Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.227
Filtrar
1.
PLoS Negl Trop Dis ; 14(8): e0008627, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866158

RESUMO

The application of reverse genetics in the human filarial parasites has lagged due to the difficult biology of these organisms. Recently, we developed a co-culture system that permitted the infective larval stage of Brugia malayi to be transfected and efficiently develop to fecund adults. This was exploited to develop a piggyBac transposon-based toolkit that can be used to produce parasites with transgene sequences stably integrated into the parasite genome. However, the piggyBac system has generally been supplanted by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based technology, which allows precise editing of a genome. Here we report adapting the piggyBac mediated transfection system of B. malayi for CRISPR mediated knock-in insertion into the parasite genome. Suitable CRISPR insertion sites were identified in intergenic regions of the B. malayi genome. A dual reporter piggybac vector was modified, replacing the piggyBac inverted terminal repeat regions with sequences flanking the insertion site. B. malayi molting L3 were transfected with a synthetic guide RNA, the modified plasmid and the CAS9 nuclease. The transfected parasites were implanted into gerbils and allowed to develop into adults. Progeny microfilariae were recovered and screened for expression of a secreted luciferase reporter encoded in the plasmid. Approximately 3% of the microfilariae were found to secrete luciferase; all contained the transgenic sequences inserted at the expected location in the parasite genome. Using an adaptor mediated PCR assay, transgenic microfilariae were examined for the presence of off target insertions; no off-target insertions were found. These data demonstrate that CRISPR can be used to modify the genome of B. malayi, opening the way to precisely edit the genome of this important human filarial parasite.


Assuntos
Brugia Malayi/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Transfecção/métodos , Animais , Animais Geneticamente Modificados , Sequência de Bases , DNA de Helmintos/genética , Feminino , Edição de Genes , Genoma , Larva/genética , Luciferases , Microfilárias/genética
2.
Cells ; 9(9)2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899484

RESUMO

Hybrid nanoparticles from lipidic and polymeric components were assembled to serve as vehicles for the transfection of messenger RNA (mRNA) using different portions of the cationic lipid DOTAP (1,2-Dioleoyl-3-trimethylammonium-propane) and the cationic biopolymer protamine as model systems. Two different sequential assembly approaches in comparison with a direct single-step protocol were applied, and molecular organization in correlation with biological activity of the resulting nanoparticle systems was investigated. Differences in the structure of the nanoparticles were revealed by thorough physicochemical characterization including small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). All hybrid systems, combining lipid and polymer, displayed significantly increased transfection in comparison to lipid/mRNA and polymer/mRNA particles alone. For the hybrid nanoparticles, characteristic differences regarding the internal organization, release characteristics, and activity were determined depending on the assembly route. The systems with the highest transfection efficacy were characterized by a heterogenous internal organization, accompanied by facilitated release. Such a system could be best obtained by the single step protocol, starting with a lipid and polymer mixture for nanoparticle formation.


Assuntos
Biopolímeros/química , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/metabolismo , Transfecção/métodos , Animais , Linhagem Celular , Ácidos Graxos Monoinsaturados/química , Feminino , Heparina/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica , Tamanho da Partícula , Compostos de Amônio Quaternário/química , RNA Mensageiro/química
3.
Nat Commun ; 11(1): 4903, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994412

RESUMO

The CRISPR-Cas9 system has increased the speed and precision of genetic editing in cells and animals. However, model generation for drug development is still expensive and time-consuming, demanding more target flexibility and faster turnaround times with high reproducibility. The generation of a tightly controlled ObLiGaRe doxycycline inducible SpCas9 (ODInCas9) transgene and its use in targeted ObLiGaRe results in functional integration into both human and mouse cells culminating in the generation of the ODInCas9 mouse. Genomic editing can be performed in cells of various tissue origins without any detectable gene editing in the absence of doxycycline. Somatic in vivo editing can model non-small cell lung cancer (NSCLC) adenocarcinomas, enabling treatment studies to validate the efficacy of candidate drugs. The ODInCas9 mouse allows robust and tunable genome editing granting flexibility, speed and uniformity at less cost, leading to high throughput and practical preclinical in vivo therapeutic testing.


Assuntos
Sistemas CRISPR-Cas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Descoberta de Drogas/métodos , Edição de Genes/métodos , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína 9 Associada à CRISPR/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Transgênicos , RNA Guia/genética , Recombinação Genética/efeitos dos fármacos , Reprodutibilidade dos Testes , Ativação Transcricional/efeitos dos fármacos , Transfecção/métodos , Transgenes/genética
4.
Methods Mol Biol ; 2203: 147-165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833211

RESUMO

We have developed a reverse genetics system for the avian coronavirus infectious bronchitis virus (IBV) in which a full-length cDNA corresponding to the IBV genome is inserted into the vaccinia virus genome under the control of a T7 promoter sequence. Vaccinia virus as a vector for the full-length IBV cDNA has the advantage that modifications can be introduced into the IBV cDNA using homologous recombination, a method frequently used to insert and delete sequences from the vaccinia virus genome. Here, we describe the use of transient dominant selection as a method for introducing modifications into the IBV cDNA that has been successfully used for the substitution of specific nucleotides, deletion of genomic regions, and the exchange of complete genes. Infectious recombinant IBVs are generated in situ following the transfection of vaccinia virus DNA, containing the modified IBV cDNA, into cells infected with a recombinant fowlpox virus expressing T7 DNA-dependent RNA polymerase.


Assuntos
Vírus da Bronquite Infecciosa/genética , Transfecção/métodos , Vírus Vaccinia/genética , Animais , Bacteriófagos/genética , Chlorocebus aethiops , DNA Polimerase Dirigida por DNA/metabolismo , Vírus da Varíola das Aves Domésticas/genética , Recombinação Homóloga , Microrganismos Geneticamente Modificados , Vírus Vaccinia/isolamento & purificação , Células Vero
5.
Int Heart J ; 61(4): 806-814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32728001

RESUMO

This study aimed to explore the function of miR-24 in hypoxia/reoxygenation (H/R) -induced cardiomyocyte injury.We constructed a cardiomyocyte model of H/R using the primary cardiomyocytes isolated from Sprague-Dawley rats. To explore the role of miR-24, cells were transfected with a miR-24 mimic or miR-24 inhibitor. The RNA expression levels of miR-24 and Mapk14 were determined using qRT-PCR. The proliferation and apoptosis of cells were determined using a CCK8 assay and a flow cytometer. The TargetScan website was used to predict the targets of miR-24. A dual-luciferase reporter gene assay was conducted to verify whether Mapk14 is indeed a target of miR-24. A Western blot was applied for protein detection.H/R exposure decreased the expression of miR-24 in rat cardiomyocytes. Transfection of the miR-24 mimic into cardiomyocytes reduced H/R-induced injury as evidenced by an increase in proliferation and a decrease in the apoptotic rate. By contrast, transfection of the miR-24 inhibitor aggravated H/R-induced injury. The expression of Bcl-2 was increased while the levels of Bax and Active-caspase 3 were reduced in the H/R+miR-24 mimic group compared to those in the H/R group. H/R+miR-24 inhibitor group showed the opposite results. Mapk14 was identified as a target of miR-24. The mRNA level of Mapk14 and its protein (p38 MAPK) level were negatively affected by miR-24. Furthermore, we discovered that depletion of Mapk14 reduced the promoting effect of the miR-24 inhibitor on cell apoptosis.Overall, our results illustrated that miR-24 could attenuate H/R-induced injury partly by regulating Mapk14.


Assuntos
Hipóxia/metabolismo , MicroRNAs/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Apoptose/fisiologia , Caspase 3/metabolismo , Genes Reporter/genética , Genes bcl-2/genética , Humanos , Ratos , Ratos Sprague-Dawley , Transfecção/métodos , Proteína X Associada a bcl-2/metabolismo
6.
Virus Res ; 286: 198074, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32589897

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus causing the pandemic of severe pneumonia (Coronavirus Disease 2019, COVID-19). SARS-CoV-2 is highly pathogenic in human, having posed immeasurable public health challenges to the world. Innate immune response is critical for the host defense against viral infection and the dysregulation of the host innate immune responses probably aggravates SARS-CoV-2 infection, contributing to the high morbidity and lethality of COVID-19. It has been reported that some coronavirus proteins play an important role in modulating innate immunity of the host, but few studies have been conducted on SARS-CoV-2. In this study, we screened the viral proteins of SARS-CoV-2 and found that the viral ORF6, ORF8 and nucleocapsid proteins were potential inhibitors of type I interferon signaling pathway, a key component for antiviral response of host innate immune. All the three proteins showed strong inhibition on type I interferon (IFN-ß) and NF-κB-responsive promoter, further examination revealed that these proteins were able to inhibit the interferon-stimulated response element (ISRE) after infection with Sendai virus, while only ORF6 and ORF8 proteins were able to inhibit the ISRE after treatment with interferon beta. These findings would be helpful for the further study of the detailed signaling pathway and unveil the key molecular player that may be targeted.


Assuntos
Betacoronavirus/genética , Interações Hospedeiro-Patógeno/genética , Interferon beta/genética , NF-kappa B/genética , Proteínas do Nucleocapsídeo/genética , Proteínas Virais/genética , Betacoronavirus/imunologia , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Interferon beta/imunologia , Luciferases/genética , Luciferases/metabolismo , NF-kappa B/imunologia , Proteínas do Nucleocapsídeo/imunologia , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Elementos de Resposta , Vírus Sendai/genética , Vírus Sendai/imunologia , Transdução de Sinais , Transfecção/métodos , Proteínas Virais/imunologia
7.
Cell Prolif ; 53(5): e12820, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32350961

RESUMO

OBJECTIVES: Recently developed CRISPR-dependent cytosine base editor (CBE), converting four codons (CAA, CAG, CGA and TGG) into stop codons without DNA double-strand breaks (DSB), serves as an efficient gene disruption strategy besides uncontrollable CRISPR-mediated frameshift. However, the detailed difference of gene knockout between the two systems has not been clarified. MATERIALS AND METHODS: Here, we selected some sgRNAs with different position background, then HEK293T cells were transfected with CBE/Cas9 plasmids together with sgRNAs. GFP-positive cells were harvested by fluorescence-activated cell sorting (FACS) 48 hours after transfection. Genomic DNA was collected for deep sequencing to analyse editing efficiency and genotype. RNA and protein were extracted to analyse gene mRNA level using qPCR analysis and Western blot. RESULTS: Here, we compared the gene disruption by CBE-mediated iSTOP with CRISPR/Cas9-mediated frameshift. We found BE-mediated gene knockout yielded fewer genotypes. BE-mediated gene editing precisely achieved silencing of two neighbouring genes, while CRISPR/Cas9 may delete the large fragment between two target sites. All of three stop codons could efficiently disrupt the target genes. It is worth notifying, Cas9-mediated gene knockout showed a more impact on neighbouring genes mRNA level than the BE editor. CONCLUSIONS: Our results reveal the differences between the two gene knockout strategies and provide useful information for choosing the appropriate gene disruption strategy.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citosina/metabolismo , Mutação da Fase de Leitura/genética , Sequência de Bases , Linhagem Celular , Edição de Genes/métodos , Genótipo , Células HEK293 , Humanos , Plasmídeos/genética , RNA Mensageiro/genética , Transfecção/métodos
8.
Proc Natl Acad Sci U S A ; 117(23): 12674-12685, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32430322

RESUMO

Robust cytotoxic T cell infiltration has proven to be difficult to achieve in solid tumors. We set out to develop a flexible protocol to efficiently transfect tumor and stromal cells to produce immune-activating cytokines, and thus enhance T cell infiltration while debulking tumor mass. By combining ultrasound with tumor-targeted microbubbles, membrane pores are created and facilitate a controllable and local transfection. Here, we applied a substantially lower transmission frequency (250 kHz) than applied previously. The resulting microbubble oscillation was significantly enhanced, reaching an effective expansion ratio of 35 for a peak negative pressure of 500 kPa in vitro. Combining low-frequency ultrasound with tumor-targeted microbubbles and a DNA plasmid construct, 20% of tumor cells remained viable, and ∼20% of these remaining cells were transfected with a reporter gene both in vitro and in vivo. The majority of cells transfected in vivo were mucin 1+/CD45- tumor cells. Tumor and stromal cells were then transfected with plasmid DNA encoding IFN-ß, producing 150 pg/106 cells in vitro, a 150-fold increase compared to no-ultrasound or no-plasmid controls and a 50-fold increase compared to treatment with targeted microbubbles and ultrasound (without IFN-ß). This enhancement in secretion exceeds previously reported fourfold to fivefold increases with other in vitro treatments. Combined with intraperitoneal administration of checkpoint inhibition, a single application of IFN-ß plasmid transfection reduced tumor growth in vivo and recruited efficacious immune cells at both the local and distant tumor sites.


Assuntos
Imunoterapia/métodos , Interferon beta/genética , Neoplasias Experimentais/terapia , Linfócitos T/imunologia , Transfecção/métodos , Ondas Ultrassônicas , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos da radiação , Movimento Celular , Humanos , Interferon beta/metabolismo , Camundongos , Microbolhas/uso terapêutico , Linfócitos T/fisiologia
9.
Einstein (Sao Paulo) ; 18: eAO4560, 2020.
Artigo em Inglês, Português | MEDLINE | ID: mdl-32321078

RESUMO

OBJECTIVE: To investigate if ICI 182,780 (fulvestrant), a selective estrogen receptor alpha/beta (ERα/ERß) antagonist, and G-1, a selective G-protein-coupled receptor (GPER) agonist, can potentially induce autophagy in breast cancer cell lines MCF-7 and SKBr3, and how G-1 affects cell viability. METHODS: Cell viability in MCF-7 and SKBr3 cells was assessed by the MTT assay. To investigate the autophagy flux, MCF-7 cells were transfected with GFP-LC3, a marker of autophagosomes, and analyzed by real-time fluorescence microscopy. MCF-7 and SKBr3 cells were incubated with acridine orange for staining of acidic vesicular organelles and analyzed by flow cytometry as an indicator of autophagy. RESULTS: Regarding cell viability in MCF-7 cells, ICI 182,780 and rapamycin, after 48 hours, led to decreased cell proliferation whereas G-1 did not change viability over the same period. The data showed that neither ICI 182,780 nor G-1 led to increased GFP-LC3 puncta in MCF-7 cells over the 4-hour observation period. The cytometry assay showed that ICI 182,780 led to a higher number of acidic vesicular organelles in MCF-7 cells. G-1, in turn, did not have this effect in any of the cell lines. In contrast, ICI 182,780 and G-1 did not decrease cell viability of SKBr3 cells or induce formation of acidic vesicular organelles, which corresponds to the final step of the autophagy process in this cell line. CONCLUSION: The effect of ICI 182,780 on increasing acidic vesicular organelles in estrogen receptor-positive breast cancer cells appears to be associated with its inhibitory effect on estrogen receptors, and GPER does notseem to be involved. Understanding these mechanisms may guide further investigations of these receptors' involvement in cellular processes of breast cancer resistance.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Receptores Acoplados a Proteínas-G/agonistas , Análise de Variância , Western Blotting , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/antagonistas & inibidores , Feminino , Citometria de Fluxo/métodos , Humanos , Células MCF-7 , Receptores Acoplados a Proteínas-G/análise , Reprodutibilidade dos Testes , Sirolimo/farmacologia , Fatores de Tempo , Transfecção/métodos
10.
Proc Natl Acad Sci U S A ; 117(16): 8845-8849, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253306

RESUMO

The genetic incorporation of noncanonical amino acids (ncAAs) into proteins has been realized in bacteria, yeast, and mammalian cells, and recently, in multicellular organisms including plants and animals. However, the addition of new building blocks to the genetic code of tissues from human origin has not yet been achieved. To this end, we report a self-replicating Epstein-Barr virus-based episomal vector for the long-term encoding of ncAAs in human hematopoietic stem cells and reconstitution of this genetically engineered hematopoietic system in mice.


Assuntos
Aminoácidos/genética , Diferenciação Celular/genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/fisiologia , Engenharia de Proteínas/métodos , Animais , Sangue Fetal/citologia , Técnicas de Transferência de Genes , Código Genético , Células HEK293 , Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 4/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Plasmídeos/genética , Cultura Primária de Células/métodos , Transfecção/métodos , Quimeras de Transplante , Transplante Heterólogo/métodos
11.
Arch Insect Biochem Physiol ; 104(4): e21678, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32297364

RESUMO

RNA interference (RNAi) is a valuable method for understanding the gene function and holds great potential for insect pest management. While RNAi is efficient and systemic in coleopteran insects, RNAi is inefficient in lepidopteran insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW), Spodoptera frugiperda cells by formulating dsRNA with Cellfectin II (CFII) transfection reagent. The CFII formulated dsRNA was protected from degradation by endonucleases present in Sf9 cells conditioned medium, hemolymph and midgut lumen contents collected from the FAW larvae. Lipid formulated dsRNA also showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing Sf9 cells and tissues to CFII formulated dsRNA caused a significant knockdown of endogenous genes. CFII formulated dsIAP fed to FAW larvae induced knockdown of iap gene, growth retardation and mortality. Processing of dsRNA into siRNA was detected in Sf9 cells and Spodoptera frugiperda larvae treated with CFII conjugated 32 P-UTP labeled dsGFP. Overall, the present study concluded that delivering dsRNA formulated with CFII transfection reagent helps dsRNA escapes from the endosomal accumulation and improved RNAi efficiency in the FAW cells and tissues.


Assuntos
Lipossomos/administração & dosagem , Interferência de RNA , RNA de Cadeia Dupla/administração & dosagem , Spodoptera/efeitos dos fármacos , Animais , Endossomos , Controle de Insetos/métodos , Larva/efeitos dos fármacos , RNA Interferente Pequeno , Células Sf9 , Spodoptera/crescimento & desenvolvimento , Transfecção/métodos
12.
PLoS Negl Trop Dis ; 14(4): e0008182, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243453

RESUMO

BACKGROUND: Studies of the human filarial parasite have been hampered by the fact that they are obligate parasites with long life cycles. In other pathogenic infections, in vivo imaging systems (IVIS) have proven extremely useful in studying pathogenesis, tissue tropism and in vivo drug efficacy. IVIS requires the use of transgenic parasites expressing a florescent reporter. Developing a method to produce transgenic filarial parasites expressing a florescent reporter would permit IVIS to be applied to the study of tissue tropism and provide a non-invasive way to screen for in vivo drug efficacy against these parasites. METHODOLOGY/PRINCIPAL FINDINGS: We report the development of a dual luciferase reporter construct in a piggyBac backbone that may be used to stably transfect Brugia malayi, a causative agent of human filariasis. Parasites transfected with this construct were visible in IVIS images obtained from infected gerbils. The signal in these infected animals increased dramatically when the transgenic parasites matured to the adult stage and began to produce transgenic progeny microfilaria. We demonstrate that the IVIS system can be used to develop an effective method for cryopreservation of transgenic parasites, to non-invasively monitor the effect of treatment with anti-filarial drugs, and to rapidly identify transgenic F1 microfilariae. CONCLUSIONS: To our knowledge, this represents the first application of IVIS to the study of a human filarial parasite. This method should prove useful in studies of tissue tropism and as an efficient in vivo assay for candidate anti-filarial drugs.


Assuntos
Brugia Malayi/genética , Elementos de DNA Transponíveis , Transfecção/métodos , Imagem Corporal Total , Animais , Animais Geneticamente Modificados , Brugia Malayi/crescimento & desenvolvimento , Criopreservação , Filariose/parasitologia , Gerbillinae , Humanos , Luciferases/genética , Luciferases/metabolismo , Masculino , Microfilárias/genética , Microfilárias/crescimento & desenvolvimento , Plasmídeos/genética , Plasmídeos/metabolismo
13.
PLoS One ; 15(4): e0231664, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32302338

RESUMO

Natural killer (NK) cells are innate lymphocytes with functions that include target cell killing, inflammation and regulation. NK cells integrate incoming activating and inhibitory signals through an array of germline-encoded receptors to gauge the health of neighbouring cells. The reactive potential of NK cells is influenced by microRNA (miRNA), small non-coding sequences that interfere with mRNA expression. miRNAs are highly conserved between species, and a single miRNA can have hundreds to thousands of targets and influence entire cellular programs. Two miRNA species, miR-155-5p and miR-146a-5p are known to be important in controlling NK cell function, but research to best understand the impacts of miRNA species within NK cells has been bottlenecked by a lack of techniques for altering miRNA concentrations efficiently and without off-target effects. Here, we describe a non-viral and straightforward approach for increasing or decreasing expression of miRNA in primary human NK cells. We achieve >90% transfection efficiency without off-target impacts on NK cell viability, education, phenotype or function. This opens the opportunity to study and manipulate NK cell miRNA profiles and their impacts on NK cellular programs which may influence outcomes of cancer, inflammation and autoimmunity.


Assuntos
Engenharia Celular/métodos , Células Matadoras Naturais/metabolismo , MicroRNAs/genética , Transfecção/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Meios de Cultura Livres de Soro/farmacologia , Voluntários Saudáveis , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Cultura Primária de Células
14.
PLoS One ; 15(4): e0232045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330156

RESUMO

The functional efficiency of the expression cassettes integrated into a plasmid and a PCR- amplified fragment was comparatively analyzed after transient transfection in vitro or introduction into the developing embryo of Danio rerio. The cassettes contained the reporter genes, luciferase of Photinus pyralis (luc) or enhanced green fluorescent protein, under the control of the promoter of human cytomegalovirus immediate-early genes. In the in vitro system, the efficiency of the circular plasmid was 2.5 times higher than that of the PCR- amplified fragment. The effect of mutations in the expression cassette on the efficiency of the transgene expression in the PCR- amplified fragment was quantitatively evaluated. The mutations generated after 25 amplification cycles with Taq DNA polymerase decreased luciferase activity in transfected cells by 65-85%. Thus, mutations are the key factor of decreased functional efficiency of the PCR- amplified fragment relative to the circular plasmid in this experimental model, while other factors apparently have a lesser impact. At the organism level, no significant difference in the expression efficiency of the plasmid and PCR- amplified fragment has been revealed. Comparison of the vector efficiencies in in vivo and in vitro systems demonstrates that the level of luciferase in the D. rerio cell lysate, normalized to the molar concentration of the vector, is by three orders of magnitude higher than that after the cell transfection in vitro, which indicates that the quantitative data obtained for in vitro systems should not be directly extrapolated to the organism level.


Assuntos
Genes Reporter/genética , Vetores Genéticos/genética , Reação em Cadeia da Polimerase/métodos , Animais , Linhagem Celular Tumoral , Eficiência/fisiologia , Vaga-Lumes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Luciferases/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Transfecção/métodos , Transgenes/genética , Peixe-Zebra/metabolismo
15.
Int J Nanomedicine ; 15: 483-495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158206

RESUMO

Background: The complex preparation procedures and severe toxicities are two major obstacles facing the wide use of chimeric antigen receptor-modified T (CAR-T) cells in clinical cancer immunotherapy. The nanotechnology-based T cell temporary CAR modification may be a potential approach to solve these problems and make the CAR-T cell-based tumor therapy feasible and broadly applicable. Methods: A series of plasmid DNA-loaded self-assembled nanoparticles (pDNA@SNPsx/y) prepared from adamantane-grafted polyamidoamine (Ad-PAMAM) dendrimers of different generations (G1 or G5) and cyclodextrin-grafted branched polyethylenimine (CD-PEI) of different molecular weights (800, 2000, or 25,000 Da) were characterized and evaluated. The detailed physicochemical properties, cellular interaction, and cytotoxicity of selected pDNA@SNPG1/800 were systematically investigated. Thereafter, the epidermal growth factor receptor variant III (EGFRvIII) CAR-expression plasmid vector (pEGFRvIII-CAR) was constructed and encapsulated into SNPG1/800. The resulting pEGFRvIII-CAR@SNPG1/800 was used for Jurkat cell transient transfection, and the EGFRvIII-CAR expressed in transfected cells was measured by flow cytometry and Western blot. Finally, the response of EGFRvIII CAR-positive Jurkat T cell to target tumor cell was evaluated. Results: The pDNA@SNPG1/800 showed the highest efficacy in Jurkat cell gene transfection and exhibited low cytotoxicity. pEGFRvIII-CAR@SNPG1/800 can efficiently deliver pEGFRvIII-CAR into Jurkat T cells, thereby resulting in transient EGFRvIII-CAR expression in transfected cells. EGFRvIII-CAR that is present on the cell membrane enabled Jurkat T cells to recognize and bind specifically with EGFRvIII-positive tumor cells. Conclusion: These results indicated that pEGFRvIII-CAR@SNPG1/800 can effectively achieve T-cell transient CAR modification, thereby demonstrating considerable potential in CAR-T cancer therapy.


Assuntos
Receptores ErbB/genética , Técnicas de Transferência de Genes , Imunoterapia Adotiva/métodos , Nanopartículas/química , Linfócitos T/fisiologia , Linhagem Celular Tumoral , Dendrímeros/química , Vetores Genéticos , Humanos , Iminas/química , Imunoterapia , Células Jurkat , Peso Molecular , Polietilenos/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Transfecção/métodos
16.
J Cancer Res Clin Oncol ; 146(6): 1415-1426, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32180070

RESUMO

BACKGROUND: The CD-TK double suicide gene has become an effective therapy for bladder cancer. A novel molecular-targeted ultrasound (US) method has been developed to precisely guide nanobubbles loaded with this gene to regions within bladder tumor cells and is widely used due to its efficiency in delivering drugs to the target tumor. METHODS: Uniform nanoscaled nanobubbles loaded with CD-TK double suicide gene were developed using a thin-film hydration sonication, carbodiimide chemistry approaches, and electrostatic adsorption methods. RESULTS: In the present study, we synthesized CD-TK double suicide gene-loaded cationic nanobubbles conjugated with anti-VEGFR2 that can bind with VEGFR2-positive cells. Fluorescence and flow cytometry evidence show that CD-TK double suicide gene-loaded nanobubbles were successfully developed. CD-TK-CNBs delivered via US-mediated nanobubble destruction (UMND) enhanced transfection efficiency, overexpression of CD-TK double suicide gene, and tumor cell apoptosis, and inhibited tumor cell growth in vitro. CONCLUSIONS: These CD-TK-CNBs may become a novel treatment for bladder cancer.


Assuntos
Genes Transgênicos Suicidas , Terapia Genética/métodos , Nanoestruturas , Transfecção/métodos , Ondas Ultrassônicas , Neoplasias da Bexiga Urinária/terapia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Cátions , Linhagem Celular Tumoral , Humanos , Camundongos Nus
17.
Invest Ophthalmol Vis Sci ; 61(3): 12, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32176259

RESUMO

Purpose: The microRNA cluster miR-183C, which includes miR-183 and two other genes, is critical for multiple sensory systems. In mouse retina, removal of this cluster results in photoreceptor defects in polarization, phototransduction, and outer segment elongation. However, the individual roles of the three components of this cluster are not clearly known. We studied the separate role of mouse miR-183 in in vivo. Methods: miR-183 knockout mice were generated using the CRISPR/Cas9 genome-editing system. Electroretinography were carried out to investigate the changes of retinal structures and function. miR-183 was overexpressed by subretinal adeno-associated virus (AAV) injection in vivo. Rnf217, a target of miR-183 was overexpressed by cell transfection of the photoreceptor-derived cell line 661W in vitro. RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to compare the gene expression changes in AAV-injected mice and transfected cells. Results: The miR-183 knockout mice showed progressively attenuated electroretinogram responses. Over- or under-expression of Rnf217, a direct target of miR-183, misregulated expression of cilia-related BBSome genes. Rnf217 overexpression also led to compromised electroretinography responses in WT mice, indicating that it may contribute to functional abnormalities in miR-183 knockout mice. Conclusions: miR-183 is essential for mouse retinal function mediated directly and indirectly through Rnf217 and cilia-related genes. Our findings provide valuable insights into the explanation and analysis of the regulatory role of the individual miR-183 in miR-183C.


Assuntos
Deleção de Genes , MicroRNAs/genética , Retina/fisiopatologia , Degeneração Retiniana/genética , Animais , Células Cultivadas , Cílios/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Edição de Genes/métodos , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos , Camundongos Knockout , MicroRNAs/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/fisiopatologia , Transfecção/métodos
18.
Proc Natl Acad Sci U S A ; 117(11): 5644-5654, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123081

RESUMO

Treatment of many pathologies of the brain could be improved markedly by the development of noninvasive therapeutic approaches that elicit robust, endothelial cell-selective gene expression in specific brain regions that are targeted under MR image guidance. While focused ultrasound (FUS) in conjunction with gas-filled microbubbles (MBs) has emerged as a noninvasive modality for MR image-guided gene delivery to the brain, it has been used exclusively to transiently disrupt the blood-brain barrier (BBB), which may induce a sterile inflammation response. Here, we introduce an MR image-guided FUS method that elicits endothelial-selective transfection of the cerebral vasculature (i.e., "sonoselective" transfection), without opening the BBB. We first determined that activating circulating, cationic plasmid-bearing MBs with pulsed low-pressure (0.1 MPa) 1.1-MHz FUS facilitates sonoselective gene delivery to the endothelium without MRI-detectable disruption of the BBB. The degree of endothelial selectivity varied inversely with the FUS pressure, with higher pressures (i.e., 0.3-MPa and 0.4-MPa FUS) consistently inducing BBB opening and extravascular transfection. Bulk RNA sequencing analyses revealed that the sonoselective low-pressure regimen does not up-regulate inflammatory or immune responses. Single-cell RNA sequencing indicated that the transcriptome of sonoselectively transfected brain endothelium was unaffected by the treatment. The approach developed here permits targeted gene delivery to blood vessels and could be used to promote angiogenesis, release endothelial cell-secreted factors to stimulate nerve regrowth, or recruit neural stem cells.


Assuntos
Barreira Hematoencefálica/metabolismo , Transfecção/métodos , Ondas Ultrassônicas , Animais , Barreira Hematoencefálica/efeitos da radiação , Imagem por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbolhas , Transcriptoma
19.
Int J Nanomedicine ; 15: 1569-1583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210552

RESUMO

Background: MicroRNAs (miRNAs) are widely believed to be promising targets for oral squamous cell carcinoma (OSCC) gene therapy. miR-214 has been identified as a promoter of OSCC aggression and metastasis. Methods: Graphene oxide-polyethylenimine (GO-PEI) complexes were prepared and loaded with a miRNA inhibitor at different N/P ratios. The transfection efficiency of GO-PEI-inhibitor was tested in Cal27 and SCC9 cells. Moreover, the tumor inhibition ability of GO-PEI-inhibitor was measured in an OSCC xenograft mouse model by intratumoral injection. Results: Here, we show that a GO-PEI complex efficiently delivers a miR-214 inhibitor into OSCC cells and controls the intracellular release of the miR-214 inhibitor. These results indicate that the GO-PEI-miR-214 inhibitor complex efficiently inhibited cellular miR-214, resulting in a decrease in OSCC cell invasion and migration and an increase in cell apoptosis by targeting PTEN and p53. In the xenograft mouse model, the GO-PEI-miR-214 inhibitor complex significantly prevented tumor volume growth. Conclusion: This study indicates that functionalized GO-PEI with low toxicity has promising potential for miRNA delivery for the treatment of OSCC.


Assuntos
Antagomirs/administração & dosagem , Carcinoma de Células Escamosas/terapia , MicroRNAs/genética , Neoplasias Bucais/terapia , Transfecção/métodos , Animais , Apoptose/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Terapia Genética/métodos , Grafite/química , Humanos , Camundongos Endogâmicos BALB C , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , PTEN Fosfo-Hidrolase/genética , Polietilenoimina/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Spine (Phila Pa 1976) ; 45(7): E364-E372, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32168135

RESUMO

STUDY DESIGN: Basic science. OBJECTIVE: The aim of this study was to examine the effect of vascular endothelial growth factor (VEGF)-transfected bone marrow mesenchymal stem cells (BMSCs) on the recovery of motor and sensory functions of rats with spinal cord injury (SCI). SUMMARY OF BACKGROUND DATA: There is no effective treatment to protect against SCI. BMSCs have been widely applied to the treatment of nervous system damage due to the function of prompt neurite growth and inhibition of demyelination following injury. METHODS: VEGF-transfected BMSCs were injected to rats with SCI and the recovery of motor and sensory functions was observed. The Basso, Beattie, and Bresnahan, mechanical withdrawal threshold and thermal withdraw latency grading was conducted to assess the recovery status of motor and sensory functions of the SCI rats. The expression of VEGF, CD31, and NF200 was detected by immunofluorescence. RESULTS: The recovery of the rat motor and sensory functions in the VEGF-transfected BMSC (BMSC-VEGF) group was higher than those of the other groups with the exception of the Sham group (P < 0.05). The expression of the CD31 and NF200 proteins in the rat SCI regions was the highest in the BMSC-VEGF group, whereas the survival of BMSC in the BMSC-VEGF group was increased compared with that in the BMSC-Ad group. In addition, the injection of VEGF-transfected BMSCs can improve the angiogenesis of the injured area and retain the survival of injected cells and neurons. CONCLUSION: The injection of BMSC-VEGF improved the recovery of motor function in SCI rats. LEVEL OF EVIDENCE: N/A.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Recuperação de Função Fisiológica/fisiologia , Sensação/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Transfecção/métodos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Sensação/efeitos dos fármacos , Traumatismos da Medula Espinal/genética , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA