resposta ao Choque Térmico , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Análise de Célula Única/métodos , Tiazolidinas/farmacologia
3.
Molecules ; 26(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279400

RESUMO

BACKGROUND: Infectious diseases still affect large populations causing significant morbidity and mortality. Bacterial and fungal infections for centuries were the main factors of death and disability of millions of humans. Despite the progress in the control of infectious diseases, the appearance of resistance of microbes to existing drugs creates the need for the development of new effective antimicrobial agents. In an attempt to improve the antibacterial activity of previously synthesized compounds modifications to their structures were performed. METHODS: Nineteen thiazolidinone derivatives with 6-Cl, 4-OMe, 6-CN, 6-adamantan, 4-Me, 6-adamantan substituents at benzothiazole ring were synthesized and evaluated against panel of four bacterial strains S. aureus, L. monocytogenes, E. coli and S. typhimirium and three resistant strains MRSA, E. coli and P. aeruginosa in order to improve activity of previously evaluated 6-OCF3-benzothiazole-based thiazolidinones. The evaluation of minimum inhibitory and minimum bactericidal concentration was determined by microdilution method. As reference compounds ampicillin and streptomycin were used. RESULTS: All compounds showed antibacterial activity with MIC in range of 0.12-0.75 mg/mL and MBC at 0.25->1.00 mg/mL The most active compound among all tested appeared to be compound 18, with MIC at 0.10 mg/mL and MBC at 0.12 mg/mL against P. aeruginosa. as well as against resistant strain P. aeruginosa with MIC at 0.06 mg/mL and MBC at 0.12 mg/mL almost equipotent with streptomycin and better than ampicillin. Docking studies predicted that the inhibition of LD-carboxypeptidase is probably the possible mechanism of antibacterial activity of tested compounds. CONCLUSION: The best improvement of antibacterial activity after modifications was achieved by replacement of 6-OCF3 substituent in benzothiazole moiety by 6-Cl against S. aureus, MRSA and resistant strain of E. coli by 2.5 folds, while against L. monocytogenes and S. typhimirium from 4 to 5 folds.


Assuntos
Anti-Infecciosos/síntese química , Inibidores de Proteases/síntese química , Tiazolidinas/síntese química , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/química , Carboxipeptidases/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Tiazolidinas/farmacologia
4.
Biomed Pharmacother ; 139: 111684, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243632

RESUMO

PPARγ regulate the expression of genes involved in peripheral insulin sensitivity, adipogenesis, and glucose homeostasis. Moreover, PPARγ agonists, such as pioglitazone and rosiglitazone, are used in the treatment of various diseases, e.g. diabetes (type II), atherosclerosis, inflammatory skin disease, and some types of cancers. PPARγ agonists have also been found to reduce oxidative-stress (OS) and OS-induced apoptosis. Therefore, the aim of the present study was to evaluate the impact of 4-thiazolidinone-based derivatives Les-2194, Les-3377, and Les-3640 on the expression of antioxidant enzymes in human squamous cell carcinoma (SCC-15), lung carcinoma (A549), colon adenocarcinoma (CACO-2), and skin fibroblast (BJ) cell lines. After 24 h of exposure, Les-2194 caused an increase in ROS production in the SCC-15 and CACO-2 cell lines; however, no changes in caspase-3 activity and metabolic activity were observed. Nevertheless, the Ki67 level was significantly decreased. Les-3377 was able to increase ROS production in all tested cell lines, but no impact on metabolic activity and caspase-3 activity were noticed. In turn, Les-3640 was able to induce ROS overproduction in BJ, SCC-15, and CACO-2 and did not affect metabolic activity. However, an increase in caspase-3 activity was observed at the 10 µM concentration in all tested cell lines. All tested compounds were able to influence CAT and SOD1 expression and decreased (Les-2194 in the BJ cells) or increased (Les-3640 in the SCC-15 and CACO-2 cells) PPARγ expression.


Assuntos
Antioxidantes/metabolismo , Pioglitazona/farmacologia , Rosiglitazona/farmacologia , Tiazolidinas/farmacologia , Células A549 , Apoptose/efeitos dos fármacos , Células CACO-2 , Caspase 3/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Neoplasias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Molecules ; 26(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065476

RESUMO

A series of novel 5-[(Z,2Z)-2-chloro-3-(4-nitrophenyl)-2-propenylidene]-thiazolidinones (Ciminalum-thiazolidinone hybrid molecules) have been synthesized. Anticancer activity screening toward the NCI60 cell lines panel, gastric cancer (AGS), human colon cancer (DLD-1), and breast cancer (MCF-7 and MDA-MB-231) cell lines allowed the identification of 3-{5-[(Z,2Z)-2-chloro-3-(4-nitrophenyl)-2-propenylidene]-4-oxo-2-thioxothiazolidin-3-yl}propanoic acid (2h) with the highest level of antimitotic activity with mean GI50/TGI values of 1.57/13.3 µM and a certain sensitivity profile against leukemia (MOLT-4, SR), colon cancer (SW-620), CNS cancer (SF-539), melanoma (SK-MEL-5), gastric cancer (AGS), human colon cancer (DLD-1), and breast cancers (MCF-7 and MDA-MB-231) cell lines. The hit compounds 2f, 2i, 2j, and 2h have been found to have low toxicity toward normal human blood lymphocytes and a fairly wide therapeutic range. The significant role of the 2-chloro-3-(4-nitrophenyl)prop-2-enylidene (Ciminalum) substituent in the 5 position and the substituent's nature in the position 3 of core heterocycle in the anticancer cytotoxicity levels of 4-thiazolidinone derivatives have been established.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Tiazolidinas/química , Tiazolidinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Análise Espectral/métodos , Relação Estrutura-Atividade
6.
Chem Biol Interact ; 345: 109538, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34097888

RESUMO

Nowadays, diabetes mellitus type 2 (T2DM) is a serious problem in western European societies and in the United States. Thiazolidinediones (TZDs) are a broad group of compounds used to decrease insulin resistance in TDM2. To date, it has been believed that TZDs act mainly through activation of peroxisome proliferator-activated receptor gamma (PPARγ). The PPARγ receptor is important in differentiation of preadipocytes into mature adipocytes. Therefore, given the potential of structurally related thiopyrano[2,3-d]thiazoles Les-2194 and Les-3377 and 4-thiazolidinone derivative Les-3640 to interact with the PPARγ receptor, the aim of the present study was to evaluate the impact of the 4-thiazolidinone-based derivatives mentioned above on the process of 3T3-L1 cell line differentiation into adipocytes. In the first part of our study, we prove that Les-2194, Les-3377, and Les-3640 are cytotoxic to 3T3-L1 cells. In the next stage, we determine that Les-2194, Les-3377, and Les-3640 stimulate lipid accumulation (using the ORO staining method) and induce specific gene expression (Dlk1, Fabp4, Vegfa, Pai-1, Resistin, Adiponectin, and Pparγ). Our data show that rosiglitazone, pioglitazone, Les-2194, and Les-3640 at a concentration of 2 µM do not affect 3T3-L1 cell viability and do not activate the apoptotic process. Only Les-3377 decreased the number and metabolism of the cells. Although all the studied compounds influenced the expression of Dlk1, Fabp4, Vegfa, Pai-1, Resistin, Adiponectin, and Pparγ genes, none of them caused gene expression similar to that induced by rosiglitazone or pioglitazone. The ORO staining showed that rosiglitazone and pioglitazone induced lipid accumulation in the 3T3-L1 cell line, which is a marker of mature adipocytes. Only rosiglitazone increased Pparγ protein expression after 14 days of differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Tiazolidinas/química , Tiazolidinas/farmacologia , Células 3T3-L1 , Animais , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos
7.
Int J Parasitol Drugs Drug Resist ; 16: 129-139, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34102589

RESUMO

Treatments for toxoplasmosis such as pyrimethamine have shown numerous side effects. It has been reported that the likelihood of relapse associated with pyrimethamine-based therapy in patients with HIV and toxoplasmic encephalitis (TE) can have significant implications, even for patients who often develop new lesions in areas of the brain previously free of infection. This led us to research for new agents against Toxoplasma gondii. Recent findings have shown the potent biological activity of 4-thiazolidinones. We proposed to design and synthesize a new series of 2-hydrazono-4-thiazolidinones derivatives to evaluate the in vitro growth inhibition effect on T. gondii. The growth rates of T. gondii tachyzoites in Human Foreskin Fibroblast (HFF) cell culture were identified by two in vitro methodologies. The first one was by fluorescence in which green fluorescent RH parasites and cherry-red fluorescent ME49 parasites were used. The second one was a colorimetric methodology using ß-Gal parasites of the RH strain constitutively expressing the enzyme beta-galactosidase. The 4-thiazolidinone derivatives 1B, 2B and 3B showed growth inhibition at the same level of Pyrimethamine. These compounds showed IC50 values of 1B (0.468-0.952 µM), 2B (0.204-0.349 µM) and 3B (0.661-1.015 µM) against T. gondii. As a measure of cytotoxicity the compounds showed a TD50 values of: 1B (60 µM), 2B (206 µM) and 3B (125 µM). The in vitro assays and molecular modeling results suggest that these compounds could act as possible inhibitors of the Calcium-Dependent Protein Kinase 1 of T. gondii. Further, our results support the fact that of combining appropriate detection technologies, combinatorial chemistry and computational biology is a good strategy for efficient drug discovery. These compounds merit in vivo analysis for anti-parasitic drug detection.


Assuntos
Antiprotozoários , Toxoplasma , Toxoplasmose , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Humanos , Tiazolidinas/farmacologia , Tiazolidinas/uso terapêutico , Toxoplasmose/tratamento farmacológico
8.
Biomed Pharmacother ; 139: 111678, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33964802

RESUMO

In this study we present design and synthesis of nineteen new nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold (NO-IND-TZDs) (6a-s), as a new safer and efficient multi-targets strategy for inflammatory diseases. The chemical structure of all synthesized derivatives (intermediaries and finals) was proved by NMR and mass spectroscopic analysis. In order to study the selectivity of NO-IND-TZDs for COX isoenzymes (COX-1 and COX-2) a molecular docking study was performed using AutoDock 4.2.6 software. Based on docking results, COX-2 inhibitors were designed and 6o appears as the most selective derivative which showed an improved selective index compared with indomethacin (IND) and diclofenac (DCF), used as reference drugs. The biological evaluation of 6a-s, using in vitro assays has included the anti-inflammatory and antioxidant effects as well as the nitric oxide (NO) release. Referring to the anti-inflammatory effects, the most active compound was 6i, which was more active than IND and aspirin (ASP) in term of denaturation effect, on bovine serum albumin (BSA), as indirect assay to predict the anti-inflammatory effect. An appreciable anti-inflammatory effect, in reference with IND and ASP, was also showed by 6k, 6c, 6q, 6o, 6j, 6d. The antioxidant assay revealed the compound 6n as the most active, being 100 times more active than IND. The compound 6n showed also the most increase capacity to release NO, which means is safer in terms of gastro-intestinal side effects. The ADME-Tox study revealed also that the NO-IND-TZDs are generally proper for oral administration, having optimal physico-chemical and ADME properties. We can conclude that the compounds 6i and 6n are promising agents and could be included in further investigations to study in more detail their pharmaco-toxicological profile.


Assuntos
Indometacina/análogos & derivados , Indometacina/farmacologia , Doadores de Óxido Nítrico/farmacologia , Tiazolidinas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Aspirina/farmacologia , Simulação por Computador , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Diclofenaco/farmacologia , Desenho de Fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Indometacina/química , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/toxicidade , Soroalbumina Bovina/química , Relação Estrutura-Atividade
9.
Chem Biol Interact ; 345: 109514, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34023282

RESUMO

Chagas disease causes more deaths in the Americas than any other parasitic disease. Initially confined to the American continent, it is increasingly becoming a global health problem. In fact, it is considered to be an "exotic" disease in Europe, being virtually undiagnosed. Benznidazole, the only drug approved for treatment, effectively treats acute-stage Chagas disease, but its effectiveness for treating indeterminate and chronic stages remains uncertain. Previously, our research group demonstrated that 4-thiazolidinones presented anti-T. cruzi activity including in the in vivo assays in mice, making this fragment appealing for drug development. The present work reports the synthesis and anti-T. cruzi activities of a novel series of 4-thiazolidinones derivatives that resulted in an increased anti-T. cruzi activity in comparison to thiosemicarbazones intermediates. Compounds 2c, 2e, and 3a showed potent inhibition of the trypomastigote form of the parasite at low cytotoxicity concentrations in mouse splenocytes. Besides, all the 2c, 2e, and 3a tested concentrations showed no cytotoxic activity on macrophages cell viability. When macrophages were submitted to T. cruzi infection and treated with 2c and 3a, compounds reduced the release of trypomastigote forms. Results also showed that the increased trypanocidal activity induced by 2c and 3a is independent of nitric oxide release. Flow cytometry assay showed that compound 2e was able to induce necrosis and apoptosis in trypomastigotes. Parasites treated with the compounds 2e, 3a, and 3c presented flagellum shortening, retraction and curvature of the parasite body, and extravasation of the internal content. Together, these data revealed a novel series of 4-thiazolidinones fragment-based compounds with potential effects against T. cruzi and lead-like characteristics.


Assuntos
Cloro/química , Desenho de Fármacos , Tiazolidinas/síntese química , Tiazolidinas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Camundongos , Relação Estrutura-Atividade , Tiazolidinas/química , Tripanossomicidas/química
10.
Chem Biol Interact ; 345: 109536, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34058176

RESUMO

In this study, seven new 4-oxothiazolidine derivatives were synthesized and assayed, along 7 known derivatives, for inhibitory properties against deoxyribonuclease I (DNase I) and xanthine oxidase (XO) in vitro. Among tested compounds, (5Z)-Ethyl-2-(2-(cyanomethylene)-4-oxothiazolidin-5-yliden)acetate (6) exhibited inhibitory activity against both enzymes (DNase I IC50 = 67.94 ± 5.99 µM; XO IC50 = 98.98 ± 13.47 µM), therefore being the first reported dual inhibitor of DNase I and XO. Observed DNase I inhibition qualifies compound 6 as the most potent small organic DNase I inhibitor reported so far. Derivatives of 2-alkyliden-4-oxothiazolidinone (1) inhibited DNase I below 200 µM, while the other tested 4-oxothiazolidine derivatives remained inactive against both enzymes. The molecular docking and molecular dynamics simulations into the binding sites of DNase I and XO enzyme allowed us to clarify the binding modes of this 4-oxothiazolidine derivative, which might aid future development of dual DNase I and XO.


Assuntos
Desoxirribonuclease I/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Tiazolidinas/síntese química , Tiazolidinas/farmacologia , Xantina Oxidase/antagonistas & inibidores , Técnicas de Química Sintética , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Tiazolidinas/química , Tiazolidinas/metabolismo , Xantina Oxidase/química , Xantina Oxidase/metabolismo
11.
Bioorg Med Chem Lett ; 41: 128025, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33839251

RESUMO

The molecular chaperone, Heat Shock Protein 70 (Hsp70), is an emerging drug target for neurodegenerative diseases, because of its ability to promote degradation of microtubule-associated protein tau (MAPT/tau). Recently, we reported YM-08 as a brain penetrant, allosteric Hsp70 inhibitor, which reduces tau levels. However, the benzothiazole moiety of YM-08 is vulnerable to metabolism by CYP3A4, limiting its further application as a chemical probe. In this manuscript, we designed and synthesized seventeen YM-08 derivatives by systematically introducing halogen atoms to the benzothiazole ring and shifting the position of the heteroatom in a distal pyridine. In microsome assays, we found that compound JG-23 has 12-fold better metabolic stability and it retained the ability to reduce tau levels in two cell-based models. These chemical probes of Hsp70 are expected to be useful tools for studying tau homeostasis.


Assuntos
Benzotiazóis/farmacologia , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Tiazolidinas/farmacologia , Proteínas tau/antagonistas & inibidores , Benzotiazóis/síntese química , Benzotiazóis/química , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/química , Proteínas tau/metabolismo
12.
Front Immunol ; 12: 625284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790895

RESUMO

The Mas-related G-protein-coupled receptor X2 (MRGPRX2) is prominently expressed by mast cells and induces degranulation upon binding by different ligands. Its activation has been linked to various mast cell-related diseases, such as chronic spontaneous urticaria, atopic dermatitis and asthma. Therefore, inhibition of MRGPRX2 activity represents a therapeutic target for these conditions. However, the exact pathophysiology of this receptor is still unknown. In vitro research with mast cells is often hampered by the technical limitations of available cell lines. The human mast cell types LAD2 and HuMC (human mast cells cultured from CD34+ progenitor cells) most closely resemble mature human mast cells, yet have a very slow growth rate. A fast proliferating alternative is the human mast cell line HMC1, but they are considered unsuitable for degranulation assays due to their immature phenotype. Moreover, the expression and functionality of MRGPRX2 on HMC1 is controversial. Here, we describe the MRGPRX2 expression and functionality in HMC1 cells, and compare these with LAD2 and HuMC. We also propose a model to render HMC1 suitable for degranulation assays by pre-incubating them with latrunculin-B (Lat-B). Expression of MRGPRX2 by HMC1 was proven by RQ-PCR and flowcytometry, although at lower levels compared with LAD2 and HuMC. Pre-incubation of HMC1 cells with Lat-B significantly increased the overall degranulation capacity, without significantly changing their MRGPRX2 expression, phenotype or morphology. The MRGPRX2 specific compound 48/80 (C48/80) effectively induced degranulation of HMC1 as measured by CD63 membrane expression and ß-hexosaminidase release, albeit in lower levels than for LAD2 or HuMC. HMC1, LAD2 and HuMC each had different degranulation kinetics upon stimulation with C48/80. Incubation with the MRGPRX2 specific inhibitor QWF inhibited C48/80-induced degranulation, confirming the functionality of MRGPRX2 on HMC1. In conclusion, HMC1 cells have lower levels of MRGPRX2 expression than LAD2 or HuMC, but are attractive for in vitro research because of their high growth rate and stable phenotype. HMC1 can be used to study MRGPRX2-mediated degranulation after pre-incubation with Lat-B, which provides the opportunity to explore MPRGRX2 biology in mast cells in a feasible way.


Assuntos
Degranulação Celular , Mastócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Degranulação Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Ligantes , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de IgE/metabolismo , Transdução de Sinais , Tetraspanina 30/metabolismo , Tiazolidinas/farmacologia , beta-N-Acetil-Hexosaminidases/metabolismo , p-Metoxi-N-metilfenetilamina/farmacologia
13.
Bioorg Chem ; 111: 104827, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798845

RESUMO

A new set of derivatives bearing pyrazole-methylenehydrazono-thiazolidinone scaffold 4-23 was designed, synthesized and confirmed by different spectroscopic means and elemental analyses. In-vivo anti-inflammatory and ulcerogenic evaluation was performed for all the newly synthesized derivatives using indomethacin, celecoxib and diclofenac as standard drugs. The compounds 5, 10, 15, 17, 21, 22 appeared to be the most promising candidates producing rapid onset and long duration of anti-inflammatory activity as well as promising GIT safety profile. Furthermore, analgesic evaluation revealed that the compounds 5, 10, 15 and 22 produced potent and long acting analgesia accompanied with significant inhibition of the inflammatory cytokine TNF-α level in comparison with the standard drugs. Molecular docking study of the latter derivatives was also carried out to rationalize their binding affinities and their modes of interactions with the active site of TNF-α.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antiulcerosos/farmacologia , Pirazóis/farmacologia , Tiazolidinas/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Analgésicos/síntese química , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antiulcerosos/síntese química , Antiulcerosos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Feminino , Hemorragia Gastrointestinal/tratamento farmacológico , Hemorragia Gastrointestinal/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Tiazolidinas/química , Fator de Necrose Tumoral alfa/metabolismo
14.
Int J Nanomedicine ; 16: 2789-2801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33880024

RESUMO

Objective: Gold nanorods (AuNRs) show great potential for versatile biomedical applications, such as stem cell therapy and bone tissue engineering. However, as an indispensable shape-directing agent for the growth of AuNRs, cetyltrimethylammonium bromide (CTAB) is not optimal for biological studies because it forms a cytotoxic bilayer on the AuNR surface, which interferes with the interactions with biological cells. Methods: Citrate-stabilized AuNRs with various aspect-ratios (Cit-NRI, Cit-NRII, and Cit-NRIII) were prepared by the combination of end-selective etching and poly(sodium 4-styrenesulfonate)-assisted ligand exchange method. Their effects on osteogenic differentiation of the pre-osteoblastic cell line (MC3T3-E1), rat bone marrow mesenchymal stem cells (rBMSCs), and human periodontal ligament progenitor cells (PDLPs) have been investigated. Potential signaling pathway of citrate-stabilized AuNRs-induced osteogenic effects was also investigated. Results: The experimental results showed that citrate-stabilized AuNRs have superior biocompatibility and undergo aspect-ratio-dependent osteogenic differentiation via expression of osteogenic marker genes, alkaline phosphatase (ALP) activity and formation of mineralized nodule. Furthermore, Wnt/ß-catenin signaling pathway might provide a potential explanation for the citrate-stabilized AuNRs-mediated osteogenic differentiation. Conclusion: These findings revealed that citrate-stabilized AuNRs with great biocompatibility could regulate the osteogenic differentiation of multiple cell types through Wnt/ß-catenin signaling pathway, which promote innovative AuNRs in the field of tissue engineering and other biomedical applications.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ácido Cítrico/farmacologia , Ouro/farmacologia , Nanotubos/química , Osteogênese/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Células Cultivadas , Cetrimônio/farmacologia , Endocitose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Nanotubos/ultraestrutura , Osteogênese/genética , Ligamento Periodontal/citologia , Ratos , Tiazolidinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos
15.
Biochem Biophys Res Commun ; 549: 40-46, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33662667

RESUMO

Pancreatic cancer is a major malignant tumor without an effective treatment. KRAS mutations occur in 90% of the pancreatic cancer patients and are a major obstacle for treatment of pancreatic cancer. Pancreatic cancer patients have been treated with limited chemotherapeutic agents such as gemcitabine. However, patients often develop resistance to gemcitabine that is attributed to KRAS mutations. Gemcitabine treatment activates both the Wnt/ß-catenin and RAS/ERK pathways. These signaling pathways are also activated in the gemcitabine-resistant pancreatic cancer cell lines, suggesting that they play an important role in gemcitabine resistance in pancreatic cancer. The gemcitabine-resistant cell lines show enhanced migratory and invasive capabilities than their parental lines. Therefore, we investigated the effects of a small molecule, KYA1797K that degrades both ß-catenin and RAS, on pancreatic cancer. KYA1797K decreased the expression level of both ß-catenin and KRAS in pancreatic cancer cell lines expressing either wild-type or mutant KRAS. It also suppressed migration and invasion of gemcitabine-resistant and parental pancreatic cancer cells. Overall, we demonstrated that inhibiting the Wnt/ß-catenin and RAS/ERK pathways by destabilizing ß-catenin and RAS could be a therapeutic approach to overcome gemcitabine resistance in pancreatic cancer.


Assuntos
Desoxicitidina/análogos & derivados , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Tiazolidinas/farmacologia , beta Catenina/metabolismo
16.
Biochem Biophys Res Commun ; 553: 119-125, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33765556

RESUMO

Excessive activation of inflammation in chondrocyte has been considered to be a major reason cause of cellular death and degeneration in osteoarthritis (OA) development. The NLRP3 inflammasome-mediated pyroptosis pathway is closely related to inflammation regulation. This research was conducted to confirm whether NLRP3 expression and activity are impacted in the development of OA and to detect the role of CY-09, a selective and direct inhibitor of NLRP3 in the in vitro and in vivo models of OA. Our findings corroborated that the expression of NLRP3 is stimulated in OA cartilage. CY-09 can maintain extracellular matrix (ECM) homeostasis and regulate inflammation in TNF-α treated chondrocytes via inhibition of NLRP3 inflammasome-mediated pyroptosis. Moreover, the chondrocyte protective effects of CY-09 were further confirmed in vivo in a DMM-induced OA model. In conclusion, our research indicates that experimental OA activated the NLRP3 activity, and pharmacological inhibition of NLRP3 inflammasome activation by CY-09 protects chondrocytes against inflammation and attenuates OA development.


Assuntos
Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Osteoartrite/tratamento farmacológico , Substâncias Protetoras/farmacologia , Piroptose/efeitos dos fármacos , Tiazolidinas/farmacologia , Tionas/farmacologia , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Modelos Animais de Doenças , Progressão da Doença , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Feminino , Homeostase/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoartrite/patologia , Osteoartrite/prevenção & controle , Fator de Necrose Tumoral alfa/farmacologia
17.
J Med Chem ; 64(7): 4034-4058, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33779184

RESUMO

A new solid-phase peptide synthesis and bioprofiling of the antimicrobial activity of lugdunin, a fibupeptide, enable a comprehensive structure-activity relationship (SAR) study (MRSA Staphylococcus aureus). Distinct lugdunin analogues with variation of the three important amino acids Val2, Trp3, and Leu4 are readily available based on the established high-output synthesis. This efficient synthesis concept takes advantage of the presynthesized thiazolidine building block. To gain further knowledge of SAR, d-Val2, and d-Leu4 were replaced with aliphatic amino acids. For l-Trp3 derivatization, a set of non-natural aromatic amino acids with manifold substitution and annulation patterns precisely shows structural imperatives, starting from the exchange of d-Val6 → d-Trp6 with a 2-fold improved biological activity. d-Trp6-lugdunin analogues with additional variation of d-Val2 and d-Leu4 residues were designed and synthesized followed by antimicrobial profiling. For the first time, these SAR studies deliver valuable information on the tolerance of other amino acids to d-Val2, l-Trp3, and d-Leu4 in the sequence of lugdunin.


Assuntos
Antibacterianos/farmacologia , Peptídeos Cíclicos/farmacologia , Tiazolidinas/farmacologia , Antibacterianos/síntese química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Relação Estrutura-Atividade , Tiazolidinas/síntese química
18.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525649

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by decreased glucose metabolism and increased neuroinflammation. Hexokinase (HK) is the key enzyme of glucose metabolism and is associated with mitochondria to exert its function. Recent studies have demonstrated that the dissociation of HK from mitochondria is enough to activate the NOD-like receptor protein 3 (NLRP3) inflammasome and leads to the release of interleukin-1ß (IL-1ß). However, the effect of increased IL-1ß on the expression of HK is still unclear in AD. In this paper, we used positron emission tomography (PET), Western blotting and immunofluorescence to study the glucose metabolism, and the expression and distribution of HK in AD. Furthermore, we used lipopolysaccharide (LPS), nigericin (Nig), CY-09 and lonidamine (LND) to treat N2a and N2a-sw cells to investigate the link between IL-1ß and HK in AD. The results show decreased expression of HK and the dissociation of HK from mitochondria in AD. Furthermore, a reduction of the expression of IL-1ß could increase the expression of HK in AD. These results suggest that inhibiting inflammation may help to restore glucose metabolism in AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Hexoquinase/metabolismo , Interleucina-1beta/metabolismo , Doença de Alzheimer/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Hexoquinase/genética , Humanos , Indazóis/farmacologia , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Transgênicos , Nigericina/farmacologia , Tomografia por Emissão de Pósitrons , Tiazolidinas/farmacologia , Tionas/farmacologia , Regulação para Cima
19.
Plant Signal Behav ; 16(4): 1876348, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33576719

RESUMO

Gravitropism plays a critical role in the growth and development of plants. Previous reports proposed that the disruption of the actin cytoskeleton resulted in enhanced gravitropism; however, the mechanism underlying these phenomena is still unclear. In the present study, real-time observation on the effect of Latrunculin B (Lat B), a depolymerizing agent of microfilament cytoskeleton, on gravitropism of the primary root of Arabidopsis was undertaken using a vertical stage microscope. The results indicated that Lat B treatment prevented the growth of root, and the growth rates of upper and lower flanks of the horizontally placed root were asymmetrically inhibited. The growth of the lower flank was influenced by Lat B more seriously, resulting in an increased differential growth rate between the upper and lower flanks of the root. Further analysis indicated that Lat B affected cell growth mainly in the transition and elongation zones. Briefly, the current data revealed that Lat B treatment inhibited cell elongation, especially the cells in the lower flanks of the transition and elongation zones, which finally manifested as the facilitation of gravitropic curvature of the primary root.


Assuntos
Arabidopsis/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Gravitropismo/efeitos dos fármacos , Raízes de Plantas/citologia , Raízes de Plantas/fisiologia , Tiazolidinas/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Arabidopsis/efeitos dos fármacos , Meristema/efeitos dos fármacos , Meristema/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
20.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558236

RESUMO

The number and activity of Cav1.2 channels in the cardiomyocyte sarcolemma tunes the magnitude of Ca2+-induced Ca2+ release and myocardial contraction. ß-Adrenergic receptor (ßAR) activation stimulates sarcolemmal insertion of CaV1.2. This supplements the preexisting sarcolemmal CaV1.2 population, forming large "superclusters" wherein neighboring channels undergo enhanced cooperative-gating behavior, amplifying Ca2+ influx and myocardial contractility. Here, we determine this stimulated insertion is fueled by an internal reserve of early and recycling endosome-localized, presynthesized CaV1.2 channels. ßAR-activation decreased CaV1.2/endosome colocalization in ventricular myocytes, as it triggered "emptying" of endosomal CaV1.2 cargo into the t-tubule sarcolemma. We examined the rapid dynamics of this stimulated insertion process with live-myocyte imaging of channel trafficking, and discovered that CaV1.2 are often inserted into the sarcolemma as preformed, multichannel clusters. Similarly, entire clusters were removed from the sarcolemma during endocytosis, while in other cases, a more incremental process suggested removal of individual channels. The amplitude of the stimulated insertion response was doubled by coexpression of constitutively active Rab4a, halved by coexpression of dominant-negative Rab11a, and abolished by coexpression of dominant-negative mutant Rab4a. In ventricular myocytes, ßAR-stimulated recycling of CaV1.2 was diminished by both nocodazole and latrunculin-A, suggesting an essential role of the cytoskeleton in this process. Functionally, cytoskeletal disruptors prevented ßAR-activated Ca2+ current augmentation. Moreover, ßAR-regulation of CaV1.2 was abolished when recycling was halted by coapplication of nocodazole and latrunculin-A. These findings reveal that ßAR-stimulation triggers an on-demand boost in sarcolemmal CaV1.2 abundance via targeted Rab4a- and Rab11a-dependent insertion of channels that is essential for ßAR-regulation of cardiac CaV1.2.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Sarcolema/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Células Cultivadas , Endossomos/metabolismo , Feminino , Ventrículos do Coração/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Nocodazol/farmacologia , Transporte Proteico , Tiazolidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...