Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 629
Filtrar
1.
Am J Physiol Cell Physiol ; 321(5): C770-C778, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495765

RESUMO

Skeletal muscle is an endocrine organ secreting exercise-induced factors (exerkines), which play a pivotal role in interorgan cross talk. Using mass spectrometry (MS)-based proteomics, we characterized the secretome and identified thymosin ß4 (TMSB4X) as the most upregulated secreted protein in the media of contracting C2C12 myotubes. TMSB4X was also acutely increased in the plasma of exercising humans irrespective of the insulin resistance condition or exercise mode. Treatment of mice with TMSB4X did not ameliorate the metabolic disruptions associated with diet induced-obesity, nor did it enhance muscle regeneration in vivo. However, TMSB4X increased osteoblast proliferation and neurite outgrowth, consistent with its WADA classification as a prohibited growth factor. Therefore, we report TMSB4X as a human exerkine with a potential role in cellular cross talk.


Assuntos
Proliferação de Células/efeitos dos fármacos , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Timosina/metabolismo , Timosina/farmacologia , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Humanos , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Osteoblastos/patologia , Resistência Física , Proteômica , Transdução de Sinais , Espectrometria de Massas em Tandem
2.
Theranostics ; 11(16): 7879-7895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335970

RESUMO

Rationale: Previous studies have shown that human embryonic stem cell-derived cardiomyocytes improved myocardial recovery when administered to infarcted pig and non-human primate hearts. However, the engraftment of intramyocardially delivered cells is poor and the effectiveness of clinically relevant doses of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in large animal models of myocardial injury remains unknown. Here, we determined whether thymosin ß4 (Tb4) could improve the engraftment and reparative potency of transplanted hiPSC-CMs in a porcine model of myocardial infarction (MI). Methods: Tb4 was delivered from injected gelatin microspheres, which extended the duration of Tb4 administration for up to two weeks in vitro. After MI induction, pigs were randomly distributed into 4 treatment groups: the MI Group was injected with basal medium; the Tb4 Group received gelatin microspheres carrying Tb4; the CM Group was treated with 1.2 × 108 hiPSC-CMs; and the Tb4+CM Group received both the Tb4 microspheres and hiPSC-CMs. Myocardial recovery was assessed by cardiac magnetic resonance imaging (MRI), arrhythmogenesis was monitored with implanted loop recorders, and tumorigenesis was evaluated via whole-body MRI. Results: In vitro, 600 ng/mL of Tb4 protected cultured hiPSC-CMs from hypoxic damage by upregulating AKT activity and BcL-XL and promoted hiPSC-CM and hiPSC-EC proliferation. In infarcted pig hearts, hiPSC-CM transplantation alone had a minimal effect on myocardial recovery, but co-treatment with Tb4 significantly enhanced hiPSC-CM engraftment, induced vasculogenesis and the proliferation of cardiomyocytes and endothelial cells, improved left ventricular systolic function, and reduced infarct size. hiPSC-CM implantation did not increase incidence of ventricular arrhythmia and did not induce tumorigenesis in the immunosuppressed pigs. Conclusions: Co-treatment with Tb4-microspheres and hiPSC-CMs was safe and enhanced the reparative potency of hiPSC-CMs for myocardial repair in a large-animal model of MI.


Assuntos
Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Timosina/farmacologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , China , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Regeneração , Transplante de Células-Tronco/métodos , Suínos , Timosina/metabolismo , Timosina/fisiologia
3.
Biomolecules ; 11(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070204

RESUMO

The amount of bonds between constituting parts of a protein aggregate were determined in wild type (WT) and A53T α-synuclein (αS) oligomers, amyloids and in the complex of thymosin-ß4-cytoplasmic domain of stabilin-2 (Tß4-stabilin CTD). A53T αS aggregates have more extensive ßsheet contents reflected by constant regions at low potential barriers in difference (to monomers) melting diagrams (MDs). Energies of the intermolecular interactions and of secondary structures bonds, formed during polymerization, fall into the 5.41 kJ mol-1 ≤ Ea ≤ 5.77 kJ mol-1 range for αS aggregates. Monomers lose more mobile hydration water while forming amyloids than oligomers. Part of the strong mobile hydration water-protein bonds break off and these bonding sites of the protein form intermolecular bonds in the aggregates. The new bonds connect the constituting proteins into aggregates. Amyloid-oligomer difference MD showed an overall more homogeneous solvent accessible surface of A53T αS amyloids. From the comparison of the nominal sum of the MDs of the constituting proteins to the measured MD of the Tß4-stabilin CTD complex, the number of intermolecular bonds connecting constituent proteins into complex is 20(1) H2O/complex. The energies of these bonds are in the 5.40(3) kJ mol-1 ≤ Ea ≤ 5.70(5) kJ mol-1 range.


Assuntos
Amiloide/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Timosina/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Moléculas de Adesão Celular Neuronais/química , Humanos , Modelos Moleculares , Mutação , Agregados Proteicos , Conformação Proteica em Folha beta , Domínios Proteicos , Mapeamento de Interação de Proteínas , Espectroscopia de Prótons por Ressonância Magnética , Timosina/química , Água/química , alfa-Sinucleína/genética
4.
Cells ; 10(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807338

RESUMO

Thymosin ß4 (Tß4) is a small, 44-amino acid polypeptide. It has been implicated in multiple processes, including cell movement, angiogenesis, and stemness. Previously, we reported that melanoma cell lines differ in Tß4 levels. Studies on stable clones with silenced TMSB4X expression showed that Tß4 impacted adhesion and epithelial-mesenchymal transition progression. Here, we show that the cells with silenced TMSB4X expression exhibited altered actin cytoskeleton's organization and subcellular relocalization of two intermediate filament proteins: Nestin and Vimentin. The rearrangement of the cell cytoskeleton resulted in changes in the cells' topology, height, and stiffness defined by Young's modulus. Simultaneously, only for some A375 clones with a lowered Tß4 level, we observed a decreased ability to initiate colony formation in soft agar, tumor formation in vivo, and alterations in Nanog's expression level transcription factor regulating stemness. Thus, we show for the first time that in A375 cells, biomechanical properties are not directly coupled to stemness features, and this cell line is phenotypically heterogeneous.


Assuntos
Inativação Gênica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Timosina/metabolismo , Citoesqueleto de Actina/metabolismo , Biomarcadores Tumorais/metabolismo , Fenômenos Biomecânicos , Carcinogênese/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Forma Celular , Humanos , Filamentos Intermediários/metabolismo , Melanoma/patologia , Modelos Biológicos , Nestina/metabolismo , Vimentina/metabolismo
5.
Sci Rep ; 11(1): 6499, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753796

RESUMO

The adrenal gland responds to heat stress by epinephrine and glucocorticoid release to alleviate the adverse effects. This study investigated the effect of acute heat stress on the protein profile and histone modification in the adrenal gland of layer-type country chickens. A total of 192 roosters were subject to acute heat stress and thereafter classified into a resistant or susceptible group according to body temperature change. The iTRAQ analysis identified 80 differentially expressed proteins, in which the resistant group had a higher level of somatostatin and hydroxy-δ-5-steroid dehydrogenase but a lower parathymosin expression in accordance with the change of serum glucocorticoid levels. Histone modification analysis identified 115 histone markers. The susceptible group had a higher level of tri-methylation of histone H3 lysine 27 (H3K27me3) and showed a positive crosstalk with K36me and K37me in the H3 tails. The differential changes of body temperature projected in physiological regulation at the hypothalamus-pituitary-adrenal axis suggest the genetic heterogeneity in basic metabolic rate and efficiency for heat dissipation to acclimate to thermal stress and maintain body temperature homeostasis. The alteration of adrenal H3K27me3 level was associated with the endocrine function of adrenal gland and may contribute to the thermotolerance of chickens.


Assuntos
Glândulas Suprarrenais/metabolismo , Galinhas/metabolismo , Resposta ao Choque Térmico , Código das Histonas , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas/genética , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Masculino , Timosina/análogos & derivados , Timosina/genética , Timosina/metabolismo
6.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33784254

RESUMO

Vascular stability and tone are maintained by contractile smooth muscle cells (VSMCs). However, injury-induced growth factors stimulate a contractile-synthetic phenotypic modulation which increases susceptibility to abdominal aortic aneurysm (AAA). As a regulator of embryonic VSMC differentiation, we hypothesized that Thymosin ß4 (Tß4) may function to maintain healthy vasculature throughout postnatal life. This was supported by the identification of an interaction with low density lipoprotein receptor related protein 1 (LRP1), an endocytic regulator of platelet-derived growth factor BB (PDGF-BB) signaling and VSMC proliferation. LRP1 variants have been implicated by genome-wide association studies with risk of AAA and other arterial diseases. Tß4-null mice displayed aortic VSMC and elastin defects that phenocopy those of LRP1 mutants, and their compromised vascular integrity predisposed them to Angiotensin II-induced aneurysm formation. Aneurysmal vessels were characterized by enhanced VSMC phenotypic modulation and augmented PDGFR-ß signaling. In vitro, enhanced sensitivity to PDGF-BB upon loss of Tß4 was associated with dysregulated endocytosis, with increased recycling and reduced lysosomal targeting of LRP1-PDGFR-ß. Accordingly, the exacerbated aneurysmal phenotype in Tß4-null mice was rescued upon treatment with the PDGFR-ß antagonist Imatinib. Our study identifies Tß4 as a key regulator of LRP1 for maintaining vascular health, and provides insights into the mechanisms of growth factor-controlled VSMC phenotypic modulation underlying aortic disease progression.


Assuntos
Aneurisma da Aorta Abdominal/prevenção & controle , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Timosina/farmacologia , Angiotensina II/efeitos adversos , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Becaplermina/genética , Becaplermina/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/genética , Timosina/genética , Timosina/metabolismo
7.
Int J Med Sci ; 18(5): 1247-1258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33526986

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) that is one of the most commonly used phthalates in manufacturing plastic wares regulates tumorigenesis. Thymosin beta-4 (TB4), an actin-sequestering protein, has been reported as a novel regulator to form primary cilia that are antenna-like organelles playing a role in various physiological homeostasis and pathological development including tumorigenesis. Here, we investigated whether DEHP affects tumor growth via primary cilium (PC) formation via the axis of TB4 gene expression and the production of reactive oxygen species (ROS). Tumor growth was increased by DEHP treatment that enhanced TB4 expression, PC formation and ROS production. The number of cells with primary cilia was enhanced time-dependently higher in HeLa cells incubated in the culture medium with 0.1% fetal bovine serum (FBS). The number of cells with primary cilia was decreased by the inhibition of TB4 expression. The incubation of cells with 0.1% FBS enhanced ROS production and the transcriptional activity of TB4 that was reduced by ciliobrevin A (CilioA), the inhibitor of ciliogenesis. ROS production was decreased by catalase treatment but not by mito-TEMPO, which affected to PC formation with the same trend. H2O2 production was reduced by siRNA-based inhibition of TB4 expression. H2O2 also increased the number of ciliated cells, which was reduced by siRNA-TB4 or the co-incubation with CilioA. Tumor cell viability was maintained by ciliogenesis, which was correlated with the changes of intracellular ATP amount rather than a simple mitochondrial enzyme activity. TB4 overexpression enhanced PC formation and DEHP-induced tumor growth. Taken together, data demonstrate that DEHP-induced tumor growth might be controlled by PC formation via TB4-H2O2 axis. Therefore, it suggests that TB4 could be a novel bio-marker to expect the risk of DEHP on tumor growth.


Assuntos
Dietilexilftalato/toxicidade , Peróxido de Hidrogênio/metabolismo , Melanoma Experimental/patologia , Plastificantes/toxicidade , Neoplasias Cutâneas/patologia , Timosina/metabolismo , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Sobrevivência Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Dietilexilftalato/administração & dosagem , Células HEK293 , Células HeLa , Humanos , Injeções Intraperitoneais , Masculino , Melanoma Experimental/induzido quimicamente , Camundongos , Plastificantes/administração & dosagem , Neoplasias Cutâneas/induzido quimicamente
8.
J Cell Mol Med ; 25(3): 1350-1358, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33393222

RESUMO

The hair follicle (HF) is an important mini-organ of the skin, composed of many types of cells. Dermal papilla cells are important signalling components that guide the proliferation, upward migration and differentiation of HF stem cell progenitor cells to form other types of HF cells. Thymosin ß4 (Tß4), a major actin-sequestering protein, is involved in various cellular responses and has recently been shown to play key roles in HF growth and development. Endogenous Tß4 can activate the mouse HF cycle transition and affect HF growth and development by promoting the migration and differentiation of HF stem cells and their progeny. In addition, exogenous Tß4 increases the rate of hair growth in mice and promotes cashmere production by increasing the number of secondary HFs (hair follicles) in cashmere goats. However, the molecular mechanisms through which Tß4 promotes HF growth and development have rarely been reported. Herein, we review the functions and mechanisms of Tß4 in HF growth and development and describe the endogenous and exogenous actions of Tß4 in HFs to provide insights into the roles of Tß4 in HF growth and development.


Assuntos
Folículo Piloso/citologia , Folículo Piloso/fisiologia , Organogênese , Timosina/genética , Timosina/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Crescimento e Desenvolvimento/efeitos dos fármacos , Crescimento e Desenvolvimento/genética , Folículo Piloso/efeitos dos fármacos , Humanos , Organogênese/efeitos dos fármacos , Transdução de Sinais , Relação Estrutura-Atividade , Timosina/química , Timosina/farmacologia
9.
Nat Commun ; 12(1): 84, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398012

RESUMO

The disruption in blood supply due to myocardial infarction is a critical determinant for infarct size and subsequent deterioration in function. The identification of factors that enhance cardiac repair by the restoration of the vascular network is, therefore, of great significance. Here, we show that the transcription factor Zinc finger E-box-binding homeobox 2 (ZEB2) is increased in stressed cardiomyocytes and induces a cardioprotective cross-talk between cardiomyocytes and endothelial cells to enhance angiogenesis after ischemia. Single-cell sequencing indicates ZEB2 to be enriched in injured cardiomyocytes. Cardiomyocyte-specific deletion of ZEB2 results in impaired cardiac contractility and infarct healing post-myocardial infarction (post-MI), while cardiomyocyte-specific ZEB2 overexpression improves cardiomyocyte survival and cardiac function. We identified Thymosin ß4 (TMSB4) and Prothymosin α (PTMA) as main paracrine factors released from cardiomyocytes to stimulate angiogenesis by enhancing endothelial cell migration, and whose regulation is validated in our in vivo models. Therapeutic delivery of ZEB2 to cardiomyocytes in the infarcted heart induces the expression of TMSB4 and PTMA, which enhances angiogenesis and prevents cardiac dysfunction. These findings reveal ZEB2 as a beneficial factor during ischemic injury, which may hold promise for the identification of new therapies.


Assuntos
Isquemia/patologia , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Movimento Celular/genética , Proliferação de Células/genética , Dependovirus/metabolismo , Regulação da Expressão Gênica , Humanos , Isquemia/genética , Camundongos Knockout , Modelos Biológicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica/genética , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Timosina/análogos & derivados , Timosina/genética , Timosina/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
10.
Mol Cell Biochem ; 476(2): 1303-1312, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33301106

RESUMO

The sheared avian intestinal villus-crypts exhibit high tendency to self-repair and develop enteroids in culture. Presuming that this transition process involves differential biomolecular changes, we employed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) to find whether there were differences in the spectral profiles of sheared villi versus the enteroids, assessed in the mass range of 2-18 kDa. The results showed substantial differences in the intensities of the spectral peaks, one particularly corresponding to the mass of 4963 Da, which was significantly low in the sheared villus-crypts compared with the enteroids. Based on our previous results with other avian tissues and further molecular characterization by LC-ESI-IT-TOF-MS, and multiple reaction monitoring (MRM), the peak was identified to be thymosin ß4 (Tß4), a ubiquitously occurring regulatory peptide implicated in wound healing process. The identity of the peptide was further confirmed by immunohistochemistry which showed it to be present in a very low levels in the sheared villi but replete in the enteroids. Since Tß4 sequesters G-actin preventing its polymerization to F-actin, we compared the changes in F-actin by its immunohistochemical localization that showed no significant differences between the sheared villi and enteroids. We propose that depletion of Tß4 likely precedes villous reparation process. The possible mechanism for the differences in Tß4 profile in relation to the healing of the villus-crypts to developing enteroids is discussed.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Mucosa Intestinal/citologia , Espectrometria de Massas/métodos , Proteoma/metabolismo , Timosina/metabolismo , Cicatrização , Animais , Técnicas de Cultura de Células/métodos , Galinhas , Mucosa Intestinal/metabolismo , Proteoma/análise
11.
Life Sci Alliance ; 3(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33087487

RESUMO

This study reports that parathymosin (PTMS) is secreted by hypothalamic stem/progenitor cells (htNSC) to inhibit senescence of recipient cells such as fibroblasts. Upon release, PTMS is rapidly transferred into the nuclei of various cell types, including neuronal GT1-7 cells and different peripheral cells, and it is effectively transferred into neuronal nuclei in various brain regions in vivo. Notably, brain neurons also produce and release PTMS, and because neuronal populations are large, they are important for maintaining PTMS in the cerebrospinal fluid which is further transferable into the blood. Compared with several other brain regions, the hypothalamus is stronger for long-distance PTMS transfer, supporting a key hypothalamic role in this function. In physiology, aging is associated with declines in PTMS production and transfer in the brain, and ptms knockdown in the hypothalamus versus hippocampus were studied showing different contributions to neurobehavioral physiology. In conclusion, the brain is an endocrine organ through secretion and nuclear transfer of PTMS, and the hypothalamus-brain orchestration of this function is protective in physiology and counteractive against aging-related disorders.


Assuntos
Secreções Corporais/metabolismo , Hipotálamo/metabolismo , Timosina/análogos & derivados , Animais , Encéfalo/metabolismo , Glândulas Endócrinas/metabolismo , Fibroblastos/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Células-Tronco/metabolismo , Timosina/metabolismo , Timosina/fisiologia
12.
Clin Sci (Lond) ; 134(18): 2435-2445, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32909608

RESUMO

High-risk pregnancies, such as pregnancies with gestational diabetes mellitus (GDM), are becoming more common and as such, have become important public health issues worldwide. GDM increases the risks of macrosomia, premature infants, and preeclampsia. Although placental dysfunction, including fibrosis is associated with the development of GDM, factors that link these observations remain unknown. Prothymosin α (ProTα) is expressed in the placenta and is involved in cell proliferation and immunomodulation. It also plays an important role in insulin resistance and fibrosis. However, the role of ProTα in GDM is still unclear. In the present study, we found that fibrosis-related protein expressions, such as type I collagen (Col-1) were significantly increased in the placentae of ProTα transgenic mice. With elevated fibrosis-related protein expressions, placental weights significantly increased in GDM group. In addition, placental and circulating ProTα levels were significantly higher in patients with GDM (n=39), compared with the healthy group (n=102), and were positively correlated with Col-1 expression. Mice with streptozotocin (STZ)-induced GDM had increased ProTα, fasting blood glucose, Col-1, and placental weight, whereas plasma insulin levels were decreased. ProTα overexpression enhanced nuclear factor κB (NFκB) activation to increase fibrosis-related protein expressions in 3A-Sub-E trophoblasts, while treatment with an NFκB inhibitor reversed the effect of ProTα on fibrosis-related protein expressions. We further investigated whether ProTα is regulated by hyperglycemia-induced reactive oxygen species (ROS). In conclusion, ProTα increases the amount of placental connective tissue and thus contributes to the pathogenesis of placental fibrosis in GDM. Therefore, ProTα may be a novel therapeutic target for GDM.


Assuntos
Colágeno Tipo I/metabolismo , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Placenta/patologia , Precursores de Proteínas/metabolismo , Timosina/análogos & derivados , Adulto , Animais , Diabetes Gestacional/genética , Feminino , Fibrose , Regulação da Expressão Gênica , Humanos , Hiperglicemia/complicações , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Timosina/metabolismo , Trofoblastos/metabolismo
13.
Int J Mol Med ; 46(4): 1347-1358, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32945357

RESUMO

Thymosin­ß 4 (Tß4) has been reported to exert a pro­angogenic effect on endothelial cells. However, little is known on the role and underlying mechanisms of Tß4 on critical limb ischemia (CLI). The present study aimed therefore to investigate the mechanisms and pro­angiogenic effects of Tß4 in CLI mice. Tß4 overexpression lentiviral vector was first transfected into HUVEC and CLI mice model, and inhibitors of Notch pathway (DAPT) and NF­κB pathway (BMS) were also applied to HUVEC and CLI mice. Subsequently, MTT, tube formation and wound healing assays were used to determine the cell viability, angiogenesis and migratory ablity of HUVEC, respectively. Western blotting, reverse transcription, quantitative PCR, immunofluorescence and immunohistochemistry were used to detect the expression of the angiogenesis­related factors angiopoietin­2 (Ang2), TEK receptor tyrosine kinase 2 (tie2), vascular endothelial growth factor A (VEGFA), CD31 and α­smooth muscle actin (α­SMA) and the Notch/NF­κB pathways­related factors NOTCH1 intracellular domain (N1ICD), Notch receptor 3 (Notch3), NF­κB and p65 in HUVEC or CLI mice muscle tissues. The results demonstrated that Tß4 not only enhanced the cell viability, angiogenesis and migratory ability of HUVEC but also promoted the expression of Ang2, tie2, VEGFA, N1ICD, Notch3, NF­κB, and phosphorylated (p)­p65 in HUVEC. In addition, Tß4 promoted the expression of CD31, α­SMA Ang2, tie2, VEGFA, N1ICD and p­p65 in CLI mice muscle tissues. Treatment with DAPT and BMS had opposite effects of Tß4, whereas Tß4 reversed the effect of DAPT and BMS. The findings from the present study suggested that Tß4 may promote angiogenesis in CLI mice via regulation of Notch/NF­κB pathways.


Assuntos
Isquemia/metabolismo , NF-kappa B/metabolismo , Neovascularização Patológica/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Timosina/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Life Sci Alliance ; 3(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32817121

RESUMO

The advent of immune checkpoint inhibitors has represented a major boost in cancer therapy, but safety concerns are increasingly being recognized. Indeed, although beneficial at the tumor site, unlocking a safeguard mechanism of the immune response may trigger autoimmune-like effects at the periphery, thus making the safety of immune checkpoint inhibitors a research priority. Herein, we demonstrate that thymosin α1 (Tα1), an endogenous peptide with immunomodulatory activities, can protect mice from intestinal toxicity in a murine model of immune checkpoint inhibitor-induced colitis. Specifically, Tα1 efficiently prevented immune adverse pathology in the gut by promoting the indoleamine 2,3-dioxygenase (IDO) 1-dependent tolerogenic immune pathway. Notably, Tα1 did not induce IDO1 in the tumor microenvironment, but rather modulated the infiltration of T-cell subsets by inverting the ratio between CD8+ and Treg cells, an effect that may depend on Tα1 ability to regulate the differentiation and chemokine expression profile of DCs. Thus, through distinct mechanisms that are contingent upon the context, Tα1 represents a plausible candidate to improve the safety/efficacy profile of immune checkpoint inhibitors.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Timalfasina/metabolismo , Timalfasina/farmacologia , Animais , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/metabolismo , Timalfasina/fisiologia , Timosina/metabolismo , Timosina/fisiologia
15.
Chemphyschem ; 21(13): 1420-1428, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32469123

RESUMO

Wide-line 1 H NMR measurements were extended and all results were interpreted in a thermodynamics-based new approach on aqueous solutions of thymosin-ß4 (Tß4 ), stabilin cytoplasmic domain (CTD), and their 1 : 1 complex. Energy distributions of potential barriers controlling the motion of protein-bound water molecules were determined. Heterogeneous and homogeneous regions were found in the protein-water interface. The measure of heterogeneity of this interface gives quantitative value for the portion of disordered parts in the protein. Ordered structural elements were found extending up to ∼20 % of the individual whole proteins. About 40 % of the binding sites of free Tß4 get involved in bonds holding the complex together. The complex has the most heterogeneous solvent accessible surface (SAS) in terms of protein-water interactions. The complex is more disordered than Tß4 or stabilin CTD. The greater SAS area of the complex is interpreted as a clear sign of its open structure.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Timosina/metabolismo , Sítios de Ligação , Moléculas de Adesão Celular Neuronais/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , Espectroscopia de Prótons por Ressonância Magnética , Termodinâmica , Timosina/química , Temperatura de Transição , Água/química
16.
Cell Mol Biol Lett ; 25: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265995

RESUMO

Background: Cervical cancer remains the second leading cause of mortality in women in developing countries. While surgery, chemotherapy, radiotherapy, and vaccine therapy are being applied for its treatment, individually or in combination, the survival rate in advanced cervical cancer patients is still very low. Traditional Chinese medicine has been found to be effective in the treatment of cervical cancer. Astragaloside IV (AS-IV), a compound belonging to Astragalus polysaccharides, shows anticancer activity through several cell signaling pathways. However, the detailed molecular mechanism governing the anticancer activity of AS-IV remains unknown. Material and methods: In our study, we performed tumor xenograft analysis, transwell cell migration and invasion assay, Western blot analysis, and iTRAQ combination by parallel reaction monitoring (PRM) analysis to study the molecular mechanism of AS-IV in the suppression of cervical cancer cell invasion. Results: Our results showed that AS-IV suppressed cervical cancer cell invasion and induced autophagy in them, with the tumor growth curve increasing slowly. We also identified 32 proteins that were differentially expressed in the SiHa cells when treated with AS-IV, with 16 of them involved in the upregulation and 16 in the downregulation of these cells. These differentially expressed proteins, which were predominantly actin-myosin complexes, controlled cell proliferation and cell development by steroid binding and altering the composition of the cell cytoskeleton. DCP1A and TMSB4X, the two proteins regulating autophagy, increased in cervical cancer cells when treated with AS-IV. Conclusions: We conclude that AS-IV could inhibit cervical cancer invasion by inducing autophagy in cervical cancer cells. Since iTRAQ combination by PRM has been observed to be useful in identifying macromolecular target compounds, it may be considered as a novel strategy in the screening of anticancer compounds used in the treatment of cervical cancer.


Assuntos
Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Proteoma/efeitos dos fármacos , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endorribonucleases/metabolismo , Feminino , Ontologia Genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteômica , Saponinas/administração & dosagem , Timosina/metabolismo , Transativadores/metabolismo , Triterpenos/administração & dosagem , Neoplasias do Colo do Útero/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245208

RESUMO

Thymosin ß4 (Tß4) is a G-actin sequestering protein that contributes to diverse cellular activities, such as migration and angiogenesis. In this study, the beneficial effects of combined cell therapy with Tß4 and human adipose-derived stem cells (hASCs) in a mouse ischemic hindlimb model were investigated. We observed that exogenous treatment with Tß4 enhanced endogenous TMSB4X mRNA expression and promoted morphological changes (increased cell length) in hASCs. Interestingly, Tß4 induced the active state of hASCs by up-regulating intracellular signaling pathways including the PI3K/AKT/mTOR and MAPK/ERK pathways. Treatment with Tß4 significantly increased cell migration and sprouting from microbeads. Moreover, additional treatment with Tß4 promoted the endothelial differentiation potential of hASCs by up-regulating various angiogenic genes. To evaluate the in vivo effects of the Tß4-hASCs combination on vessel recruitment, dorsal window chambers were transplanted, and the co-treated mice were found to have a significantly increased number of microvessel branches. Transplantation of hASCs in combination with Tß4 was found to improve blood flow and attenuate limb or foot loss post-ischemia compared to transplantation with hASCs alone. Taken together, the therapeutic application of hASCs combined with Tß4 could be effective in enhancing endothelial differentiation and vascularization for treating hindlimb ischemia.


Assuntos
Membro Posterior/metabolismo , Isquemia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Timosina/metabolismo , Timosina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Transplante de Células , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/genética , Isquemia/terapia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Nus , Neovascularização Fisiológica/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Timosina/genética , Timosina/uso terapêutico , Cicatrização/genética
18.
Int J Oncol ; 56(5): 1101-1114, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32319572

RESUMO

Clear cell renal cell carcinoma (ccRCC) is one of the most common urological malignancies. Identifying novel biomarkers and investigating the underlying mechanism of ccRCC development will be crucial to the management and treatment of ccRCC in patients. Thymosin b10 (TMSB10), a member of the thymosin family, is involved in various physiological processes, including tissue regeneration and inflammatory regulation. Moreover, it has been found to be upregulated in many types of carcinoma. However, its roles in ccRCC remain to be elucidated. The present study aimed to explore the expression of TMSB10 in ccRCC through mining The Cancer Genome Atlas (TCGA) and Oncomine databases, and to investigate the association between TMSB10 expression and clinicopathological factors. Furthermore, immunohistochemistry assays and western blotting were conducted to verify TMSB10 expression levels in human ccRCC tissues and cell lines. Functional analyses were also performed to identify the roles of TMSB10 in vitro. The results revealed that TMSB10 was significantly upregulated in RCC tissues and cell lines. The expression of TMSB10 was closely associated with various clinicopathological parameters. In addition, high expression of TMSB10 predicted poor clinical outcome. The receiver operating characteristic curve revealed that TMSB10 could sufficiently distinguish the tumor from normal kidney (area under the curve = 0.9543, P<0.0001). Furthermore, knockdown of TMSB10 impaired the proliferation of ccRCC cells, and attenuated cell and invasion in vitro. In addition, TMSB10 knockdown downregulated reduced the phosphorylation of PI3K and the expression of vascular endothelial growth factor. In conclusion, the present study demonstrated that high expression of TMSB10 could serve as a useful diagnostic and prognostic biomarker and a potential therapeutic target for ccRCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Timosina/genética , Regulação para Cima , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Masculino , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Timosina/metabolismo
19.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164285

RESUMO

BACKGROUND: Urothelial bladder cancer (UBC) is one of the cancers with the highest mortality rate and prevalence worldwide; however, the clinical management of the disease remains challenging. Metabolomics has emerged as a powerful tool with beneficial applications in cancer biology and thus can provide new insights on the underlying mechanisms of UBC progression and/or reveal novel diagnostic and therapeutic schemes. METHODS: A collection of four human UBC cell lines that critically reflect the different malignancy grades of UBC was employed; RT4 (grade I), RT112 (grade II), T24 (grade III), and TCCSUP (grade IV). They were examined using Nuclear Magnetic Resonance, Mass Spectrometry, and advanced statistical approaches, with the goal of creating new metabolic profiles that are mechanistically associated with UBC progression toward metastasis. RESULTS: Distinct metabolic profiles were observed for each cell line group, with T24 (grade III) cells exhibiting the most abundant metabolite contents. AMP and creatine phosphate were highly increased in the T24 cell line compared to the RT4 (grade I) cell line, indicating the major energetic transformation to which UBC cells are being subjected during metastasis. Thymosin ß4 and ß10 were also profiled with grade-specific patterns of expression, strongly suggesting the importance of actin-cytoskeleton dynamics for UBC advancement to metastatic and drug-tolerant forms. CONCLUSIONS: The present study unveils a novel and putatively druggable metabolic signature that holds strong promise for early diagnosis and the successful chemotherapy of UBC disease.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células de Transição/patologia , Metabolômica/métodos , Neoplasias da Bexiga Urinária/patologia , Monofosfato de Adenosina/metabolismo , Carcinoma de Células de Transição/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Redes e Vias Metabólicas , Gradação de Tumores , Fosfocreatina/metabolismo , Timosina/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
20.
Int J Mol Sci ; 21(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218218

RESUMO

Increasing cashmere yield is one of the important goals of cashmere goat breeding. To achieve this goal, we screened the key genes that can improve cashmere performance. In this study, we used the RNA raw datasets of the skin and dermal papilla cells of secondary hair follicle (SHF-DPCs) samples of hair follicle (HF) anagen and telogen of Albas cashmere goats and identified a set of significant differentially expressed genes (DEGs). To explore potential associations between gene sets and SHF growth features and to identify candidate genes, we detected functional enrichment and constructed protein-protein interaction (PPI) networks. Through comprehensive analysis, we selected Thymosin ß4 (Tß4), Rho GTPase activating protein 6 (ARHGAP6), ADAM metallopeptidase with thrombospondin type 1 motif 15, (ADAMTS15), Chordin (CHRD), and SPARC (Osteonectin), cwcv and kazal-like domains proteoglycan 1 (SPOCK1) as candidate genes. Gene set enrichment analysis (GSEA) for these genes revealed Tß4 and ARHGAP6 have a close association with the growth and development of SHF-DPCs. However, the expression of Tß4 in the anagen was higher than that in the telogen, so we finally chose Tß4 as the ultimate research object. Overexpressing Tß4 promoted and silencing Tß4 inhibited the proliferation of SHF-DPCs. These findings suggest that Tß4 can promote the growth and development of SHF-DPCs and indicate that this molecule may be a valuable target for increasing cashmere production.


Assuntos
Proliferação de Células , Folículo Piloso/metabolismo , Timosina/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Perfilação da Expressão Gênica , Cabras , Folículo Piloso/citologia , Folículo Piloso/crescimento & desenvolvimento , Timosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...