Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.851
Filtrar
1.
Medicine (Baltimore) ; 99(21): e20294, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32481311

RESUMO

BACKGROUND: The aim of this study is to explore the effect of grelin on TRX expression (TRXE) in chronic heart failure tissue (CHFT). METHODS: We will search electronic databases from inception to the March 1, 2020 in MEDLINE, EMBASE, Cochrane Library, CINAHL, PEDro, the Allied and Complementary Medicine Database, Chinese Biomedical Literature Database, and China National Knowledge Infrastructure. We will not apply any limitations to the language and publication status. Any randomized controlled trials (RCTs) that studied the effect of grelin on TRXE in CHFT will be included. Study quality will be checked by Cochrane risk of bias and evidence quality will be appraised by Grading of Recommendations Assessment Development and Evaluation. All extracted data will be analyzed by RevMan 5.3 Software. RESULTS: This study will summarize the present RCTs to assess the effect of grelin on TRXE in CHFT. CONCLUSION: The results of this study will provide conclusive evidence of the effect of grelin on TRXE in CHFT. SYSTEMATIC REVIEW REGISTRATION: INPLASY202040078.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/terapia , Medicina Tradicional Chinesa/métodos , Tiorredoxinas/genética , DNA/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Tiorredoxinas/biossíntese
2.
Food Microbiol ; 87: 103389, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948630

RESUMO

To overcome the deleterious effects of hydrogen peroxide, Lactobacillus plantarum elicits an adaptive response to oxidative stress. In this study, global transcriptomic analysis revealed that L. plantarum CAUH2 expanded its carbon source utilizing profile and enhanced glycolysis to produce more ATP to confront with H2O2 stress. Some antioxidant enzymes including NADH peroxidase, thioredoxin reductase and glutathione peroxidase were 6.11, 36.76 and 6.23-fold up-regulated at transcription level for H2O2 scavenging. Meanwhile, free ferrous iron (Fe2+) was maintained at low concentrations in the cytoplasm, which could limit Fenton reaction and reduce the production of hydroxyl radicals. To repair DNA lesion caused by H2O2, both base excision repair system and recombinational DNA repair pathway were employed by L. plantarum CAUH2. In addition, the expression of methionine sulfoxide reductases and thioredoxin were up-regulated to repair oxidized proteins. It is noteworthy that some transcriptional regulators (Spx, CcpA and MarR1) were predicted to participate in the adaptive response to H2O2 stress, suggesting that L. plantarum CAUH2 utilized a wide array of sensors to monitor oxidative stress and modulated the transcriptional regulation network under H2O2 stress. These findings provide novel insight into the protective mechanisms developed by L. plantarum to cope with oxidative stress.


Assuntos
Proteínas de Bactérias/genética , Peróxido de Hidrogênio/farmacologia , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/genética , Peroxidases/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Transcriptoma/efeitos dos fármacos
3.
Cancer Sci ; 111(4): 1165-1179, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31994822

RESUMO

Luteolin is a natural flavonoid with strong anti-oxidative properties that is reported to have an anti-cancer effect in several malignancies other than bladder cancer. In this study, we describe the effect of luteolin on a human bladder cancer cell line, T24, in the context of the regulation of p21, thioredoxin-1 (TRX1) and the mechanistic target of rapamycin (mTOR) pathway. Luteolin inhibited cell survival and induced G2/M cell-cycle arrest, p21 upregulation and downregulation of phospho(p)-S6, which is downstream of mTOR signaling. Luteolin also upregulated TRX1 and reduced intracellular reactive oxygen species production. In a subcutaneous xenograft mouse model using the rat bladder cancer cell line, BC31, tumor volumes were significantly decreased in mice orally administered luteolin compared to control. Immunohistochemical analysis revealed that increased p21 and decreased p-S6 expression were induced in the luteolin treatment group. Moreover, in another in vivo N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced rat bladder cancer model, the oral administration of luteolin led to a trend of decreased bladder tumor dimension and significantly decreased the Ki67-labeling index and p-S6 expression. Furthermore, the major findings on the metabolism of luteolin suggest that both plasma and urine luteolin-3'-O-glucuronide concentrations are strongly associated with the inhibition of cell proliferation and mTOR signaling. Moreover, a significant decrease in the squamous differentiation of bladder cancer is attributed to plasma luteolin-3'-glucuronide concentration. In conclusion, luteolin, and in particular its metabolized product, may represent another natural product-derived therapeutic agent that acts against bladder cancer by upregulating p21 and inhibiting mTOR signaling.


Assuntos
Luteolina/farmacologia , Serina-Treonina Quinases TOR/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Proteínas rho de Ligação ao GTP/genética , Animais , Apoptose/efeitos dos fármacos , Butilidroxibutilnitrosamina/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Antígeno Ki-67/genética , Luteolina/metabolismo , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Tiorredoxinas/genética , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncogene ; 39(2): 356-367, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31477836

RESUMO

Reactive oxygen species (ROS) and ROS-induced oxidative stress are associated with prostate cancer (PCa) development and castrate-resistant tumor progression. This is in part through the activation of the androgen receptor (AR) signaling. However, the molecular underpinning of ROS to activate AR remains poorly understood. Here, we report that the thioredoxin domain-containing 9 (TXNDC9) is an important regulator of ROS to trigger AR signaling. TXNDC9 expression is upregulated by ROS inducer, and increased TXNDC9 expression in patient tumors is associated with advanced clinical stages. TXNDC9 promotes PCa cell survival and proliferation. It is required for AR protein expression and AR transcriptional activity under oxidative stress conditions. Mechanistically, ROS inducers promote TXNDC9 to dissociate from PRDX1, but enhance a protein association with MDM2. Concurrently, PRDX1 enhances its association with AR. These protein interaction exchanges result in not only MDM2 protein degradation, but also PRDX1 mediated AR protein stabilization, and subsequent elevation of AR signaling. Blocking PRDX1 by its inhibitor, Conoidin A (CoA), suppresses AR signaling, PCa cell proliferation, and xenograft tumor growth even under androgen-deprived conditions. These tumor-suppressive effects of CoA were further strengthened when in combination with enzalutamide treatment. Together, these studies demonstrate that the TXNDC9-PRDX1 axis plays an important role for ROS to activate AR functions. It provides a proof-of-principle that co-targeting AR and PRDX1 may be more effective to control PCa growth.


Assuntos
Peroxirredoxinas/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Tiorredoxinas/genética , Animais , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Estresse Oxidativo/genética , Peroxirredoxinas/antagonistas & inibidores , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Próstata/metabolismo , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Quinoxalinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
5.
J Diabetes Res ; 2019: 8905917, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886288

RESUMO

Diabetic cardiomyopathy is a common cardiac condition in patients with diabetes mellitus, which results in cardiac hypertrophy and subsequent heart failure. Chronic inflammation in the diabetic heart results in loss of cardiomyocytes and subsequentially cardiac dysfunction. Accumulated evidence implicated pyroptosis as a vital contributor to the hyperglycemia-induced cardiac inflammatory response. Exendin-4, a GLP analog, promotes survival of cardiomyocytes in cardiovascular diseases, including diabetic cardiomyopathy. However, the role of Exendin-4 in cardiac pyroptosis remains to be elucidated. Our study revealed that Exendin-4 treatment protected against heart remolding and dysfunction and attenuated cardiac inflammation in high-fat diet-fed rats. The activity of caspase-1 and production of pyroptotic cytokines were significantly inhibited by Exendin-4 treatment in the diabetic heart and in high glucose-treated cardiomyocytes as well. In an effort to understand the signaling mechanisms underlying the antipyroptotic property of Exendin-4, we found that blockade of AMPK, an oxidative stress sensor, activity diminished the antipyroptotic property of Exendin-4. Phosphorylation of AMPK resulted in degeneration of TXNIP that promoted the activation of the NLRP3 inflammasome. Exendin-4 treatment decreased the protein level of TXNIP. Moreover, RNA silencing of TXNIP mimicked the antipyroptotic actions of Exendin-4. These findings promoted us to propose a new signaling pathway mediating cardioprotective effect of Exendin-4 under hyperglycemic conditions: Exendin-4 → ROS↓ → pAMPK↑ → TXNIP↓ → caspase-1↓ → IL-1ß and IL-18↓ → pyroptosis↓. In general, our study identified Exendin-4 as a pyroptotic inhibitor protecting against hyperglycemia-induced cardiomyocyte pyroptosis via the AMPK-TXNIP pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glicemia/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Exenatida/farmacologia , Hipoglicemiantes/farmacologia , Incretinas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Tiorredoxinas/metabolismo , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Proteínas de Transporte/genética , Caspase 1/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosforilação , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tiorredoxinas/genética
6.
Am J Hum Genet ; 105(6): 1126-1147, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31735293

RESUMO

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.


Assuntos
Encefalopatias/patologia , Encéfalo/anormalidades , Deficiências do Desenvolvimento/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Adolescente , Adulto , Encefalopatias/genética , Encefalopatias/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/genética , Mitocôndrias/patologia , Oxirredução , Prognóstico , Pele/metabolismo , Pele/patologia , Tiorredoxinas/genética , Transcriptoma
7.
PLoS Pathog ; 15(9): e1008065, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31557263

RESUMO

Most known thioredoxin-type proteins (Trx) participate in redox pathways, using two highly conserved cysteine residues to catalyze thiol-disulfide exchange reactions. Here we demonstrate that the so far unexplored Trx2 from African trypanosomes (Trypanosoma brucei) lacks protein disulfide reductase activity but functions as an effective temperature-activated and redox-regulated chaperone. Immunofluorescence microscopy and fractionated cell lysis revealed that Trx2 is located in the mitochondrion of the parasite. RNA-interference and gene knock-out approaches showed that depletion of Trx2 impairs growth of both mammalian bloodstream and insect stage procyclic parasites. Procyclic cells lacking Trx2 stop proliferation under standard culture conditions at 27°C and are unable to survive prolonged exposure to 37°C, indicating that Trx2 plays a vital role that becomes augmented under heat stress. Moreover, we found that Trx2 contributes to the in vivo infectivity of T. brucei. Remarkably, a Trx2 version, in which all five cysteines were replaced by serine residues, complements for the wildtype protein in conditional knock-out cells and confers parasite infectivity in the mouse model. Characterization of the recombinant protein revealed that Trx2 can coordinate an iron sulfur cluster and is highly sensitive towards spontaneous oxidation. Moreover, we discovered that both wildtype and mutant Trx2 protect other proteins against thermal aggregation and preserve their ability to refold upon return to non-stress conditions. Activation of the chaperone function of Trx2 appears to be triggered by temperature-mediated structural changes and inhibited by oxidative disulfide bond formation. Our studies indicate that Trx2 acts as a novel chaperone in the unique single mitochondrion of T. brucei and reveal a new perspective regarding the physiological function of thioredoxin-type proteins in trypanosomes.


Assuntos
Proteínas de Protozoários/metabolismo , Tiorredoxinas/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Técnicas de Silenciamento de Genes , Genes de Protozoários , Humanos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Oxirredução , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/patogenicidade
8.
Reprod Biol ; 19(3): 245-254, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31383475

RESUMO

Granulosa Cells (GCs) are sensitive to excessive production of reactive oxygen species (ROS). Quercetin (QUR) is a free radical scavenger which can alleviate oxidative stress through nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) pathway and thioredoxin (Trx) system. We aimed to explore the probable protective role of QUR on cultured human GCs treated with hydrogen peroxide (H2O2) as an inducer of oxidative stress. MTT assay was applied for evaluating the cell cytotoxicity of QUR and H2O2. The rate of apoptotic cells and intracellular ROS generation were determined by Annexin V-FITC/PI staining and 2'-7'-dichlorodihydrofluorescein diacetate fluorescent probes (DCFH-DA), respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and western blot analysis were used to evaluate the gene and protein expression of Nrf2 and kelch-like ech-associated protein 1 (Keap1)1. The Nrf2 and Trx activities were measured by Enzyme-linked Immunosorbent Assay (ELISA). The results indicated that QUR pretreatment can decrease ROS production and apoptosis induced by H2O2. In addition, QUR increased Nrf2 gene and protein expression, as well as its nuclear translocation. Moreover, in QUR-treated group, a lower level of Keap1 protein was observed, which was not reported as significant. The results also indicated a significant correlation between the expression of Nrf2 and Keap1 in QUR-treated group. Further, QUR protected GCs from oxidative stress by increasing Trx gene expression and activity. This study suggests that QUR as a supplementary factor may protect GCs from oxidative stress in diseases related to this condition.


Assuntos
Células da Granulosa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Tiorredoxinas/metabolismo , Adulto , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Gonadotropina Coriônica/administração & dosagem , Gonadotropina Coriônica/farmacologia , Estrogênios/sangue , Feminino , Fármacos para a Fertilidade Feminina/administração & dosagem , Fármacos para a Fertilidade Feminina/farmacologia , Hormônio Foliculoestimulante Humano/administração & dosagem , Hormônio Foliculoestimulante Humano/farmacologia , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Humanos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Tiorredoxinas/genética , Adulto Jovem
9.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443163

RESUMO

Retinal neurodegeneration, an early characteristic of several blinding diseases, triggers glial activation, resulting in inflammation, secondary damage and visual impairment. Treatments that aim only at neuroprotection have failed clinically. Here, we examine the impact of modulating thioredoxin interacting protein (TXNIP) to the inflammatory secondary damage and visual impairment in a model of ischemia/reperfusion (IR). Wild type (WT) and TXNIP knockout (TKO) mice underwent IR injury by increasing intraocular pressure for 40 min, followed by reperfusion. An additional group of WT mice received intravitreal TXNIP-antisense oligomers (ASO, 100 µg/2 µL) 2 days post IR injury. Activation of Müller glial cells, apoptosis and expression of inflammasome markers and visual function were assessed. IR injury triggered early TXNIP mRNA expression that persisted for 14 days and was localized within activated Müller cells in WT-IR, compared to sham controls. Exposure of Müller cells to hypoxia-reoxygenation injury triggered endoplasmic reticulum (ER) stress markers and inflammasome activation in WT cells, but not from TKO cells. Secondary damage was evident by the significant increase in the number of occluded acellular capillaries and visual impairment in IR-WT mice but not in IR-TKO. Intervention with TXNIP-ASO prevented ischemia-induced glial activation and neuro-vascular degeneration, and improved visual function compared to untreated WT. Targeting TXNIP expression may offer an effective approach in the prevention of secondary damage associated with retinal neurodegenerative diseases.


Assuntos
Proteínas de Transporte/metabolismo , Traumatismo por Reperfusão/metabolismo , Tiorredoxinas/metabolismo , Animais , Proteínas de Transporte/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Gliose/metabolismo , Hipóxia/metabolismo , Inflamassomos/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/genética , Tiorredoxinas/genética
10.
EMBO J ; 38(15): e100871, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31304984

RESUMO

Reactive oxygen species (ROS) are emerging as important regulators of cancer growth and metastatic spread. However, how cells integrate redox signals to affect cancer progression is not fully understood. Mitochondria are cellular redox hubs, which are highly regulated by interactions with neighboring organelles. Here, we investigated how ROS at the endoplasmic reticulum (ER)-mitochondria interface are generated and translated to affect melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which promote ER-mitochondria communication, are upregulated in melanoma cells and patient samples. TMX knockdown altered mitochondrial organization, enhanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The TMX-knockdown-induced oxidative stress suppressed melanoma proliferation, migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein NFAT1 expression correlates with melanoma stage and metastatic potential. Integrative bioinformatics revealed that genes coding for mitochondrial- and redox-related proteins are under NFAT1 control and indicated that TMX1, TMX3, and NFAT1 are associated with poor disease outcome. Our study unravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that regulates melanoma pathobiology and provides biomarkers indicative of aggressive disease.


Assuntos
Melanoma/patologia , Proteínas de Membrana/metabolismo , Fatores de Transcrição NFATC/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/metabolismo , Tiorredoxinas/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Progressão da Doença , Retículo Endoplasmático/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/metabolismo , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/metabolismo , NADPH Oxidase 4/metabolismo , Transplante de Neoplasias , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Análise de Sobrevida , Tiorredoxinas/genética , Regulação para Cima
11.
Redox Biol ; 26: 101237, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31276937

RESUMO

Extracellular vesicles (EVs) generated from redox active anticancer drugs are released into the extracellular environment. These EVs contain oxidized molecules and trigger inflammatory responses by macrophages. Using a mouse model of doxorubicin (DOX)-induced tissue injury, we previously found that the major sources of circulating EVs are from heart and liver, organs that are differentially affected by DOX. Here, we investigated the effects of EVs from cardiomyocytes and those from hepatocytes on macrophage activation. EVs from H9c2 rat cardiomyocytes (H9c2 EVs) and EVs from FL83b mouse hepatocytes (FL83 b EVs) have different levels of protein-bound 4-hydroxynonenal and thus different immunostimulatory effects on mouse RAW264.7 macrophages. H9c2 EVs but not FL83 b EVs induced both pro-inflammatory and anti-inflammatory macrophage activation, mediated by NFκB and Nrf-2 pathways, respectively. DOX enhanced the effects of H9c2 EVs but not FL83 b EVs. While EVs from DOX-treated H9c2 cells (H9c2 DOXEVs) suppressed mitochondrial respiration and increased glycolysis of macrophages, EVs from DOX-treated FL83b cells (FL83b DOXEVs) enhanced mitochondrial reserve capacity. Mechanistically, the different immunostimulatory functions of H9c2 EVs and FL83 b EVs are regulated, in part, by the redox status of the cytoplasmic thioredoxin 1 (Trx1) of macrophages. H9c2 DOXEVs lowered the level of reduced Trx1 in cytoplasm while FL83b DOXEVs did the opposite. Trx1 overexpression alleviated the effect of H9c2 DOXEVs on NFκB and Nrf-2 activation and prevented the upregulation of their target genes. Our findings identify EVs as a novel Trx1-mediated redox mediator of immune response, which greatly enhances our understanding of innate immune responses during cancer therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Vesículas Extracelulares/imunologia , Hepatócitos/química , Miócitos Cardíacos/química , Tiorredoxinas/imunologia , Aldeídos/imunologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Animais , Linhagem Celular , Meios de Cultivo Condicionados/química , Vesículas Extracelulares/química , Regulação da Expressão Gênica , Glicólise/efeitos dos fármacos , Hepatócitos/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Oxirredução , Células RAW 264.7 , Ratos , Tiorredoxinas/genética
12.
Toxicol In Vitro ; 61: 104590, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31279089

RESUMO

The thioredoxin (Trx) system controls cellular redox in vascular smooth muscle cells. The present study investigated the roles of Trx1 and Trx reductase1 (TrxR1) proteins in regulation of cell growth, death, reactive oxygen species (ROS) and glutathione (GSH) levels in hydrogen peroxide (H2O2)-treated human pulmonary artery smooth muscle (HPASM) cells. H2O2 induced growth inhibition and cell death in HPASM cells over 24 h. Overexpression of Trx1 and TrxR1 using adenoviruses significantly weakened cell growth inhibition and cell death caused by H2O2. Increases in ROS levels including mitochondrial superoxide anion (O2•-) were observed as early as 5-30 min after H2O2 addition. Administration of adTrxR1 attenuated H2O2-induced increases in ROS levels at 30-180 min. adTrx1 and adTrxR1 significantly reduced the increases in O2•- level in H2O2-treated HPASM cells at 24 h. Furthermore, HPASM cells transfected with Trx1 or TrxR1 siRNA showed increases in ROS levels with or without H2O2 at 5 min. While H2O2 transiently decreased GSH level at 5 min, Trx1 and TrxR1 siRNA intensified the decrease in GSH level. In conclusion, upregulation of Trx1 and TrxR1 significantly attenuated cell growth inhibition and death in H2O2-treated HPASM cells. As a whole, Trx-related adenoviruses diminished H2O2-induced ROS level in HPASM cells whereas Trx-related siRNAs increased ROS levels and decreased GSH level in these cells.


Assuntos
Peróxido de Hidrogênio/toxicidade , Miócitos de Músculo Liso/efeitos dos fármacos , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glutationa/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , RNA Interferente Pequeno/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/genética , Transfecção , Regulação para Cima
13.
PLoS One ; 14(7): e0218505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31265467

RESUMO

The Gram-negative pathogen, Acinetobacter baumannii has emerged as a global nosocomial health threat affecting the majority of hospitals in the U.S. and abroad. The redox protein thioredoxin has been shown to play several roles in modulation of cellular functions affecting various virulence factors in Gram-negative pathogens. This study aims to explore the role of thioredoxin-A protein (TrxA) in A. baumannii virulence. We determined that deletion of the TrxA gene did not significantly affect resistance to environmental stressors such as temperature, salt, and pH. However, TrxA was critical for survival in the presence of elevated levels of hydrogen peroxide. Lack of TrxA was associated with decreased expression of type IV pili related genes and an inability to undergo normal twitching motility. Interestingly, the TrxA-null mutant was able to form biofilms better than the wildtype (WT) and was observed to be significantly less virulent than the WT in a pulmonary infection model. These results are supportive of thioredoxin playing a key role in A. baumannii virulence.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Proteínas de Bactérias , Fímbrias Bacterianas , Tiorredoxinas , Fatores de Virulência , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidade , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Feminino , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Tiorredoxinas/biossíntese , Tiorredoxinas/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
14.
BMC Vet Res ; 15(1): 224, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266490

RESUMO

BACKGROUND: As a kind of opportunist pathogen, Staphylococcus xylosus (S. xylosus) can cause mastitis. Antibiotics are widely used for treating infected animals and tylosin is a member of such group. Thus, the continuous use of antibiotics in dairy livestock enterprise will go a long way in increasing tylosin resistance. However, the mechanism of tylosin-resistant S. xylosus is not clear. Here, isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics methods was used to find resistance-related proteins. RESULTS: We compared the differential expression of S. xylosus in response to tylosin stress by iTRAQ. A total of 155 proteins (59 up-regulated, 96 down-regulated) with the fold-change of >1.2 or <0.8 (p value ≤0.05) were observed between the S. xylosus treated with 1/2 MIC (0.25 µg/mL) tylosin and the untreated S. xylosus. Bioinformatic analysis revealed that these proteins play important roles in stress-response and transcription. Then, in order to verify the relationship between the above changed proteins and mechanism of tylosin-resistant S. xylosus, we induced the tylosin-resistant S. xylosus, and performed quantitative PCR analysis to verify the changes in the transcription proteins and the stress-response proteins in tylosin-resistant S. xylosus at the mRNA level. The data displayed that ribosomal protein L23 (rplw), thioredoxin(trxA) and Aldehyde dehydrogenase A(aldA-1) are up-regulated in the tylosin-resistant S. xylosus, compared with the tylosin-sensitive strains. CONCLUSION: Our findings demonstrate the important of stress-response and transcription in the tylosin resistance of S. xylosus and provide an insight into the prevention of this resistance, which would aid in finding new medicines .


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Proteoma/análise , Staphylococcus/efeitos dos fármacos , Tilosina/farmacologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/isolamento & purificação , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteômica/métodos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Staphylococcus/genética , Staphylococcus/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
15.
Toxicol Lett ; 314: 43-52, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310794

RESUMO

Thioredoxin is an evolutionarily conserved antioxidant protein that plays a crucial role for fundamental cellular processes and embryonic development. Growing evidence support that Thioredoxin influences cellular response to chemicals insults, particularly those accompanying oxidative stress. The mechanisms underlying the functions of Thioredoxin1 in the embryonic development under the environmental toxicant exposure remain, however, largely unexplored. We report here that thioredoxin1 becomes differentially expressed in zebrafish embryos after exposure to 9 out of 11 environmental chemicals. In situ gene expression analysis show that thioredoxin1 is expressed in neurons, olfactory epithelia, liver and swim bladder under normal conditions. After MeHg exposure, however, thioredoxin1 is ectopically induced in the hair cells of the lateral line and in epithelia cells of the pharynx. Knockdown of Thioredoxin1 induces hydrocephalus and increases cell apoptosis in the brain ventricular epithelia cells. In comparison with 5% malformation in embryos injected with control morpholino, MeHg induces more than 77% defects in Thioredoxin1 knockdown embryos. Our data suggest that there is an association between hydrocephalus and Thioredoxin1 malfunction in embryonic development, and provide valuable information to elucidate the protective role of Thioredoxin1 against chemicals disruption.


Assuntos
Encéfalo/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Hidrocefalia/induzido quimicamente , Tiorredoxinas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica no Desenvolvimento , Hidrocefalia/embriologia , Hidrocefalia/genética , Hidrocefalia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Tiorredoxinas/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
16.
PLoS Pathog ; 15(7): e1007917, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31314784

RESUMO

It is important that bacterium can coordinately deliver several effectors into host cells to disturb the cellular progress during infection, however, the precise role of effectors in host cell cytosol remains to be resolved. In this study, we identified a new bacterial virulence effector from pathogenic Edwardsiella piscicida, which presents conserved crystal structure to thioredoxin family members and is defined as a thioredoxin-like protein (Trxlp). Unlike the classical bacterial thioredoxins, Trxlp can be translocated into host cells, mimicking endogenous thioredoxin to abrogate ASK1 homophilic interaction and phosphorylation, then suppressing the phosphorylation of downstream Erk1/2- and p38-MAPK signaling cascades. Moreover, Trxlp-mediated inhibition of ASK1-Erk/p38-MAPK axis promotes the pathogenesis of E. piscicida in zebrafish larvae infection model. Taken together, these data provide insights into the mechanism underlying the bacterial thioredoxin as a virulence effector in downmodulating the innate immune responses during E. piscicida infection.


Assuntos
Proteínas de Bactérias/metabolismo , Edwardsiella/patogenicidade , Infecções por Enterobacteriaceae/etiologia , MAP Quinase Quinase Quinase 5/metabolismo , Tiorredoxinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Edwardsiella/imunologia , Edwardsiella/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Células HeLa , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata , Sistema de Sinalização das MAP Quinases , Modelos Moleculares , Transdução de Sinais , Tiorredoxinas/química , Tiorredoxinas/genética , Virulência , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
17.
BMC Plant Biol ; 19(1): 265, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221088

RESUMO

BACKGROUND: Chloroplast biogenesis, a complex process in higher plants, is the key to photoautotrophic growth in plants. White virescent (wv) mutants have been used to unfold the molecular mechanisms underlying the regulation of chloroplast development and chloroplast gene expression in plants. However, most of genes controlling white virescent phenotype still remain unknown. RESULTS: In this study, we identified a temperature- and light intensity-sensitive mutant, named as wv. The content of chlorophyll was dramatically decreased in the immature leaves of wv mutant under the conditions of low temperature and high-light intensity. TEM observation showed that the chloroplasts in the young leaves of wv mutant lacked an organized thylakoid membrane, whereas crescent-shaped chloroplasts with well-developed stromal and stacked grana thylakoids in the mature leaves were developed. Immunoblot analyses suggested that proteins of photosynthetic complexes were decreased substantially in wv mutants. Based on map-based cloning and transgenic analysis, we determined that the wv phenotype was caused by single base mutation in the first intron of WV gene, which encoded a thioredoxin protein with 365 amino acids. qRT-PCR analysis revealed that the expression of WV gene was significantly down-regulated in wv mutant. In addition, knockdown of WV gene through RNAi also resulted in white virescent young leaves, suggesting that the mutation possibly blocks the differentiation of chloroplasts through inhibiting the expression of WV gene. Furthermore, the expression of WV peaked in apical buds and gradually decreased along with the developmental stage, which was consistent with the wv mutant phenotype. Expression analysis of chloroplast-encoded genes by qRT-PCR showed that the wv mutation affected the expression pattern of chloroplast-encoded PEP dependent genes. CONCLUSION: Our results suggested that wv mutant was sensitive to low temperature and light intensity. WV gene was essential for chloroplast differentiation. A single base mutation in the first intron resulted in down-regulation of WV gene expression, which inhibited the expression of chloroplast-encoded genes, thereby blocking chloroplast formation and chlorophyll synthesis.


Assuntos
Cloroplastos/genética , Lycopersicon esculentum/genética , Tiorredoxinas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Temperatura Baixa , Genes de Plantas , Luz , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/efeitos da radiação , Mutação , Fenótipo , Fotossíntese/genética , Alinhamento de Sequência , Tiorredoxinas/fisiologia
18.
J Biol Chem ; 294(33): 12330-12338, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31197039

RESUMO

Protein-tyrosine phosphatases (PTPs) counteract protein tyrosine phosphorylation and cooperate with receptor-tyrosine kinases in the regulation of cell signaling. PTPs need to undergo oxidative inhibition for activation of cellular cascades of protein-tyrosine kinase phosphorylation following growth factor stimulation. It has remained enigmatic how such oxidation can occur in the presence of potent cellular reducing systems. Here, using in vitro biochemical assays with purified, recombinant protein, along with experiments in the adenocarcinoma cell line A431, we discovered that bicarbonate, which reacts with H2O2 to form the more reactive peroxymonocarbonate, potently facilitates H2O2-mediated PTP1B inactivation in the presence of thioredoxin reductase 1 (TrxR1), thioredoxin 1 (Trx1), and peroxiredoxin 2 (Prx2) together with NADPH. The cellular experiments revealed that intracellular bicarbonate proportionally dictates total protein phosphotyrosine levels obtained after stimulation with epidermal growth factor (EGF) and that bicarbonate levels directly correlate with the extent of PTP1B oxidation. In fact, EGF-induced cellular oxidation of PTP1B was completely dependent on the presence of bicarbonate. These results provide a plausible mechanism for PTP inactivation during cell signaling and explain long-standing observations that growth factor responses and protein phosphorylation cascades are intimately linked to the cellular acid-base balance.


Assuntos
Equilíbrio Ácido-Base , Bicarbonatos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , NADP/genética , NADP/metabolismo , Oxirredução , Fosforilação/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Transdução de Sinais , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 1/metabolismo , Tiorredoxinas/genética
19.
Redox Biol ; 26: 101231, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31203195

RESUMO

Trypanothione (T(SH)2) is the main antioxidant metabolite for peroxide reduction in Trypanosoma cruzi; therefore, its metabolism has attracted attention for therapeutic intervention against Chagas disease. To validate drug targets within the T(SH)2 metabolism, the strategies and methods of Metabolic Control Analysis and kinetic modeling of the metabolic pathway were used here, to identify the steps that mainly control the pathway fluxes and which could be appropriate sites for therapeutic intervention. For that purpose, gamma-glutamylcysteine synthetase (γECS), trypanothione synthetase (TryS), trypanothione reductase (TryR) and the tryparedoxin cytosolic isoform 1 (TXN1) were separately overexpressed to different levels in T. cruzi epimastigotes and their degrees of control on the pathway flux as well as their effect on drug resistance and infectivity determined. Both experimental in vivo as well as in silico analyses indicated that γECS and TryS control T(SH)2 synthesis by 60-74% and 15-31%, respectively. γECS overexpression prompted up to a 3.5-fold increase in T(SH)2 concentration, whereas TryS overexpression did not render an increase in T(SH)2 levels as a consequence of high T(SH)2 degradation. The peroxide reduction flux was controlled for 64-73% by TXN1, 17-20% by TXNPx and 11-16% by TryR. TXN1 and TryR overexpression increased H2O2 resistance, whereas TXN1 overexpression increased resistance to the benznidazole plus buthionine sulfoximine combination. γECS overexpression led to an increase in infectivity capacity whereas that of TXN increased trypomastigote bursting. The present data suggested that inhibition of high controlling enzymes such as γECS and TXN1 in the T(SH)2 antioxidant pathway may compromise the parasite's viability and infectivity.


Assuntos
Antioxidantes/metabolismo , Glutamato-Cisteína Ligase/genética , Glutationa/análogos & derivados , Proteínas de Protozoários/genética , Espermidina/análogos & derivados , Tiorredoxinas/genética , Trypanosoma cruzi/efeitos dos fármacos , Amida Sintases/genética , Amida Sintases/metabolismo , Butionina Sulfoximina/farmacologia , Linhagem Celular , Combinação de Medicamentos , Resistência a Medicamentos/genética , Fibroblastos/parasitologia , Regulação da Expressão Gênica , Glutamato-Cisteína Ligase/metabolismo , Glutationa/antagonistas & inibidores , Glutationa/biossíntese , Humanos , Peróxido de Hidrogênio/farmacologia , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Nitroimidazóis/farmacologia , Oxirredução , Estresse Oxidativo , Peroxidases/genética , Peroxidases/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Espermidina/antagonistas & inibidores , Espermidina/biossíntese , Tiorredoxinas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética
20.
Parasitol Res ; 118(6): 1785-1797, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31062084

RESUMO

We report the complete coding sequences of mitochondrial thioredoxin (TsTrx2) and glutaredoxin (TsGrx1) from the cysticerci of T. solium. The full-length DNA of the TsTrx2 gene shows two introns of 88 and 77 bp and three exons. The TsTrx2 gene contains a single ORF of 423 bp, encoding 140 amino acid residues with an estimated molecular weight of 15,560 Da. A conserved C64NPC67 active site and a 30-amino acid extension at its N-terminus were identified. An insulin reduction reaction was used to determine whether it was a functional recombinant protein. The full-length DNA of the TsGrx1 gene shows one intron of 39 bp and a single ORF of 315 bp, encoding 105 amino acid residues with an estimated molecular weight of 12,582 Da. Sequence analysis revealed a conserved dithiol C34PYC37 active site, GSH-binding motifs (CXXC, Lys and Gln/Arg, TVP, and CXD), and a conserved Gly-Gly motif. The r-TsGrx1 kinetic constants for glutathione (GSH) and 2-hydroxyethyl disulfide (HED) were determined. In addition, cytosolic thioredoxin (TsTrx1), as reported by (Jiménez et al., Biomed Res Int 2015:453469, 2015), was cloned and expressed, and its catalytic constants were obtained along with those of the other two reductases. Rabbit-specific antibodies showed immune cross-reactions between TsTrx1 and TsTrx2 but not with TsGrx1. Both TsTGRs as reported by (Plancarte and Nava, Exp Parasitol 149:65-73, 2015) were biochemically purified to obtain and compare the catalytic constants for their natural substrates, r-TsTrx1, and r-TsTrx2, compared to those for Trx-S2E. coli. In addition, we determined the catalytic differences between the glutaredoxin activity of the TsTGRs compared with r-TsGrx1. These data increase the knowledge of the thioredoxin and GSH systems in T. solium, which is relevant for detoxification and immune evasion.


Assuntos
Citosol/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/isolamento & purificação , Mitocôndrias/metabolismo , Taenia solium/genética , Tiorredoxinas/genética , Tiorredoxinas/isolamento & purificação , Sequência de Aminoácidos , Animais , Clonagem Molecular , Cysticercus/genética , Cysticercus/isolamento & purificação , Cysticercus/metabolismo , Citosol/química , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/análogos & derivados , Etanol/metabolismo , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Cinética , Mitocôndrias/química , Mitocôndrias/genética , Fases de Leitura Aberta , Coelhos , Taenia solium/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA