Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.075
Filtrar
1.
Sci Total Environ ; 773: 145662, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940750

RESUMO

Biochar is a highly effective adsorbent for nitroaromatic compounds (NACs), and acts as an electron shuttle that mediates the reduction of NACs. Hence, when biochar is used to mediate NAC reduction, adsorption and reduction will occur simultaneously and affect each other. However, the effect of biochar-mediated NAC reduction on sorption remains unknown. Eight biochars with different physicochemical properties were used to adsorb m-nitrotoluene and mediate its reduction. The results showed that the adsorption of m-nitrotoluene onto the various biochars facilitated its reduction, whereas biochar-mediated reduction retarded and weakened contaminant adsorption, which increased the environmental risk posed by m-nitrotoluene. Nevertheless, biochars with a high graphitization degree and developed porosity not only had a great catalytic ability, but also significantly alleviated the negative effect of reduction on adsorption. This was ascribed to the π-π interaction and pore-filling effect, which played more important roles than the hydrophobic effect in adsorbing the reduction product (m-toluidine) onto the studied biochars during reduction. Furthermore, the methanol extraction results indicated that the eight biochars presented significantly stronger sequestration abilities for adsorbed m-toluidine than for adsorbed m-nitrotoluene. This resulted from the hydrogen bonding and the Lewis acid-base effect between m-toluidine and each biochar, which were absent for m-nitrotoluene. These results suggest that biochars with a high graphitization degree and developed porosity are applicable for mediating reduction-enhancing sequestration of NACs, which could be a novel strategy for NAC remediation.


Assuntos
Carvão Vegetal , Tolueno , Adsorção , Tolueno/análogos & derivados
2.
Sensors (Basel) ; 21(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922694

RESUMO

Early detection is critical to successfully eradicating a variety of cancers, so the development of a new cancer primary screening system is essential. Herein, we report an animal nose sensor system for the potential primary screening of lung cancer. To establish this, we developed an odor discrimination training device based on operant conditioning paradigms for detection of toluene, an odor indicator component of lung cancer. The rats (N = 15) were trained to jump onto a floating ledge in response to toluene-spiked breath samples. Twelve rats among 15 trained rats reached performance criterion in 12 consecutive successful tests within a given set, or over 12 sets, with a success rate of over 90%. Through a total of 1934 tests, the trained rats (N = 3) showed excellent performance for toluene detection with 82% accuracy, 83% sensitivity, 81% specificity, 80% positive predictive value (PPV) and 83% negative predictive value (NPV). The animals also acquired considerable performance for odor discrimination even in rigorous tests, validating odor specificity. Since environmental and long-term stability are important factors that can influence the sensing results, the performance of the trained rats was studied under specified temperature (20, 25, and 30 °C) and humidity (30%, 45%, and 60% RH) conditions, and monitored over a period of 45 days. At given conditions of temperature and humidity, the animal sensors showed an average accuracy within a deviation range of ±10%, indicating the excellent environmental stability of the detection rats. Surprisingly, the trained rats did not differ in retention of last odor discrimination when tested 45 days after training, denoting that the rats' memory for trained odor is still available over a long period of time. When taken together, these results indicate that our odor discrimination training system can be useful for non-invasive breath testing and potential primary screening of lung cancer.


Assuntos
Neoplasias Pulmonares , Tolueno , Animais , Detecção Precoce de Câncer , Neoplasias Pulmonares/diagnóstico , Odorantes , Ratos , Olfato
3.
Artigo em Chinês | MEDLINE | ID: mdl-33910281

RESUMO

Objective: To study the effects of combined occupational exposure of benzene, toluene, and xylene on human metabolism at an overall level, and to screen biomarkers related to the combined occupational exposure of benzene, toluene, and xylene, and to explore the mechanism of early health effects preliminarily caused by combined occupational exposure of benzene, toluene, and xylene by identification of biomarkers and retrieval of metabolic pathways. Methods: A shoe-making company was selected as the research site. Twenty subjects for the exposed group and the control group were selected separately, and urine of the subjects was collected. The metabolic profiles of the samples were collected by liquid chromatography time-of-flight mass spectrometry, and professional metabolomics and multivariate statistical analysis software were used to establish PCA and OPLS-DA analysis models to screen potential biomarkers and identify biomarkers. Finally, based on the dynamic changes and trends of potential biomarkers between groups, the mechanism of body damage caused by benzene, toluene, and xylene was initially explored. Results: Urine metabolomics analysis showed that the metabolic profile of urine samples of the benzene, toluene, and xylene combined exposure group was different from that of the control group. 27 potential biomarkers that were closely related to the combined exposure of benzene, toluene, and xylene were screened and identified. These potential biomarkers were enriched in 16 metabolic pathways, of which 3 pathways were significantly enriched (P<0.05) , respectively, lysine metabolism, amino sugar metabolism, and nucleotide sugar metabolism. Conclusion: The metabonomics method can well reflect the changes in the metabolome of urine samples in the occupational population after the combined exposure of benzene, toluene, and xylene, which will help us better evaluate the risk of combined exposure of benzene, toluene, and xylene and prevent and control their health risks.


Assuntos
Benzeno , Xilenos , Benzeno/análise , Biomarcadores , Cromatografia Líquida , Humanos , Espectrometria de Massas , Metabolômica , Tolueno/análise , Xilenos/análise
4.
Environ Sci Technol ; 55(8): 4772-4782, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33729766

RESUMO

Determining whether aqueous diffusion and dispersion lead to significant isotope fractionation is important for interpreting the isotope ratios of organic contaminants in groundwater. We performed diffusion experiments with modified Stokes diaphragm cells and transverse-dispersion experiments in quasi-two-dimensional flow-through sediment tank systems to explore isotope fractionation for benzene, toluene, ethylbenzene, 2,6-dichlorobenzamide, and metolachlor at natural isotopic abundance. We observed very small to negligible diffusion- and transverse-dispersion-induced isotope enrichment factors (ε < -0.4 ‰), with changes in carbon and nitrogen isotope values within ±0.5‰ and ±1‰, respectively. Isotope effects of diffusion did not show a clear correlation with isotopologue mass with calculated power-law exponents ß close to zero (0.007 < ß < 0.1). In comparison to ions, noble gases, and labeled compounds, three aspects stand out. (i) If a mass dependence is derived from collision theory, then isotopologue masses of polyatomic molecules would be affected by isotopes of multiple elements resulting in very small expected effects. (ii) However, collisions do not necessarily lead to translational movement but can excite molecular vibrations or rotations minimizing the mass dependence. (iii) Solute-solvent interactions like H-bonds can further minimize the effect of collisions. Modeling scenarios showed that an inadequate model choice, or erroneous choice of ß, can greatly overestimate the isotope fractionation by diffusion and, consequently, transverse dispersion. In contrast, available data for chlorinated solvent and gasoline contaminants at natural isotopic abundance suggest that in field scenarios, a potential additional uncertainty from aqueous diffusion or dispersion would add to current instrumental uncertainties on carbon or nitrogen isotope values (±1‰) with an additional ±1‰ at most.


Assuntos
Água Subterrânea , Biodegradação Ambiental , Isótopos de Carbono/análise , Fracionamento Químico , Difusão , Tolueno , Água
5.
Bioresour Technol ; 330: 124954, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33740583

RESUMO

Polyethylene glycol-600 (PEG-600), as a carrier for slow release of organic substances, can improve the biocompatibility of packing fillers and the construction of biofilms. The gradient experiments were established to evaluate the feasibility of adding different content of PEG-600 to the biofilter for enhancing toluene removal. In particular, the evolution trend of microbial community embedded in packing fillers was measured by 16S rRNA-based gene sequencing. Results showed that the toluene removal efficiency of biofilter with 7.5% adding content of the PEG-600 was greatly improved, and the maximum elimination capacity of 152 g/(m3·h) was obtained. The introduction of PEG-600 enhanced the tolerance ability to withstand the transient impact loading and intensified the production of extracellular polymeric substances and bonding strength of biofilms. It should be noted that the abundance of Pseudomonas and Steroidobacter at genus level increased significantly. The microbial community evolved into a co-degradation system of toluene and PEG-600.


Assuntos
Poluentes Atmosféricos , Microbiota , Biodegradação Ambiental , Filtração , Nutrientes , Polietilenoglicóis , RNA Ribossômico 16S/genética , Tolueno
6.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33674430

RESUMO

Pseudomonas putida S12 is inherently solvent tolerant and constitutes a promising platform for biobased production of aromatic compounds and biopolymers. The megaplasmid pTTS12 of P. putida S12 carries several gene clusters involved in solvent tolerance, and the removal of this megaplasmid caused a significant reduction in solvent tolerance. In this study, we succeeded in restoring solvent tolerance in plasmid-cured P. putida S12 using adaptive laboratory evolution (ALE), underscoring the innate solvent tolerance of this strain. Whole-genome sequencing identified several single nucleotide polymorphisms (SNPs) and a mobile element insertion enabling ALE-derived strains to survive and sustain growth in the presence of a high toluene concentration (10% [vol/vol]). We identified mutations in an RND efflux pump regulator, arpR, that resulted in constitutive upregulation of the multifunctional efflux pump ArpABC. SNPs were also found in the intergenic region and subunits of ATP synthase, RNA polymerase subunit ß', a global two-component regulatory system (GacA/GacS), and a putative AraC family transcriptional regulator, Afr. Transcriptomic analysis further revealed a constitutive downregulation of energy-consuming activities in ALE-derived strains, such as flagellar assembly, FoF1 ATP synthase, and membrane transport proteins. In summary, constitutive expression of a solvent extrusion pump in combination with high metabolic flexibility enabled the restoration of the solvent tolerance trait in P. putida S12 lacking its megaplasmid.IMPORTANCE Sustainable production of high-value chemicals can be achieved by bacterial biocatalysis. However, bioproduction of biopolymers and aromatic compounds may exert stress on the microbial production host and limit the resulting yield. Having a solvent tolerance trait is highly advantageous for microbial hosts used in the biobased production of aromatics. The presence of a megaplasmid has been linked to the solvent tolerance trait of Pseudomonas putida; however, the extent of innate, intrinsic solvent tolerance in this bacterium remained unclear. Using adaptive laboratory evolution, we successfully adapted the plasmid-cured P. putida S12 strain to regain its solvent tolerance. Through these adapted strains, we began to clarify the causes, origins, limitations, and trade-offs of the intrinsic solvent tolerance in P. putida This work sheds light on the possible genetic engineering targets to enhance solvent tolerance in Pseudomonas putida as well as other bacteria.


Assuntos
Tolerância a Medicamentos/genética , Plasmídeos , Pseudomonas putida/efeitos dos fármacos , Solventes/toxicidade , Tolueno/toxicidade , Laboratórios , Mutação , Polimorfismo de Nucleotídeo Único , Pseudomonas putida/genética
7.
Environ Sci Technol ; 55(6): 3549-3558, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33661623

RESUMO

Air quality policy in the Los Angeles megacity is a guidepost for other megacities. Over the last 2 decades, the policy has substantially reduced aerosol (OA) concentrations and the frequency of high aerosol events in the region. During this time, the emissions contributing to, and the temperature associated with, high aerosol events have changed. Early in the record, aerosol concentrations responded to a variety of different sources. We show that emission control has been effective with a strong decrease in temperature-independent sources. As a result, the response of aerosol to temperature has become a dominant feature of high aerosol events in the basin. The organic fraction of the aerosol (OA) increases with the temperature approaching 35% at 40 °C. We describe a simple conceptual model of aerosol in Los Angeles, illustrating how benzene, toluene, ethylbenzene, and xylenes (BTEX) and isoprene, along with molecules for which these are plausible surrogates such as monoterpenes, are sufficient to explain the observed temperature dependence of PM 2.5.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Benzeno/análise , Monitoramento Ambiental , Los Angeles , Material Particulado/análise , Temperatura , Tolueno/análise , Xilenos
8.
Artigo em Inglês | MEDLINE | ID: mdl-33671888

RESUMO

Tens of millions of individuals go to gasoline stations on a daily basis in the United States. One of the constituents of gasoline is benzene, a Group 1 carcinogen that has been strongly linked to both occupational and non-occupational leukemias. While benzene content in gasoline is federally regulated, there is approximately a thirty-year data gap in United States research on benzene exposures from pumping gasoline. Using a novel self-sampling protocol with whole air canisters, we conducted a gasoline pumping exposure assessment for benzene, toluene, ethylbenzene, and xylene (BTEX) on Baltimore, MD consumers. Geometric mean exposures (geometric standard deviations) were 3.2 (2.7) ppb,9.5 (3.5) ppb, 2.0 (2.8) ppb, and 7.3 (3.0) ppb, respectively, on 32 samples. Using the benzene exposures, we conducted consumer and occupational probabilistic risk assessments and contextualized the risk with ambient benzene exposure risk. We found that the consumer scenarios did not approach the 1:1,000,000 excess risk management threshold and that the occupational scenario did not exceed the 1:10,000 excess risk management threshold. Further, in all Monte Carlo trials, the ambient risk from benzene exposure exceeded that of pumping risk for consumers, but that in approximately 30% of occupational trials, the pumping risk exceeded the ambient risk.


Assuntos
Neoplasias , Exposição Ocupacional , Baltimore , Benzeno/análise , Benzeno/toxicidade , Derivados de Benzeno/análise , Derivados de Benzeno/toxicidade , Gasolina/análise , Humanos , Exposição Ocupacional/análise , Tolueno/análise , Tolueno/toxicidade , Estados Unidos , Xilenos/análise
9.
Biomed Environ Sci ; 34(2): 110-118, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33685569

RESUMO

Objective: The aim of this study was to explore the ototoxicity of toluene in the early development of zebrafish embryos/larvae. Methods: Zebrafish were utilized to explore the ototoxicity of toluene. Locomotion analysis, immunofluorescence, and qPCR were used to understand the phenotypes and molecular mechanisms of toluene ototoxicity. Results: The results demonstrated that at 2 mmol/L, toluene induced zebrafish larvae death at 120 hours post fertilization (hpf) at a rate of 25.79% and inhibited the rate of hatching at 72 hpf. Furthermore, toluene exposure inhibited the distance travelled and average swimming velocity of zebrafish larvae while increasing the frequency of movements. As shown by fluorescence staining of hair cells, toluene inhibited the formation of lateral line neuromasts and middle line 1 (Ml 1) neuromasts in 3 days post fertilization larvae in a concentration-dependent manner. Toluene altered the expression level of genes involved in ear development/function in zebrafish, among which the mRNA levels of cd164l2, tekt3, and pcsk5a were upregulated, while the level of otofb was downregulated, according to the qPCR results. Conclusion: This study indicated that toluene may affect the development of both the inner ear and lateral line systems in zebrafish, while the lateral line system may be more sensitive to toluene than the inner ear.


Assuntos
Orelha Interna/efeitos dos fármacos , Sistema da Linha Lateral/efeitos dos fármacos , Tolueno/toxicidade , Animais , Orelha Interna/crescimento & desenvolvimento , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Sistema da Linha Lateral/crescimento & desenvolvimento , Locomoção/efeitos dos fármacos , Ototoxicidade/etiologia , Ototoxicidade/patologia , Ototoxicidade/fisiopatologia , Peixe-Zebra
10.
J Environ Sci (China) ; 103: 135-147, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743896

RESUMO

Trace analysis of volatile organic compounds (VOCs) during wildfires is imperative for environmental and health risk assessment. The use of gas sampling devices mounted on unmanned aerial vehicles (UAVs) to chemically sample air during wildfires is of great interest because these devices move freely about their environment, allowing for more representative air samples and the ability to sample areas dangerous or unreachable by humans. This work presents chemical data from air samples obtained in Davis, CA during the most destructive wildfire in California's history - the 2018 Camp Fire - as well as the deployment of our sampling device during a controlled experimental fire while fixed to a UAV. The sampling mechanism was an in-house manufactured micro-gas preconcentrator (µPC) embedded onto a compact battery-operated sampler that was returned to the laboratory for chemical analysis. Compounds commonly observed in wildfires were detected during the Camp Fire using gas chromatography mass spectrometry (GC-MS), including BTEX (benzene, toluene, ethylbenzene, m+p-xylene, and o-xylene), benzaldehyde, 1,4-dichlorobenzene, naphthalene, 1,2,3-trimethylbenzene and 1-ethyl-3-methylbenzene. Concentrations of BTEX were calculated and we observed that benzene and toluene were highest with average concentrations of 4.7 and 15.1 µg/m3, respectively. Numerous fire-related compounds including BTEX and aldehydes such as octanal and nonanal were detected upon experimental fire ignition, even at a much smaller sampling time compared to samples taken during the Camp Fire. Analysis of the air samples taken both stationary during the Camp Fire and mobile during an experimental fire show the successful operation of our sampler in a fire environment.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Benzeno , California , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Tolueno/análise , Compostos Orgânicos Voláteis/análise , Xilenos
11.
Environ Res ; 195: 110876, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33592225

RESUMO

In this study, the role of manganese precursors in mesoporous (meso) MnOx/γ-Al2O3 catalysts was examined systematically for toluene oxidation under ozone at ambient temperature (20 °C). The meso MnOx/γ-Al2O3 catalysts developed with Mn(CH3COO)2, MnCl2, Mn(NO3)2.4H2O and MnSO4 were prepared by an innovative single step solvent-deficient method (SDM); the catalysts were labeled as MnOx/Al2O3(A), MnOx/Al2O3(C), MnOx/Al2O3(N), and MnOx/Al2O3(S), respectively. Among all, MnOx/Al2O3(C) showed superior performance both in toluene removal (95%) as well as ozone decomposition (88%) followed by acetate, nitrate and sulphated precursor MnOx/Al2O3. The superior performance of MnOx/Al2O3(C) in the oxidation of toluene to COx is associated with the ozone decomposition over highly dispersed MnOx in which extremely active oxygen radicals (O2-, O22- and O-) are generated to enhance the oxidation ability of the catalysts greatly. In addition, toluene adsorption over acid support played a vital role in this reaction. Hence, the properties such as optimum Mn3+/Mn4+ ratio, acidic sites, and smaller particle size (≤2 nm) examined by XPS, TPD of NH3, and TEM results are playing vital role in the present study. In summary, the MnOx/Al2O3 (C) catalyst has great potential in environmental applications particularly for the elimination of volatile organic compounds with low loading of manganese developed by SDM.


Assuntos
Ozônio , Catálise , Oxirredução , Solventes , Tolueno
12.
Artigo em Inglês | MEDLINE | ID: mdl-33578932

RESUMO

Important records can be damaged directly and indirectly. Their restoration, if possible, is difficult as it is very time-consuming and costly. Although measures have been taken to permanently preserve records, most studies focus on preventing short-term damage from physical or biological factors and not on preventive measures against chemical damage from long-term polluted air exposure. This study investigated the types, concentrations, and distribution characteristics of hazardous chemicals present in the valuable archive of the National Library of Korea (NLK) and identified the sources of these pollutants. Mean SO2, NOX, CO, CO2, and total volatile organic compound (TVOC) concentrations were 1.49 ± 0.44 ppb, 30.52 ± 19.70 ppb, 0.75 ± 0.21 ppm, 368.91 ± 32.23 ppm, and 320.03 ± 44.20 µg/m3, respectively, meeting the Ministry of the Interior and Safety (MOIS) of Korea standards. Toluene (66.43 ± 10.69 µg/m3) and acetaldehyde (157.23 ± 6.43 µg/m3) were present at the highest concentrations, respectively. Two principal components were extracted via a principal component analysis; the primary component (66%) was closely related to outdoor pollution sources and the secondary component (33%) to indoor sources. Results contribute to establishing air quality standards and management measures for preservation of this archive.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , República da Coreia , Tolueno/análise , Compostos Orgânicos Voláteis/análise
13.
Environ Pollut ; 274: 116477, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549841

RESUMO

After a hydrocarbon spill in a peatland, dissolution of water-soluble compounds including benzene and toluene introduces a dissolved-phase plume to the peatland groundwater system, while the adsorption of these solutes onto the peat matrix restrains their distribution velocity. The adsorption of benzene and toluene and its dependency on peat depth, thus degree of decomposition, are investigated. The batch adsorption experiments revealed that benzene and toluene adsorption isotherms in peat are linear, with adsorption coefficients ranging from 16.2 to 48.7 L/kg and 31.6-48.7 L/kg, respectively. In a vertical peat profile benzene adsorption decreased with depth, while toluene adsorption increased. Considering toluene adsorption onto cellulose is significantly less than toluene adsorption onto humic substance, the increase in toluene adsorption was attributed to decreasing cellulose and increasing humic substances with depth. Negligible competition for adsorption was observed between benzene and toluene at the measured concentrations. The retardation factors of benzene and toluene ranged respectively from 3.5 to 10.7 and from 5.4 to 17.7, both increasing with depth. Higher retardation in deeper peat coupled with lower hydraulic conductivity will lead to a weaker solute velocity in deeper peat, thus preferential migration of these dissolved-phase contaminants in shallow layers. The results can help predict the behavior of dissolved hydrocarbons in peatlands after a hydrocarbon spill.


Assuntos
Benzeno , Tolueno , Adsorção , Derivados de Benzeno , Hidrocarbonetos , Solo
14.
Environ Int ; 146: 106304, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395946

RESUMO

BACKGROUND: Toluene is classified as a possible carcinogen, but its role on thyroid cancer is not well established. Vehicle emissions are one of the largest contributed sources of toluene, but no studies evaluating the influence of living near a road on the association between toluene and the incidence of thyroid cancer have been reported. Therefore, we examined potential associations between blood toluene concentrations and incidence risk of thyroid cancer, and an effect modification of living near a road. METHODS: We conducted a prospective cohort study using data from South Korean "Monitoring Project for Exposure to Environmental Pollutants and Health Effects among Residents Living near Industrial Complexes" survey. Study participants living near national industrial complexes were recruited from January 2003 to 2011. Incidence and mortality cases of thyroid cancer (C73, ICD-10 code) were identified using the National Cancer Registry and Statistics Korea, respectively. Blood toluene concentrations were measured using gas chromatography mass spectrometry. We used Cox proportional hazards regression models to estimate the hazard ratios (HR) and the 95% confidence interval (CI) between blood toluene concentrations and thyroid cancer risk. RESULTS: During the follow-up (median 8.6 years), 33 cases of thyroid cancer were diagnosed. The geometric mean of the toluene concentration in the blood was 0.56 µg/L for cases and 0.29 µg/L for non-cases. After adjusting for potential confounders, a positive association between blood toluene concentrations and thyroid cancer was found (HR = 2.77, 95% CI = 1.00-7.65 in the highest tertile vs. the lowest tertile, p for trend = 0.044). This positive association was stronger in people living near a road (≤50 m). CONCLUSIONS: Blood toluene concentrations may be positively associated with the incidence risk of thyroid cancer. Moreover, this association may be stronger among people living near a road.


Assuntos
Poluentes Atmosféricos , Neoplasias da Glândula Tireoide , Poluentes Atmosféricos/análise , Estudos de Coortes , Exposição Ambiental/análise , Humanos , Estudos Prospectivos , República da Coreia/epidemiologia , Neoplasias da Glândula Tireoide/induzido quimicamente , Neoplasias da Glândula Tireoide/epidemiologia , Tolueno
15.
Environ Toxicol ; 36(6): 1001-1010, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33438815

RESUMO

Humans are easily exposed to environmentally hazardous factors in industrial sites or daily life. In addition, exposure to various substances and not just one harmful substance is common. However, research on the effects of combined exposure on humans is limited. Therefore, this study examined the effects of combined exposure to volatile organic compounds (VOCs) on the human body. We separated 193 participants into four groups according to their work-related exposure (nonexposure, toluene exposure, toluene and xylene exposure, and toluene, ethylbenzene, and xylene exposure). We then identified the methylation level and long noncoding RNA (lncRNA) levels by omics analyses, and performed an integrated analysis to examine the change of gene expression. Thereafter, the effects of combined exposure to environmental hazards on the human body were investigated and analyzed. Exposure to VOCs was found to negatively affect the development and maintenance of the nervous system. In particular, the MALAT1 lncRNA was found to be significantly reduced in the complex exposure group, and eight genes were significantly downregulated by DNA hypermethylation. The downregulation of these genes could cause a possible decrease in the density of synapses as well as the number and density of dendrites and spines. In summary, we found that increased combined exposure to environmental hazards could lead to additional epigenetic changes, and consequently abnormal dendrites, spines, and synapses, which could damage motor learning or spatial memory. Thus, lncRNA MALAT1 or FMR1 could be novel biomarkers of neurotoxicity to identify the negative health effects of VOC complex exposure.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Metilação de DNA , Exposição Ambiental/análise , Monitoramento Ambiental , Epigênese Genética , Proteína do X Frágil de Retardo Mental , Humanos , Tolueno/análise , Tolueno/toxicidade , Compostos Orgânicos Voláteis/toxicidade , Xilenos
16.
J Chromatogr A ; 1638: 461849, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33472106

RESUMO

The application of a linear free energy relationship (LFER) to a variety of hydrophilic interaction chromatography columns with different bonded ligands and pore sizes was studied in order to determine their void volume Vm. The method was based on the determination of the elution volume of a series of alkylbenzene standards from C1 (toluene) to C17 (heptadecylbenzene). Results were compared with those obtained by injection of toluene alone, which has traditionally been used as a simple Vm marker. Vm was smaller when derived from the LFER plot than when measured with toluene with differences between the two methods ranging from 2.7 to 12.7 % for the columns studied. This result could be due to the small but appreciable retention of toluene due to its solubility in the water rich layer, which partially constitutes the stationary phase in HILIC. Larger pore size columns showed less difference in Vm between LFER and toluene procedures. This result may be due to size sieving effects of non-excluded solutes in the pores of the stationary phase, or to differences in phase ratio between columns of different pore size.


Assuntos
Cromatografia/métodos , Interações Hidrofóbicas e Hidrofílicas , Transferência Linear de Energia , Acetonitrilos/química , Solubilidade , Tolueno/química , Água/química
17.
Microbiome ; 9(1): 14, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436067

RESUMO

BACKGROUND: The ozonation of biofilters is known to alleviate clogging and pressure drop issues while maintaining removal performances in biofiltration systems treating gaseous volatile organic compounds (VOCs). The effects of ozone on the biofilter microbiome in terms of biodiversity, community structure, metabolic abilities, and dominant taxa correlated with performance remain largely unknown. METHODS: This study investigated two biofilters treating high-concentration toluene operating in parallel, with one acting as control and the other exposed to low-dosage (200 mg/m3) ozonation. The microbial community diversity, metabolic rates of different carbon sources, functional predictions, and microbial co-occurrence networks of both communities were examined. RESULTS: Consistently higher biodiversity of over 30% was observed in the microbiome after ozonation, with increased overall metabolic abilities for amino acids and carboxylic acids. The relative abundance of species with reported stress-tolerant and biofilm-forming abilities significantly increased, with a consortium of changes in predicted biological pathways, including shifts in degradation pathways of intermediate compounds, while the correlation of top ASVs and genus with performance indicators showed diversifications in microbiota responsible for toluene degradation. A co-occurrence network of the community showed a decrease in average path distance and average betweenness with ozonation. CONCLUSION: Major degrading species highly correlated with performance shifted after ozonation. Increases in microbial biodiversity, coupled with improvements in metabolizing performances of multiple carbon sources including organic acids could explain the consistent performance commonly seen in the ozonation of biofilters despite the decrease in biomass, while avoiding acid buildup in long-term operation. The increased presence of stress-tolerant microbes in the microbiome coupled with the decentralization of the co-occurrence network suggest that ozonation could not only ameliorate clogging issues but also provide a microbiome more robust to loading shock seen in full-scale biofilters. Video abstract.


Assuntos
Filtração/métodos , Microbiota/efeitos dos fármacos , Ozônio/farmacologia , Biofilmes/efeitos dos fármacos , Biomassa , Tolueno
18.
Ecotoxicol Environ Saf ; 208: 111707, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396038

RESUMO

The distribution and concentration of organic compounds in the environment have attracted great interest mainly due to their capability of bioaccumulation, dispersion, and danger to living organisms. Factors such as urbanization, population growth, and the emergence of new technologies contribute to the increase in pollutant emissions, especially volatile organic compounds (VOCs), such as benzene, toluene, ethylbenzene, and xylenes (BTEX). These compounds are emitted by several sources, becoming more common in work environments, influencing indoor air quality (IAQ), which can cause health damage, in addition to increasing the likelihood of cancer development. In this context, we developed a semipermeable membrane device (SPMD), consisting of low density polyethylene membrane (8 cm long × 3 cm wide), filled with 3 mL of acetonitrile, for passive sampling of toluene (and benzene) in gas phase. With this configuration, the SPMD needed 24 h exposure to the indoor air in order to achieve equilibrium. The target compounds were quantified in the acceptor phase by HPLC-DAD. The optimized SPMD was tested for the collection of toluene and benzene in six chemistry laboratories at Fluminense Federal University and in five nail salons in the city of Niterói, in the state of Rio de Janeiro, Brazil. The developed sampling method was able to identify the analytes in the indoor air of the studied environments, and was easy to operate, with no need to clean up the extracts, allowing their direct injection into the chromatographic system.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Benzeno/análise , Monitoramento Ambiental/métodos , Tolueno/análise , Brasil , Cidades , Monitoramento Ambiental/instrumentação , Humanos , Compostos Orgânicos Voláteis/análise
19.
Chemosphere ; 271: 129604, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33460898

RESUMO

Low-temperature catalytic degradation of VOCs with ozone has received widespread attention recently. In this work, a combination method of steam and nitric acid was used to control the dealuminization of Y zeolite, and then manganese oxide was loaded on the Y zeolite by impregnation method. It was found that MnOx was highly dispersed in the dealumination zeolite, and the adsorbed oxygens were more easily activated in the active oxygen vacancies. The MnOx supported on dealumination Y zeolite showed better catalytic effect than that supported on the parent Y. At low humidity (0.8%) in 30 °C, the degradation efficiency of toluene reached above 94% by using the catalyst with mild dealumination. When more water vapor was introduced, the degradation of toluene was inhibited. However, the catalytic performance of the catalyst with deep dealumination was not affected. With the help of in-situ DRIFTS, it was observed that the intermediates and reaction by-products had changed under different humidity conditions.


Assuntos
Ozônio , Zeolitas , Catálise , Manganês , Compostos de Manganês , Oxirredução , Óxidos , Temperatura , Tolueno/análise
20.
Chemosphere ; 271: 129571, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33460903

RESUMO

Currently, several methods have been adopted for the laboratory preparation of artificial volatile organic compound (VOC) contaminated soils (VCSs). However, it remains unclear whether the prepared contaminated soils are homogenous. In this study, two representative VOCs, toluene and perchloroethylene, were separately mixed with a kaolin-based soil using six preparation methods. Thereafter, the homogeneity and recovery of the contaminated kaolin prepared using these methods were determined and analyzed. The six procedures were quantitatively assessed according to the comprehensive evaluation mathematical model (AHP-CRITIC-TOPSIS), and the final score order of the different procedures was: A > C > E > B > F > D. Additionally, the qualitative evaluation of the procedures was performed based on the phase transformation and mass transfer during the mixing processes. Based on these discussions, method A, which was considered to be optimal, was then adopted for further investigations with various natural soils. The results showed that this optimal method could be applied to natural soils and revealed that the adsorption-related characteristics of natural soils, including total organic carbon, specific surface area, pore volume, pH, plastic limit, particle size, and mineral composition, influenced the homogeneity and recovery through mass transfer. In addition, it was also observed that the chemical properties of VOCs, including molecular structure, vapor pressure, and the octanol/water partition coefficient, could also affect the effectiveness of sample recovery. Through this study, researchers can prepare VCSs with excellent homogeneity and low loss rates to conduct standardized tests for technology development.


Assuntos
Poluentes do Solo , Compostos Orgânicos Voláteis , Poluição Ambiental , Solo , Poluentes do Solo/análise , Tolueno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...