Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.785
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502105

RESUMO

The human brain and central nervous system (CNS) harbor a select sub-group of potentially pathogenic microRNAs (miRNAs), including a well-characterized NF-kB-sensitive Homo sapiens microRNA hsa-miRNA-146a-5p (miRNA-146a). miRNA-146a is significantly over-expressed in progressive and often lethal viral- and prion-mediated and related neurological syndromes associated with progressive inflammatory neurodegeneration. These include ~18 different viral-induced encephalopathies for which data are available, at least ~10 known prion diseases (PrD) of animals and humans, Alzheimer's disease (AD) and other sporadic and progressive age-related neurological disorders. Despite the apparent lack of nucleic acids in prions, both DNA- and RNA-containing viruses along with prions significantly induce miRNA-146a in the infected host, but whether this represents part of the host's adaptive immunity, innate-immune response or a mechanism to enable the invading prion or virus a successful infection is not well understood. Current findings suggest an early and highly interactive role for miRNA-146a: (i) as a major small noncoding RNA (sncRNA) regulator of innate-immune responses and inflammatory signaling in cells of the human brain and CNS; (ii) as a critical component of the complement system and immune-related neurological dysfunction; (iii) as an inducible sncRNA of the brain and CNS that lies at a critical intersection of several important neurobiological adaptive immune response processes with highly interactive associations involving complement factor H (CFH), Toll-like receptor pathways, the innate-immunity, cytokine production, apoptosis and neural cell decline; and (iv) as a potential biomarker for viral infection, TSE and AD and other neurological diseases in both animals and humans. In this report, we review the recent data supporting the idea that miRNA-146a may represent a novel and unique sncRNA-based biomarker for inflammatory neurodegeneration in multiple species. This paper further reviews the current state of knowledge regarding the nature and mechanism of miRNA-146a in viral and prion infection of the human brain and CNS with reference to AD wherever possible.


Assuntos
Encéfalo/patologia , Viroses do Sistema Nervoso Central/imunologia , Regulação da Expressão Gênica/imunologia , MicroRNAs/metabolismo , Doenças Priônicas/imunologia , Apoptose/genética , Apoptose/imunologia , Biomarcadores/análise , Biomarcadores/metabolismo , Encéfalo/imunologia , Encéfalo/virologia , Viroses do Sistema Nervoso Central/diagnóstico , Viroses do Sistema Nervoso Central/genética , Viroses do Sistema Nervoso Central/virologia , Fator H do Complemento/metabolismo , Citocinas/metabolismo , Humanos , MicroRNAs/análise , MicroRNAs/genética , NF-kappa B/metabolismo , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética , Doenças Priônicas/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptores Toll-Like/metabolismo
2.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360779

RESUMO

Pro-inflammatory cytokines promote cellular iron-import through enhanced divalent metal transporter-1 (DMT1) expression in pancreatic ß-cells, consequently cell death. Inhibition of ß-cell iron-import by DMT1 silencing protects against apoptosis in animal models of diabetes. However, how alterations of signaling networks contribute to the protective action of DMT1 knock-down is unknown. Here, we performed phosphoproteomics using our sequential enrichment strategy of mRNA, protein, and phosphopeptides, which enabled us to explore the concurrent molecular events in the same set of wildtype and DMT1-silenced ß-cells during IL-1ß exposure. Our findings reveal new phosphosites in the IL-1ß-induced proteins that are clearly reverted by DMT1 silencing towards their steady-state levels. We validated the levels of five novel phosphosites of the potential protective proteins using parallel reaction monitoring. We also confirmed the inactivation of autophagic flux that may be relevant for cell survival induced by DMT1 silencing during IL-1ß exposure. Additionally, the potential protective proteins induced by DMT1 silencing were related to insulin secretion that may lead to improving ß-cell functions upon exposure to IL-1ß. This global profiling has shed light on the signal transduction pathways driving the protection against inflammation-induced cell death in ß-cells after DMT1 silencing.


Assuntos
Apoptose/imunologia , Autofagia/imunologia , Proteínas de Transporte de Cátions/deficiência , Técnicas de Silenciamento de Genes , Células Secretoras de Insulina/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Transdução de Sinais/imunologia , Animais , Apoptose/genética , Autofagia/genética , Proteínas de Transporte de Cátions/imunologia , Interleucina-1beta/genética , Interleucina-6/genética , Camundongos , Transdução de Sinais/genética
3.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445217

RESUMO

Selenoprotein T (SELENOT, SelT), a thioredoxin-like enzyme, exerts an essential oxidoreductase activity in the endoplasmic reticulum. However, its precise function remains unknown. To gain more understanding of SELENOT function, a conventional global Selenot knockout (KO) mouse model was constructed for the first time using the CRISPR/Cas9 technique. Deletion of SELENOT caused male sterility, reduced size/body weight, lower fed and/or fasting blood glucose levels and lower fasting serum insulin levels, and improved blood lipid profile. Tandem mass tag (TMT) proteomics analysis was conducted to explore the differentially expressed proteins (DEPs) in the liver of male mice, revealing 60 up-regulated and 94 down-regulated DEPs in KO mice. The proteomic results were validated by western blot of three selected DEPs. The elevated expression of Glycogen [starch] synthase, liver (Gys2) is consistent with the hypoglycemic phenotype in KO mice. Furthermore, the bioinformatics analysis showed that Selenot-KO-induced DEPs were mainly related to lipid metabolism, cancer, peroxisome proliferator-activated receptor (PPAR) signaling pathway, complement and coagulation cascades, and protein digestion and absorption. Overall, these findings provide a holistic perspective into SELENOT function and novel insights into the role of SELENOT in glucose and lipid metabolism, and thus, enhance our understanding of SELENOT function.


Assuntos
Regulação da Expressão Gênica , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Proteômica , Selenoproteínas , Animais , Glucose/genética , Hipoglicemia/genética , Hipoglicemia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Selenoproteínas/deficiência , Selenoproteínas/metabolismo , Transdução de Sinais/genética
4.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360881

RESUMO

Intracerebral hemorrhage (ICH) is a major public health problem and devastating subtype of stroke with high morbidity and mortality. Notably, there is no effective treatment for ICH. Neuroinflammation, a pathological hallmark of ICH, contributes to both brain injury and repair and hence, it is regarded as a potential target for therapeutic intervention. Recent studies document that microRNAs, small non-coding RNA molecules, can regulate inflammatory brain response after ICH and are viable molecular targets to alter brain function. Therefore, there is an escalating interest in studying the role of microRNAs in the pathophysiology of ICH. Herein, we provide, for the first time, an overview of the microRNAs that play roles in ICH-induced neuroinflammation and identify the critical knowledge gap in the field, as it would help design future studies.


Assuntos
Hemorragia Cerebral/metabolismo , Encefalite/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/genética , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia
5.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360888

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-ß (TGF-ß) signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications of these SMAD proteins in the linker domain regulate their function and these can be triggered by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if OA-related inflammation affects TGF-ß signaling via SMAD2/3 linker-modifications in chondrocytes. We found that both Interleukin (IL)-1ß and OA-synovium conditioned medium negated SMAD2/3 transcriptional activity in chondrocytes. This inhibition of TGF-ß signaling was enhanced if SMAD3 could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1ß was less if the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflammation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The involvement of linker region modifications may represent a new therapeutic target for OA.


Assuntos
Condrócitos/metabolismo , Condrócitos/patologia , Osteoartrite/metabolismo , Transdução de Sinais/genética , Proteína Smad2/química , Proteína Smad2/metabolismo , Proteína Smad3/química , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Animais , Bovinos , Linhagem Celular Tumoral , Humanos , Hipertrofia/metabolismo , Inflamação/metabolismo , Interleucina-1beta/farmacologia , Osteoartrite/genética , Osteoartrite/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Domínios Proteicos/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Proteína Smad3/genética , Membrana Sinovial/metabolismo , Transfecção , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia
6.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360893

RESUMO

Flowering is a morphogenetic process in which angiosperms shift from vegetative growth to reproductive growth. Flowering time has a strong influence on fruit growth, which is closely related to productivity. Therefore, research on crop flowering time is particularly important. To better understand the flowering period of the tomato, we performed transcriptome sequencing of early flower buds and flowers during the extension period in the later-flowering "Moneymaker" material and the earlier-flowering "20965" homozygous inbred line, and we analyzed the obtained data. At least 43.92 million clean reads were obtained from 12 datasets, and the similarity with the tomato internal reference genome was 92.86-94.57%. Based on gene expression and background annotations, 49 candidate genes related to flowering time and flower development were initially screened, among which the greatest number belong to the photoperiod pathway. According to the expression pattern of candidate genes, the cause of early flowering of "20965" is predicted. The modes of action of the differentially expressed genes were classified, and the results show that they are closely related to hormone regulation and participated in a variety of life activities in crops. The candidate genes we screened and the analysis of their expression patterns provide a basis for future functional verification, helping to explore the molecular mechanism of tomato flowering time more comprehensively.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Flores/crescimento & desenvolvimento , Flores/genética , Genes de Plantas , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/genética , Transcriptoma , Produtos Agrícolas/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estudos de Associação Genética/métodos , Lycopersicon esculentum/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , RNA-Seq/métodos , Transdução de Sinais/genética
7.
Front Immunol ; 12: 700184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408749

RESUMO

Coronavirus disease 2019 (COVID-19), which has high incidence rates with rapid rate of transmission, is a pandemic that spread across the world, resulting in more than 3,000,000 deaths globally. Currently, several drugs have been used for the clinical treatment of COVID-19, such as antivirals (radecivir, baritinib), monoclonal antibodies (tocilizumab), and glucocorticoids (dexamethasone). Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are essential regulators of virus infections and antiviral immune responses including biological processes that are involved in the regulation of COVID-19 and subsequent disease states. Upon viral infections, cellular lncRNAs directly regulate viral genes and influence viral replication and pathology through virus-mediated changes in the host transcriptome. Additionally, several host lncRNAs could help the occurrence of viral immune escape by inhibiting type I interferons (IFN-1), while others could up-regulate IFN-1 production to play an antiviral role. Consequently, understanding the expression and function of lncRNAs during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection will provide insights into the development of lncRNA-based methods. In this review, we summarized the current findings of lncRNAs in the regulation of the strong inflammatory response, immune dysfunction and thrombosis induced by SARS-CoV-2 infection, discussed the underlying mechanisms, and highlighted the therapeutic challenges of COVID-19 treatment and its future research directions.


Assuntos
COVID-19/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Imunidade Inata/genética , RNA Longo não Codificante/metabolismo , Trombose/imunologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Biomarcadores/análise , COVID-19/complicações , COVID-19/tratamento farmacológico , COVID-19/genética , Teste para COVID-19/métodos , Citocinas/genética , Citocinas/metabolismo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/imunologia , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Evasão da Resposta Imune/genética , Pandemias/prevenção & controle , RNA Longo não Codificante/análise , RNA Longo não Codificante/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Trombose/genética , Trombose/virologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Replicação Viral/imunologia
8.
Nat Commun ; 12(1): 4908, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389711

RESUMO

C9ORF72 hexanucleotide GGGGCC repeat expansion is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat-containing RNA mediates toxicity through nuclear granules and dipeptide repeat (DPR) proteins produced by repeat-associated non-AUG translation. However, it remains unclear how the intron-localized repeats are exported and translated in the cytoplasm. We use single molecule imaging approach to examine the molecular identity and spatiotemporal dynamics of the repeat RNA. We demonstrate that the spliced intron with G-rich repeats is stabilized in a circular form due to defective lariat debranching. The spliced circular intron, instead of pre-mRNA, serves as the translation template. The NXF1-NXT1 pathway plays an important role in the nuclear export of the circular intron and modulates toxic DPR production. This study reveals an uncharacterized disease-causing RNA species mediated by repeat expansion and demonstrates the importance of RNA spatial localization to understand disease etiology.


Assuntos
Proteína C9orf72/genética , Núcleo Celular/metabolismo , Íntrons/genética , Biossíntese de Proteínas/genética , RNA/genética , Transporte Ativo do Núcleo Celular/genética , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Proteína C9orf72/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/genética , Expansão das Repetições de DNA/genética , Dipeptídeos/genética , Dipeptídeos/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Predisposição Genética para Doença/genética , Células HEK293 , Humanos , Microscopia de Fluorescência , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
9.
Nat Commun ; 12(1): 4913, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389722

RESUMO

Epitranscriptomic mechanisms linking tRNA function and the brain proteome to cognition and complex behaviors are not well described. Here, we report bi-directional changes in depression-related behaviors after genetic disruption of neuronal tRNA cytosine methylation, including conditional ablation and transgene-derived overexpression of Nsun2 in the mouse prefrontal cortex (PFC). Neuronal Nsun2-deficiency was associated with a decrease in tRNA m5C levels, resulting in deficits in expression of 70% of tRNAGly isodecoders. Altogether, 1488/5820 proteins changed upon neuronal Nsun2-deficiency, in conjunction with glycine codon-specific defects in translational efficiencies. Loss of Gly-rich proteins critical for glutamatergic neurotransmission was associated with impaired synaptic signaling at PFC pyramidal neurons and defective contextual fear memory. Changes in the neuronal translatome were also associated with a 146% increase in glycine biosynthesis. These findings highlight the methylation sensitivity of glycinergic tRNAs in the adult PFC. Furthermore, they link synaptic plasticity and complex behaviors to epitranscriptomic modifications of cognate tRNAs and the proteomic homeostasis associated with specific amino acids.


Assuntos
Transtorno Depressivo/fisiopatologia , Epigênese Genética/genética , Metiltransferases/genética , Proteoma/metabolismo , RNA de Transferência/genética , Transmissão Sináptica/genética , Animais , Transtorno Depressivo/genética , Transtorno Depressivo/metabolismo , Perfilação da Expressão Gênica/métodos , Metiltransferases/deficiência , Metiltransferases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Proteômica/métodos , RNA de Transferência/metabolismo , Transdução de Sinais/genética
10.
Nat Commun ; 12(1): 4932, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389733

RESUMO

BAX is a pro-apoptotic member of the BCL-2 family, which regulates the balance between cellular life and death. During homeostasis, BAX predominantly resides in the cytosol as a latent monomer but, in response to stress, transforms into an oligomeric protein that permeabilizes the mitochondria, leading to apoptosis. Because renegade BAX activation poses a grave risk to the cell, the architecture of BAX must ensure monomeric stability yet enable conformational change upon stress signaling. The specific structural features that afford both stability and dynamic flexibility remain ill-defined and represent a critical control point of BAX regulation. We identify a nexus of interactions involving four residues of the BAX core α5 helix that are individually essential to maintaining the structure and latency of monomeric BAX and are collectively required for dimeric assembly. The dual yet distinct roles of these residues reveals the intricacy of BAX conformational regulation and opportunities for therapeutic modulation.


Assuntos
Aminoácidos/genética , Apoptose/genética , Mutação , Transdução de Sinais/genética , Proteína X Associada a bcl-2/genética , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Sítios de Ligação/genética , Células Cultivadas , Citosol/metabolismo , Humanos , Camundongos Knockout , Mitocôndrias/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/metabolismo
11.
Adv Protein Chem Struct Biol ; 127: 315-342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34340772

RESUMO

Lung Emphysema is an abnormal enlargement of the air sacs followed by the destruction of alveolar walls without any prominent fibrosis. This study primarily identifies the differentially expressed genes (DEGs), interactions between them, and their significant involvement in the activated signaling cascades. The dataset with ID GSE1122 (five normal lung tissue samples, five of usual emphysema, and five of alpha-1 antitrypsin deficiency-related emphysema) from the gene expression omnibus (GEO) was analyzed using the GEO2R tool. The physical association between the DEGs were mapped using the STRING tool and was visualized in the Cytoscape software. The enriched functional processes were identified with the ClueGO plugin's help from Cytoscape. Further integrative functional annotation was performed by implying the GeneGo Metacore™ to distinguish the enriched pathway maps, process networks, and GO processes. The results from this analysis revealed the critical signaling cascades that have been either activated or inhibited due to identified DEGs. We found the activated pathways such as immune response IL-1 signaling pathway, positive regulation of smooth muscle migration, BMP signaling pathway, positive regulation of leukocyte migration, NIK/NF-kappB signaling, and cytochrome-c oxidase activity. Finally, we mapped four crucial genes (CCL5, ALK, TAC1, CD74, and HLA-DOA) by comparing the functional annotations that could be significantly influential in emphysema molecular pathogenesis. Our study provides insights into the pathogenesis of emphysema and helps in developing potential drug targets against emphysema.


Assuntos
Bases de Dados Genéticas , Enfisema Pulmonar , Transdução de Sinais/genética , Biologia de Sistemas , Deficiência de alfa 1-Antitripsina , Humanos , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/metabolismo
12.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360824

RESUMO

Different mechanisms were proposed as responsible for COVID-19 neurological symptoms but a clear one has not been established yet. In this work we aimed to study SARS-CoV-2 capacity to infect pediatric human cortical neuronal HCN-2 cells, studying the changes in the transcriptomic profile by next generation sequencing. SARS-CoV-2 was able to replicate in HCN-2 cells, that did not express ACE2, confirmed also with Western blot, and TMPRSS2. Looking for pattern recognition receptor expression, we found the deregulation of scavenger receptors, such as SR-B1, and the downregulation of genes encoding for Nod-like receptors. On the other hand, TLR1, TLR4 and TLR6 encoding for Toll-like receptors (TLRs) were upregulated. We also found the upregulation of genes encoding for ERK, JNK, NF-κB and Caspase 8 in our transcriptomic analysis. Regarding the expression of known receptors for viral RNA, only RIG-1 showed an increased expression; downstream RIG-1, the genes encoding for TRAF3, IKKε and IRF3 were downregulated. We also found the upregulation of genes encoding for chemokines and accordingly we found an increase in cytokine/chemokine levels in the medium. According to our results, it is possible to speculate that additionally to ACE2 and TMPRSS2, also other receptors may interact with SARS-CoV-2 proteins and mediate its entry or pathogenesis in pediatric cortical neurons infected with SARS-CoV-2. In particular, TLRs signaling could be crucial for the neurological involvement related to SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Córtex Cerebral/metabolismo , Neurônios/virologia , SARS-CoV-2/patogenicidade , Receptores Toll-Like/metabolismo , COVID-19/genética , COVID-19/imunologia , Criança , Citocinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Neurônios/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Transdução de Sinais/genética , Receptores Toll-Like/genética , Replicação Viral
13.
Nat Commun ; 12(1): 4950, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400635

RESUMO

Upon ligand binding, bone morphogenetic protein (BMP) receptors form active tetrameric complexes, comprised of two type I and two type II receptors, which then transmit signals to SMAD proteins. The link between receptor tetramerization and the mechanism of kinase activation, however, has not been elucidated. Here, using hydrogen deuterium exchange mass spectrometry (HDX-MS), small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, combined with analysis of SMAD signaling, we show that the kinase domain of the type I receptor ALK2 and type II receptor BMPR2 form a heterodimeric complex via their C-terminal lobes. Formation of this dimer is essential for ligand-induced receptor signaling and is targeted by mutations in BMPR2 in patients with pulmonary arterial hypertension (PAH). We further show that the type I/type II kinase domain heterodimer serves as the scaffold for assembly of the active tetrameric receptor complexes to enable phosphorylation of the GS domain and activation of SMADs.


Assuntos
Receptores de Ativinas Tipo I/química , Receptores de Ativinas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Transdução de Sinais/fisiologia , Receptores de Ativinas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Humanos , Ligantes , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Domínios Proteicos , Hipertensão Arterial Pulmonar , Espalhamento a Baixo Ângulo , Transdução de Sinais/genética , Proteínas Smad/metabolismo , Difração de Raios X
14.
Nat Commun ; 12(1): 4928, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389720

RESUMO

Diabetes results from a decline in functional pancreatic ß-cells, but the molecular mechanisms underlying the pathological ß-cell failure are poorly understood. Here we report that large-tumor suppressor 2 (LATS2), a core component of the Hippo signaling pathway, is activated under diabetic conditions and induces ß-cell apoptosis and impaired function. LATS2 deficiency in ß-cells and primary isolated human islets as well as ß-cell specific LATS2 ablation in mice improves ß-cell viability, insulin secretion and ß-cell mass and ameliorates diabetes development. LATS2 activates mechanistic target of rapamycin complex 1 (mTORC1), a physiological suppressor of autophagy, in ß-cells and genetic and pharmacological inhibition of mTORC1 counteracts the pro-apoptotic action of activated LATS2. We further show a direct interplay between Hippo and autophagy, in which LATS2 is an autophagy substrate. On the other hand, LATS2 regulates ß-cell apoptosis triggered by impaired autophagy suggesting an existence of a stress-sensitive multicomponent cellular loop coordinating ß-cell compensation and survival. Our data reveal an important role for LATS2 in pancreatic ß-cell turnover and suggest LATS2 as a potential therapeutic target to improve pancreatic ß-cell survival and function in diabetes.


Assuntos
Autofagia , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Cultivadas , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Humanos , Células Secretoras de Insulina/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Ratos , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética
15.
Anim Sci J ; 92(1): e13617, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34405917

RESUMO

Granulosa cells (GCs) play an important role in the development of follicles. In this study, we investigate the impact of heat stress at 41°C and 43°C on duck GCs' proliferation and steroids secretion. And, the transcriptomic responses to heat treatment were examined using RNA-sequencing analysis. Digital gene expression profiling was used to screen and identify differentially expressed genes (fold change ≥ 2 and Q value < 0.05). Further, the differential expression genes (DEGs) were classified into GO categories and KEGG pathways. The results show that duck GCs blocked in the G1 phase were increased on exposure to heat stress. Meanwhile, the expression of proliferative genes, which were essential for the transition from G1 to S phase, was inhibited. At the same time, heat stress inhibited the estradiol synthesis of GCs by decreasing CYP11A1 and CYP19A1 gene expression. A total of 241 DEGs including 181 upregulated and 60 downregulated ones were identified. Transcriptome result shows that heat shock protein and CXC chemokines gene were significantly activated during heat stress. While collagenases (MMP1 and MMP13) and strome lysins (MMP3) were downregulated. And, the hedgehog signaling pathway may be a prosurvival adaptive response under heat stress. These results offer a basis for better understanding the molecular mechanism underlying lay-eggs-less in ducks under heat stress.


Assuntos
Proliferação de Células/genética , Patos/fisiologia , Estradiol/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica , Células da Granulosa/fisiologia , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Ovulação/fisiologia , Animais , Aromatase/genética , Aromatase/metabolismo , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Regulação para Baixo , Feminino , Células da Granulosa/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hedgehog/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
16.
BMC Plant Biol ; 21(1): 370, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384392

RESUMO

BACKGROUND: To adapt seasonal climate changes under natural environments, Polygonatum sibiricum seeds have a long period of epicotyl morphophysiological dormancy, which limits their wide-utilization in the large-scale plant progeny propagation. It has been proven that the controlled consecutive warm and cold temperature treatments can effectively break and shorten this seed dormancy status to promote its successful underdeveloped embryo growth, radicle emergence and shoot emergence. To uncover the molecular basis of seed dormancy release and seedling establishment, a SMRT full-length sequencing analysis and an Illumina sequencing-based comparison of P. sibiricum seed transcriptomes were combined to investigate transcriptional changes during warm and cold stratifications. RESULTS: A total of 87,251 unigenes, including 46,255 complete sequences, were obtained and 77,148 unigenes (88.42%) were annotated. Gene expression analyses at four stratification stages identified a total of 27,059 DEGs in six pairwise comparisons and revealed that more differentially expressed genes were altered at the Corm stage than at the other stages, especially Str_S and Eme. The expression of 475 hormone metabolism genes and 510 hormone signaling genes was modulated during P. sibiricum seed dormancy release and seedling emergence. One thousand eighteen transcription factors and five hundred nineteen transcription regulators were detected differentially expressed during stratification and germination especially at Corm and Str_S stages. Of 1246 seed dormancy/germination known DEGs, 378, 790, and 199 DEGs were associated with P. sibiricum MD release (Corm vs Seed), epicotyl dormancy release (Str_S vs Corm), and the seedling establishment after the MPD release (Eme vs Str_S). CONCLUSIONS: A comparison with dormancy- and germination-related genes in Arabidopsis thaliana seeds revealed that genes related to multiple plant hormones, chromatin modifiers and remodelers, DNA methylation, mRNA degradation, endosperm weakening, and cell wall structures coordinately mediate P. sibiricum seed germination, epicotyl dormancy release, and seedling establishment. These results provided the first insights into molecular regulation of P. sibiricum seed epicotyl morphophysiological dormancy release and seedling emergence. They may form the foundation of future studies regarding gene interaction and the specific roles of individual tissues (endosperm, newly-formed corm) in P. sibiricum bulk seed dormancy.


Assuntos
Dormência de Plantas/genética , Polygonatum/crescimento & desenvolvimento , Polygonatum/genética , Temperatura , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcriptoma
17.
Theranostics ; 11(16): 7715-7734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335960

RESUMO

Rationale: Emerging evidence indicates that the growth of blood vessels and osteogenesis is tightly coordinated during bone development. However, the molecular regulators of intercellular communication in the bone microenvironment are not well studied. Therefore, we aim to investigate whether BMMSC-Exo promotes osteogenesis and angiogenesis via transporting lnc-H19 in the CBS- heterozygous mouse model. Methods: Using RT2 lncRNA PCR array screening, we identify a bone-specific, long noncoding RNA-H19 (lncRNA-H19/lnc-H19) in exosomes derived from bone marrow mesenchymal stem cells (BMMSC-Exo) during osteogenesis. Using bioinformatics analysis, we further discovered the seed sequence of miR-106a that could bind to lnc-H19. A luciferase reporter assay was performed to demonstrate the direct binding of miR-106a to the target gene angiopoietin 1 (Angpt1). We employed an immunocompromised Nude mouse model, to evaluate the effects of BMMSC-Exo on angiogenesis in vivo. Using a micro-CT scan, we monitored microstructural changes of bone in the experimental mice. Results: BMMSC-Exo possessed exosomal characteristics including exosome size, and typical markers including CD63, CD9, and TSD101. In vitro, BMMSC-Exo significantly promoted endothelial angiogenesis and osteogenesis. Mechanistic studies have shown that exosomal lnc-H19 acts as "sponges" to absorb miR-106 and regulate the expression of angiogenic factor, Angpt1 that activates lnc-H19/Tie2-NO signaling in mesenchymal and endothelial cells. Both of these effects on osteogenesis and angiogenesis are inhibited by antagonizing Tie2 signaling. Treatment of BMMSC-Exo also restored the bone formation and mechanical quality in vivo. Conclusion: These findings provide a novel insight into how the extracellular role of exosomal lnc-H19 affects osteogenesis and angiogenesis through competing endogenous RNA networks.


Assuntos
MicroRNAs/genética , Osteogênese/genética , RNA Longo não Codificante/genética , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Angiopoietina-1/fisiologia , Animais , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Exossomos/genética , Genes Supressores de Tumor , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neovascularização Patológica/genética , Óxido Nítrico/metabolismo , RNA Longo não Codificante/metabolismo , Receptor TIE-2/metabolismo , Receptor TIE-2/fisiologia , Transdução de Sinais/genética
18.
Theranostics ; 11(16): 7779-7796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335964

RESUMO

Rationale: The progression of prostate cancer (PCa) to castration-resistant PCa (CRPC) despite continuous androgen deprivation therapy is a major clinical challenge. Over 90% of patients with CRPC exhibit sustained androgen receptor (AR) signaling. KDM4B that removes the repressive mark H3K9me3/2 is a transcriptional activator of AR and has been implicated in the development of CRPC. However, the mechanisms of KDM4B involvement in CRPC remain largely unknown. Here, we sought to demonstrate the molecular pathway mediated by KDM4B in CRPC and to provide proof-of-concept evidence that KDM4B is a potential CRPC target. Methods: CRPC cells (C4-2B or CWR22Rv1) depleted with KDM4B followed by cell proliferation (in vitro and xenograft), microarray, qRT-PCR, Seahorse Flux, and metabolomic analyses were employed to identify the expression and metabolic profiles mediated by KDM4B. Immunoprecipitation was used to determine the KDM4B-c-Myc interaction region. Reporter activity assay and ChIP analysis were used to characterize the KDM4B-c-Myc complex-mediated mechanistic actions. The clinical relevance between KDM4B and c-Myc was determined using UCSC Xena analysis and immunohistochemistry. Results: We showed that KDM4B knockdown impaired CRPC proliferation, switched Warburg to OXPHOS metabolism, and suppressed gene expressions including those targeted by c-Myc. We further demonstrated that KDM4B physically interacted with c-Myc and they were co-recruited to the c-Myc-binding sequence on the promoters of metabolic genes (LDHA, ENO1, and PFK). Importantly, KDM4B and c-Myc synergistically promoted the transactivation of the LDHA promoter in a demethylase-dependent manner. We also provided evidence that KDM4B and c-Myc are co-expressed in PCa tissue and that high expression of both is associated with worse clinical outcome. Conclusions: KDM4B partners with c-Myc and serves as a coactivator of c-Myc to directly enhance c-Myc-mediated metabolism, hence promoting CRPC progression. Targeting KDM4B is thus an alternative therapeutic strategy for advanced prostate cancers driven by c-Myc and AR.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Antagonistas de Androgênios , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Histona Desmetilases com o Domínio Jumonji/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
19.
Theranostics ; 11(16): 8112-8128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335983

RESUMO

The coiled-coil domain containing protein members have been well documented for their roles in many diseases including cancers. However, the function of the coiled-coil domain containing 65 (CCDC65) remains unknown in tumorigenesis including gastric cancer. Methods: CCDC65 expression and its correlation with clinical features and prognosis of gastric cancer were analyzed in tissue. The biological role and molecular basis of CCDC65 were performed via in vitro and in vivo assays and a various of experimental methods including co-immunoprecipitation (Co-IP), GST-pull down and ubiquitination analysis et al. Finally, whether metformin affects the pathogenesis of gastric cancer by regulating CCDC65 and its-mediated signaling was investigated. Results: Here, we found that downregulated CCDC65 level was showed as an unfavourable factor in gastric cancer patients. Subsequently, CCDC65 or its domain (a.a. 130-484) was identified as a significant suppressor in GC growth and metastasis in vitro and in vivo. Molecular basis showed that CCDC65 bound to ENO1, an oncogenic factor has been widely reported to promote the tumor pathogenesis, by its domain (a.a. 130-484) and further promoted ubiquitylation and degradation of ENO1 by recruiting E3 ubiquitin ligase FBXW7. The downregulated ENO1 decreased the binding with AKT1 and further inactivated AKT1, which led to the loss of cell proliferation and EMT signal. Finally, we observed that metformin, a new anti-cancer drug, can significantly induce CCDC65 to suppress ENO1-AKT1 complex-mediated cell proliferation and EMT signals and finally suppresses the malignant phenotypes of gastric cancer cells. Conclusion: These results firstly highlight a critical role of CCDC65 in suppressing ENO1-AKT1 pathway to reduce the progression of gastric cancer and reveals a new molecular mechanism for metformin in suppressing gastric cancer. Our present study provides a new insight into the mechanism and therapy for gastric cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glicoproteínas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , China , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Glicoproteínas/genética , Humanos , Masculino , Metformina/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oncogenes , Prognóstico , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
20.
FASEB J ; 35(9): e21833, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34365659

RESUMO

Macrophages are the principal component of the innate immune system. They play very crucial and multifaceted roles in the pathogenesis of inflammatory vascular diseases. There is an increasing recognition that transcriptionally dynamic macrophages are the key players in the pathogenesis of inflammatory vascular diseases. In this context, the accumulation and aberrant activation of macrophages in the subendothelial layers govern atherosclerotic plaque development. Macrophage-mediated inflammation is an explicitly robust biological response that involves broad alterations in inflammatory gene expression. Thus, cell-intrinsic negative regulatory mechanisms must exist which can restrain inflammatory response in a spatiotemporal manner. In this study, we identified CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) as one such cell-intrinsic negative regulator of inflammation. Our in vivo studies show that myeloid-CITED2-deficient mice on the Apoe-/- background have larger atherosclerotic lesions on both control and high-fat/high-cholesterol diets. Our integrated transcriptomics and gene set enrichment analyses studies show that CITED2 deficiency elevates STAT1 and interferon regulatory factor 1 (IRF1) regulated pro-inflammatory gene expression in macrophages. At the molecular level, our studies identify that CITED2 deficiency elevates IFNγ-induced STAT1 transcriptional activity and STAT1 enrichment on IRF1 promoter in macrophages. More importantly, siRNA-mediated knockdown of IRF1 completely reversed elevated pro-inflammatory target gene expression in CITED2-deficient macrophages. Collectively, our study findings demonstrate that CITED2 restrains the STAT1-IRF1 signaling axis in macrophages and limits the development of atherosclerotic plaques.


Assuntos
Aterosclerose/genética , Fator Regulador 1 de Interferon/genética , Proteínas Repressoras/genética , Fator de Transcrição STAT1/genética , Transdução de Sinais/genética , Transativadores/genética , Animais , Feminino , Inflamação/genética , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , Transcrição Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...