Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.071
Filtrar
1.
J Cancer Res Clin Oncol ; 145(10): 2413-2422, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31492983

RESUMO

PURPOSE: Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase that regulates centriole duplication. PLK4 deregulation causes centrosome number abnormalities, mitotic defects, chromosomal instability and, consequently, tumorigenesis. Therefore, PLK4 has emerged as a therapeutic target for the treatment of multiple cancers. In this review, we summarize the critical role of centrosome amplification and PLK4 in cancer. We also highlight recent advances in the development of PLK4 inhibitors and discuss potential combination therapies for cancer. METHODS: The relevant literature from PubMed is reviewed in this article. The ClinicalTrials.gov database was searched for clinical trials related to the specific topic. RESULTS: PLK4 is aberrantly expressed in multiple cancers and has prognostic value. Targeting PLK4 with inhibitors suppresses tumor growth in vitro and in vivo. CONCLUSIONS: PLK4 plays an important role in centrosome amplification and tumor progression. PLK4 inhibitors used alone or in combination with other drugs have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for cancer. The results of relevant clinical trials await evaluation.


Assuntos
Biomarcadores Tumorais , Neoplasias/etiologia , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Centrossomo/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Especificidade de Órgãos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Anticancer Res ; 39(9): 4865-4876, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31519589

RESUMO

BACKGROUND/AIM: Hypoxia promotes tumor proliferation and metastasis in colorectal cancer (CRC). Since the tumor microenvironment is generally characterized by hypoxia, its understanding is important for cancer therapy. We hypothesized that hypoxia promotes the mitochondrial function, mobility, and proliferation of CRC by up-regulating peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). MATERIALS AND METHODS: To assess the effects of PGC-1α under hypoxia, we investigated the mitochondrial function, cell motility, and sphere formation as well as proliferation and apoptosis of CRC. RESULTS: Under hypoxia, we confirmed the increased expression of PGC-1α and reduced production of reactive oxygen species (ROS) by activating anti-oxidant enzymes. Also, up-regulation of PGC-1α enhanced the motility, sphere formation, and proliferation of CRC. Under the presence of the anti-cancer drug 5-fluorouracil (5FU), up-regulation of PGC-1α under hypoxia promoted resistance of CRC against 5FU-induced apoptosis. CONCLUSION: Targeting PGC-1α could to be a powerful strategy for CRC therapy.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Hipóxia/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Apoptose , Catalase/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Biológicos , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
3.
Anticancer Res ; 39(9): 4911-4916, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31519595

RESUMO

BACKGROUND/AIM: The occurrence of somatic transformation in germ cell tumour (GCT) is rare, with increased incidence in teratomatous tumours. The aim of this study was to understand the clinical outcomes of patients with metastatic GCT with somatic transformation. MATERIALS AND METHODS: A retrospective study was conducted in two tertiary cancer centres in London. Between 1998 and 2016, 30 cases of somatic transformation in GCT treated at the Mount Vernon Cancer Centre and St. Bartholomew's Hospital were identified. The median age at diagnosis was 34 years (range=18-56 years). The histological diagnosis at transformation was rhabdomyosarcoma, sarcomatoid yolk sac, sarcoma (non-specified), clear cell carcinoma, adenocarcinoma and primitive neuro ectodermal tumour (PNET). RESULTS: The 5-year survival rate of all patients was 47%, and that of patients with testicular primary (n=26 patients) was 37%. CONCLUSION: Somatic transformation component in testicular GCTs is generally considered to be an adverse prognostic factor, however, a reasonable 5-year overall survival rate (87.5%) was observed in patients who present with this at first diagnosis.


Assuntos
Transformação Celular Neoplásica/genética , Mutação , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/secundário , Neoplasias Testiculares/genética , Neoplasias Testiculares/secundário , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Suscetibilidade a Doenças , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/terapia , Retratamento , Análise de Sobrevida , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/terapia , Resultado do Tratamento , Adulto Jovem
4.
Cancer Discov ; 9(9): 1158-1160, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31481404

RESUMO

In this issue of Cancer Discovery, Gu and colleagues developed a mouse model of myeloproliferative neoplasm driven by Nras G12D and Ezh2-/- , which cooperated to induce malignant transformation and metabolic reprogramming of leukemic stem cells at least in part through loss of normal epigenetic regulation of gene expression. Furthermore, their findings point to Ezh1 and branched chain amino acid metabolism as biological dependencies and potential therapeutic targets in myeloid neoplasms.See related article by Gu et al., p. 1228.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Animais , Transformação Celular Neoplásica/genética , Epigênese Genética , Camundongos , Células-Tronco
5.
J Cancer Res Clin Oncol ; 145(9): 2273-2283, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31428934

RESUMO

OBJECTIVES: Recent research has classified lung adenocarcinoma patients with KRAS mutation into three subtypes by co-occurring genetic events in TP53 (KP subgroup), STK11/LKB1 (KL subgroup) and CDKN2A/B inactivation plus TTF-1 low expression (KC subgroup). The aim of this study was to identify valuable biomarkers by searching the candidate molecules that contribute to lung adenocarcinoma pathogenesis, especially KC subtype. MATERIALS AND METHODS: We analyzed the publicly available database and identified the candidate REG4 using the E-GEOD-31210 dataset, and then confirmed by TCGA dataset. In addition, an independent cohort of 55 clinical samples was analyzed by quantitative real-time PCR analysis. Functional studies and RNA sequencing were performed after silencing the REG4 expression. RESULTS: REG4, an important regulator of gastro-intestinal carcinogenesis, was highly expressed in KRAS mutant lung adenocarcinoma with low expression of TTF-1 (KC subtype). The results were validated both by gene expression analysis and immunohistochemistry study in an independent 55 clinical samples from Fudan University Shanghai Cancer Center. Further in vitro and in vivo functional assays revealed silencing REG4 expression significantly reduces cancer cell proliferation and tumorigenesis. Moreover, RNA sequencing and GSEA analysis displayed that REG4 knockdown might induce cell cycle arrest by regulating G2/M checkpoint and E2F targets. CONCLUSION: Our results indicate that REG4 plays an important role in KRAS-driven lung cancer pathogenesis and is a novel biomarker of lung adenocarcinoma subtype. Future studies are required to clarify the underlying mechanisms of REG4 in the division and proliferation of KC tumors and its potential therapeutic value.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Neoplasias Pulmonares/diagnóstico , Proteínas Associadas a Pancreatite/genética , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Fatores de Transcrição/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/metabolismo
6.
Cancer Sci ; 110(9): 2794-2805, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31336010

RESUMO

SALL4 is overexpressed in many cancers and is found to be involved in tumorigenesis and tumor progression. However, the function of SALL4 in cervical cancer remains unknown. Here, we showed that the expression of SALL4 was gradually increased from normal cervical tissue to high-grade squamous intraepithelial lesions and then to squamous cervical carcinoma. SALL4 was upregulated or downregulated in cervical cancer cells by stably transfecting a SALL4-expressing plasmid or a shRNA plasmid targeting SALL4, respectively. In vitro, cell growth curves and MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) assays showed that SALL4 promoted the cell proliferation of cervical cancer cells. In vivo, xenograft experiments verified that SALL4 enhanced the tumor formation of cervical cancer cells in female BALB/c Nude mice. Cell cycle analysis by fluorescence-activated cell sorting found that SALL4 accelerates cell cycle transition from the G0 /G1 phase to the S phase. TOP/FOP-Flash reporter assay revealed that SALL4 significantly upregulates the activity of Wnt/ß-catenin pathway. Western blotting showed that the expression levels of ß-catenin and important downstream genes, including c-Myc and cyclin D1, were increased by SALL4 in cervical cancer cells. Furthermore, dual-luciferase reporter and chromatin immunoprecipitation assays confirmed that SALL4 transcriptionally activated CTNNB1 by physically interacting with its promoters. Taken together, The results of this study demonstrated that SALL4 may promote cell proliferation and tumor formation of cervical cancer cells by upregulating the activity of the Wnt/ß-catenin signaling pathway by directly binding to the CTNNB1 promoter and trans-activating CTNNB1.


Assuntos
Carcinoma de Células Escamosas/genética , Transformação Celular Neoplásica/genética , Lesões Intraepiteliais Escamosas Cervicais/patologia , Fatores de Transcrição/metabolismo , Neoplasias do Colo do Útero/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Colo do Útero/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/metabolismo , Lesões Intraepiteliais Escamosas Cervicais/genética , Fatores de Transcrição/genética , Regulação para Cima , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
7.
J Cancer Res Clin Oncol ; 145(9): 2241-2250, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31342168

RESUMO

PURPOSE: The tripartite motif (TRIM)16 acts as a tumour suppressor in both squamous cell carcinoma (SCC) and melanoma. TRIM16 is known to be secreted by keratinocytes, but no studies have been reported yet to assess the relationship between TRIM16 keratinocyte expression and melanoma development. METHODS: To study the role of TRIM16 in skin cancer development, we developed a keratinocyte TRIM16-specific knockout mouse model, and used the classical two-stage skin carcinogenesis challenge method, to assess the loss of keratinocyte TRIM16 on both papilloma, SCC and melanoma development in the skin after topical carcinogen treatment. RESULTS: Heterozygous, but not homozygous, TRIM16 knockout mice exhibited an accelerated development of skin papillomas and melanomas, larger melanoma lesions and an increased potential for lymph node metastasis. CONCLUSION: This study provides the first evidence that keratinocyte loss of the putative melanoma tumour suppressor protein, TRIM16, enhances melanomagenesis. Our data also suggest that TRIM16 expression in keratinocytes is involved in cross talk between keratinocytes and melanocytes, and has a role in melanoma tumorigenesis.


Assuntos
Proteínas de Transporte/genética , Queratinócitos/metabolismo , Perda de Heterozigosidade/fisiologia , Linfonodos/metabolismo , Melanócitos/metabolismo , Melanoma/genética , Neoplasias Cutâneas/genética , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proteínas de Transporte/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Queratinócitos/patologia , Linfonodos/patologia , Metástase Linfática , Melanócitos/patologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Knockout , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
8.
Gene ; 714: 143994, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31330233

RESUMO

Long non-coding RNA (lncRNA) potentially regulates tumorigenesis. LncRNA small nucleolar RNA host gene 1 (SNHG1) expression remains high in hepatocellular carcinoma cells; however, its biological mechanism in hepatocellular carcinoma remains unknown. In this study, SNHG1 expression in hepatocellular carcinoma cells was detected by qRT-PCR. Proliferative and migratory potentials of hepatocellular carcinoma cells were determined by CCK-8 and Transwell assay, respectively. Then, the nude mice model of xenograft was employed to verify the effect of SNHG1 on tumor formation in vivo. We identified the potential target of SNHG1 through bioinformatics and dual-luciferase reporter gene. Furthermore, Western blot and RIP assay was used for clarifying their interaction and functions in regulating the development of hepatocellular carcinoma. Our results indicated a high expression of SNHG1 in hepatocellular carcinoma cells. Downregulation of SNHG1 inhibited proliferative and migratory potentials of hepatocellular carcinoma cells in vitro and in vivo. Moreover, the expression of programmed cell death 4 (PDCD4) was positively regulated by SNHG1 through competing with miR-195-5p. These results indicated that SNHG1 participated in the development of hepatocellular carcinoma as a ceRNA to competitively bind to miR-195-5p and thus mediate PDCD4 expression.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Animais , Apoptose/genética , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
9.
Toxicol Lett ; 313: 150-158, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276768

RESUMO

Ochratoxin A (OTA), one of the most abundant food-contaminating mycotoxins, is a possible carcinogen to humans. We previously demonstrated that long-term (40 weeks) OTA exposure induces the malignant transformation of human gastric epithelium cells (GES-1) in vitro. However, the specific mechanism underlying OTA-induced gastric carcinogenesis is complex. In the present study, we used 2-DE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF MS) combined with bioinformatics and immunoblotting to investigate the differentially expressed proteins between GES-1 and OTA-malignant transformed GES-1 cells (OTA-GES-1T cells) in vitro. We found that four differentially expressed proteins were identified after malignant transformation, including actin, cytoplasmic 1 (ACTB), F-actin-capping protein subunit alpha-1 (CAPZA1), Annexin A3 (ANXA3), thioredoxin peroxidase B from red blood cells (TPx-B) and Fibrinogen beta B (Fibrinogen ß). Among the differentially expressed proteins, the effect of Annexin A3 was analyzed by MTT assay, western blot, cell cycle analysis, wound healing assay, Transwell assay, and colony formation assay in OTA-GES-1T cells. The results showed that inhibition of Annexin A3 by siRNA effectively prevented the proliferation, migration, and invasion abilities of OTA-GES-1T cells. Collectively, the results of this study will guide future research on OTA carcinogenicity.


Assuntos
Anexina A3/metabolismo , Carcinógenos/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Ocratoxinas/toxicidade , Neoplasias Gástricas/induzido quimicamente , Anexina A3/genética , Western Blotting , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Biologia Computacional , Eletroforese em Gel Bidimensional , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Humanos , Invasividade Neoplásica , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
10.
Gastroenterology ; 157(3): 744-759.e4, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31154022

RESUMO

BACKGROUND & AIMS: Many genetic and environmental factors, including family history, dietary fat, and inflammation, increase risk for colon cancer development. Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that regulates systemic lipid homeostasis. We explored the role of intestinal PPARα in colon carcinogenesis. METHODS: Colon cancer was induced in mice with intestine-specific disruption of Ppara (PparaΔIE), Pparafl/fl (control), and mice with disruption of Ppara that express human PPARA (human PPARA transgenic mice), by administration of azoxymethane with or without dextran sulfate sodium (DSS). Colons were collected from mice and analyzed by immunoblots, quantitative polymerase chain reaction, and histopathology. Liquid chromatography coupled with mass spectrometry-based metabolomic analyses were performed on urine and colons. We used molecular biology and biochemical approaches to study mechanisms in mouse colons, primary intestinal epithelial cells, and colon cancer cell lines. Gene expression data and clinical features of patients with colorectal tumors were obtained from Oncomine, and human colorectal-tumor specimens and adjacent normal tissues were collected and analyzed by immunohistochemistry. RESULTS: Levels of Ppara messenger RNA were reduced in colon tumors from mice. PparaΔIE mice developed more and larger colon tumors than control mice following administration of azoxymethane, with or without DSS. Metabolomic analyses revealed increases in methylation-related metabolites in urine and colons from PparaΔIE mice, compared with control mice, following administration of azoxymethane, with or without DSS. Levels of DNA methyltransferase 1 (DNMT1) and protein arginine methyltransferase 6 (PRMT6) were increased in colon tumors from PparaΔIE mice, compared with colon tumors from control mice. Depletion of PPARα reduced the expression of retinoblastoma protein, resulting in increased expression of DNMT1 and PRMT6. DNMT1 and PRMT6 decreased expression of the tumor suppressor genes Cdkn1a (P21) and Cdkn1b (p27) via DNA methylation and histone H3R2 dimethylation-mediated repression of transcription, respectively. Fenofibrate protected human PPARA transgenic mice from azoxymethane and DSS-induced colon cancer. Human colon adenocarcinoma specimens had lower levels of PPARA and retinoblastoma protein and higher levels of DNMT1 and PRMT6 than normal colon tissues. CONCLUSIONS: Loss of PPARα from the intestine promotes colon carcinogenesis by increasing DNMT1-mediated methylation of P21 and PRMT6-mediated methylation of p27 in mice. Human colorectal tumors have lower levels of PPARA messenger RNA and protein than nontumor tissues. Agents that activate PPARα might be developed for chemoprevention or treatment of colon cancer.


Assuntos
Adenocarcinoma/prevenção & controle , Colo/enzimologia , Neoplasias do Colo/prevenção & controle , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Proteínas Nucleares/metabolismo , PPAR alfa/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Anticarcinógenos/farmacologia , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colo/patologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/efeitos dos fármacos , Bases de Dados Genéticas , Modelos Animais de Doenças , Fenofibrato/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , PPAR alfa/agonistas , PPAR alfa/deficiência , PPAR alfa/genética , Proteína-Arginina N-Metiltransferases/genética , Transdução de Sinais
11.
Nat Immunol ; 20(7): 835-851, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160797

RESUMO

How tumor cells genetically lose antigenicity and evade immune checkpoints remains largely elusive. We report that tissue-specific expression of the human long noncoding RNA LINK-A in mouse mammary glands initiates metastatic mammary gland tumors, which phenotypically resemble human triple-negative breast cancer (TNBC). LINK-A expression facilitated crosstalk between phosphatidylinositol-(3,4,5)-trisphosphate and inhibitory G-protein-coupled receptor (GPCR) pathways, attenuating protein kinase A-mediated phosphorylation of the E3 ubiquitin ligase TRIM71. Consequently, LINK-A expression enhanced K48-polyubiquitination-mediated degradation of the antigen peptide-loading complex (PLC) and intrinsic tumor suppressors Rb and p53. Treatment with LINK-A locked nucleic acids or GPCR antagonists stabilized the PLC components, Rb and p53, and sensitized mammary gland tumors to immune checkpoint blockers. Patients with programmed ccll death protein-1(PD-1) blockade-resistant TNBC exhibited elevated LINK-A levels and downregulated PLC components. Hence we demonstrate lncRNA-dependent downregulation of antigenicity and intrinsic tumor suppression, which provides the basis for developing combinational immunotherapy treatment regimens and early TNBC prevention.


Assuntos
Apresentação do Antígeno/imunologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/imunologia , Oncogenes , RNA Longo não Codificante/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Adenoma/genética , Adenoma/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Gene ; 711: 143941, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31242453

RESUMO

Inorganic arsenic is a well-known carcinogen associated with several types of cancer, but the mechanisms involved in arsenic-induced carcinogenesis are not fully understood. Recent evidence points to epigenetic dysregulation as an important mechanism in this process; however, the effects of epigenetic alterations in gene expression have not been explored in depth. Using microarray data and applying a multivariate clustering analysis in a Gaussian mixture model, we describe the alterations in DNA methylation around the promoter region and the impact on gene expression in HaCaT cells during the transformation process caused by chronic exposure to arsenic. Using this clustering approach, the genes were grouped according to their methylation and expression status in the epigenetic landscape, and the changes that occurred during the cellular transformation were identified adequately. Thus, we present a valuable method for identifying epigenomic dysregulation.


Assuntos
Arsênico/toxicidade , Transformação Celular Neoplásica/patologia , Metilação de DNA/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética
13.
Artigo em Chinês | MEDLINE | ID: mdl-31189235

RESUMO

Objective: To investigate alteration of proteins profile in malignant transformation bronchial epithelial cells(16HBE-T) induced by hexavalent chromium[(Cr(VI))] and analyze the expression level of SET protein, then to provide some new insights for the carcinogenesis mechanism of Cr(VI). Methods: Total protein was extracted from 16HBE cells and was alkylated and desalinated before digested into peptides. The products were labeled with Tandem Mass Tag (TMT) and identified using LC-ESI-MS/MS. Results: A total of 3 517 proteins were found, expression differences greater than 1.5 or less 0.67 times were to found have 185 and 201 proteins, respectively. Gene enrichment analysis revealed that differential proteins were mainly involved in autophagy, DNA damage repair, RNA processing and other biological processes. Western blot results showed the expression level of SET was significantly increased while downregulated in histone H3K18/27 acetylation and p53 protein. Conclusion: Proteins involved in multiple biological processes altered in 16HBE-T cells and regulation mode of SET inhibiting histone H3K18/27 acetylation regulating transcriptional activity of p53 may paly an important role in Cr(VI)-association carcinogenesis.


Assuntos
Transformação Celular Neoplásica , Cromo , Proteômica , Brônquios , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Cromo/toxicidade , Reparo do DNA , Genes p53/efeitos dos fármacos , Chaperonas de Histonas/metabolismo , Espectrometria de Massas em Tandem , Fatores de Transcrição/metabolismo
14.
J Clin Pathol ; 72(8): 513-519, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31154423

RESUMO

The importance of circular RNAs (circRNAs) in pathological processes like cancer is evident. Among the circRNAs, recent studies have brought circPVT1 under focus as the most potent oncogenic non-coding RNA. Recent studies on various aspects of circPVT1, including its biogenesis, molecular alteration and its probable role in oncogenesis, have been conducted for research and clinical interest. In this review, a first attempt has been made to summarise the available data on circPVT1 from PubMed and other relevant databases with special emphasis on its role in development, progression and prognosis of various malignant conditions. CircPVT1 is derived from the same genetic locus encoding for long non-coding RNA lncPVT1; however, existing literature suggested circPVT1 and lncPVT1 are transcripted independently by different promoters. The interaction between circRNA and microRNA has been highlighted in majority of the few malignancies in which circPVT1 was studied. Besides its importance in diagnostic and prognostic procedures, circPVT1 seemed to have huge therapeutic potential as evident from differential drug response of cancer cell line as well as primary tumors depending on expression level of the candidate. circPVT1 in cancer therapeutics might be promising as a biomarker to make the existing treatment protocol more effective and also as potential target for designing novel therapeutic intervention.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , RNA/genética , Animais , Biomarcadores Tumorais/biossíntese , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas de Diagnóstico Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Valor Preditivo dos Testes , Prognóstico , RNA/biossíntese , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/metabolismo
15.
Cancer Res ; 79(12): 3028-3030, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201165

RESUMO

Advances in high-throughput genomic and epigenomic technologies have revealed the tremendous complexity of the transcriptional landscape. Beyond protein-coding RNAs (derived from only ∼1.5% of the genome), noncoding RNAs (ncRNA) are emerging as versatile key regulators of gene information involved in multiple major biological processes. Accordingly, deregulation of ncRNA expression has been associated with multiple diseases, including cancer. In this issue of Cancer Research, Shahabi and colleagues characterize LINC00261 as a tumor suppressor long ncRNA epigenetically silenced in lung cancer. They provide crucial mechanistic insights to explain its role in lung tumorigenesis, demonstrating that deregulation of the LINC00261/FOXA2 locus disrupts DNA damage repair signaling, cell-cycle control, and cell proliferation.See related article by Shahabi et al., p. 3050.


Assuntos
Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Genes Supressores de Tumor , Humanos
16.
Nat Commun ; 10(1): 2300, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127091

RESUMO

Single-stranded circular RNAs (circRNAs), generated through 'backsplicing', occur more extensively than initially anticipated. The possible functions of the vast majority of circRNAs remain unknown. Virus-derived circRNAs have recently been described in gamma-herpesviruses. We report that oncogenic human papillomaviruses (HPVs) generate circRNAs, some of which encompass the E7 oncogene (circE7). HPV16 circE7 is detectable by both inverse RT-PCR and northern blotting of HPV16-transformed cells. CircE7 is N6-methyladenosine (m6A) modified, preferentially localized to the cytoplasm, associated with polysomes, and translated to produce E7 oncoprotein. Specific disruption of circE7 in CaSki cervical carcinoma cells reduces E7 protein levels and inhibits cancer cell growth both in vitro and in tumor xenografts. CircE7 is present in TCGA RNA-Seq data from HPV-positive cancers and in cell lines with only episomal HPVs. These results provide evidence that virus-derived, protein-encoding circular RNAs are biologically functional and linked to the transforming properties of some HPV.


Assuntos
Transformação Celular Neoplásica/patologia , Interações Hospedeiro-Patógeno/genética , RNA Viral/metabolismo , RNA/metabolismo , Neoplasias do Colo do Útero/virologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Conjuntos de Dados como Assunto , Feminino , Técnicas de Silenciamento de Genes , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Humanos , Camundongos , Camundongos Endogâmicos NOD , Proteínas E7 de Papillomavirus/genética , Polirribossomos/genética , Polirribossomos/metabolismo , RNA/genética , RNA/isolamento & purificação , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/isolamento & purificação , Análise de Sequência de RNA , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
MBio ; 10(3)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088931

RESUMO

The abnormal proliferation of cancer cells is driven by deregulated oncogenes or tumor suppressors, among which the cancer-vulnerable genes are attractive therapeutic targets. Targeting mislocalization of oncogenes and tumor suppressors resulting from aberrant nuclear export is effective for inhibiting growth transformation of cancer cells. We performed a clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) screening in a unique model of matched primary and oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed cells and identified genes that were growth promoting and growth suppressive for both types of cells, among which exportin XPO1 was demonstrated to be critical for the survival of transformed cells. Using XPO1 inhibitor KPT-8602 and by small interfering RNA (siRNA) knockdown, we confirmed the essential role of XPO1 in cell proliferation and growth transformation of KSHV-transformed cells and in cell lines of other cancers, including gastric cancer and liver cancer. XPO1 inhibition induced cell cycle arrest through p53 activation, but the mechanisms of p53 activation differed among the different types of cancer cells. p53 activation depended on the formation of promyelocytic leukemia (PML) nuclear bodies in gastric cancer and liver cancer cells. Mechanistically, XPO1 inhibition induced relocalization of autophagy adaptor protein p62 (SQSTM1), recruiting p53 for activation in PML nuclear bodies. Taken the data together, we have identified novel growth-promoting and growth-suppressive genes of primary and cancer cells and have demonstrated that XPO1 is a vulnerable target of cancer cells. XPO1 inhibition induces cell arrest through a novel PML- and p62-dependent mechanism of p53 activation in some types of cancer cells.IMPORTANCE Using a model of oncogenic virus KSHV-driven cellular transformation of primary cells, we have performed a genome-wide CRISPR-Cas9 screening to identify vulnerable genes of cancer cells. This screening is unique in that this virus-induced oncogenesis model does not depend on any cellular genetic alterations and has matched primary and KSHV-transformed cells, which are not available for similar screenings in other types of cancer. We have identified genes that are both growth promoting and growth suppressive in primary and transformed cells, some of which could represent novel proto-oncogenes and tumor suppressors. In particular, we have demonstrated that the exportin XPO1 is a critical factor for the survival of transformed cells. Using a XPO1 inhibitor (KPT-8602) and siRNA-mediated knockdown, we have confirmed the essential role of XPO1 in cell proliferation and in growth transformation of KSHV-transformed cells, as well as of gastric and liver cancer cells. XPO1 inhibition induces cell cycle arrest by activating p53, but the mechanisms of p53 activation differed among different types of cancer cells. p53 activation is dependent on the formation of PML nuclear bodies in gastric and liver cancer cells. Mechanistically, XPO1 inhibition induces relocalization of autophagy adaptor protein p62 (SQSTM1), recruiting p53 for activation in PML nuclear bodies. These results illustrate that XPO1 is a vulnerable target of cancer cells and reveal a novel mechanism for blocking cancer cell proliferation by XPO1 inhibition as well as a novel PML- and p62-mediated mechanism of p53 activation in some types of cancer cells.


Assuntos
Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Herpesvirus Humano 8/patogenicidade , Carioferinas/genética , Receptores Citoplasmáticos e Nucleares/genética , Sistemas CRISPR-Cas , Pontos de Checagem do Ciclo Celular , Detecção Precoce de Câncer , Genes p53 , Humanos , Carioferinas/antagonistas & inibidores , Leucemia Promielocítica Aguda , Neoplasias Hepáticas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteína Sequestossoma-1/genética , Neoplasias Gástricas , Células Tumorais Cultivadas
18.
Oncol Rep ; 41(6): 3555-3564, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31002368

RESUMO

Neoplastic transformation is characterized by metabolic rewiring to sustain the elevated biosynthetic demands of highly proliferative cancer cells. To obtain the precursors for macromolecule biosynthesis, cancer cells avidly uptake and metabolize glucose and glutamine. Thus, targeting the availability or metabolism of these nutrients is an attractive anticancer therapeutic strategy. To improve our knowledge concerning how cancer cells respond to nutrient withdrawal, the response to glutamine and/or glucose starvation was studied in human in vitro transformed fibroblasts, deeply characterized at the cellular and molecular level. Concomitant starvation of both nutrients led to rapid loss of cellular adhesion (~16 h after starvation), followed by cell death. Deprivation of glucose alone had the same effect, although at a later time (~48 h after starvation), suggesting that glucose plays a key role in enabling cell attachment to the extracellular matrix. Glutamine deprivation did not induce rapid cell death, but caused a prolonged arrest of cellular proliferation; the cells started dying only 96 h after starvation. Before massive cell death occurred, the effects of all the starvation conditions were reversible. Autophagy activation was observed in cells incubated in the absence of glucose for more than 48 h, while autophagy was not detected under the other starvation conditions. Markers of apoptotic cell death, such as caspase 3, caspase 9 and poly(ADP­ribose) polymerase 1 (PARP­1) proteolytic fragments, were not observed under any growth condition. Glucose and/or glutamine deprivation caused very rapid PARP­1 activation, with marked PARP­1 (poly­ADP) ribosylation and protein (poly­ADP) ribosylation. This activation was not due to starvation­induced DNA double­strand breaks, which appeared at the late stages of deprivation, when most cells died. Collectively, these results highlight a broad range of consequences of glucose and glutamine starvation, which may be taken into account when nutrient availability is used as a target for anticancer therapies.


Assuntos
Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Glucose/metabolismo , Glutamina/metabolismo , Apoptose/genética , Autofagia/genética , Caspases/genética , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Morte Celular/genética , Transformação Celular Neoplásica/metabolismo , Quebras de DNA de Cadeia Dupla , Fibroblastos/metabolismo , Fibroblastos/patologia , Glucose/genética , Glutamina/genética , Humanos , Terapia de Alvo Molecular , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inanição/genética , Inanição/metabolismo
19.
Mol Med Rep ; 19(6): 4613-4622, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30957180

RESUMO

Gastric cancer (GC) is a leading cause of cancer­associated mortality worldwide. Previous studies demonstrated that long noncoding RNAs (lncRNAs) may be dysregulated in GC and may serve important roles in cancer progression. The present study aimed to investigate the role of the novel lncRNA stomach cancer­associated transcript 16 (STCAT16; Assembly Gene ID G038291) in the development and progression of GC. The present data suggested that the expression level of STCAT16 was decreased in GC tissues. The expression level of STCAT16 was identified to be associated with lymph node and tumour node metastasis stages. Furthermore, the expression level of STCAT16 was identified to be significantly associated with poor survival and prognosis. Knockdown of STCAT16 promoted proliferation, colony formation, migration and invasion of BGC­823 cells. In contrast, these features were suppressed in AGS cells following overexpression of STCAT16. In vivo, tumour growth was significantly decreased following STCAT16 overexpression. Collectively, the present data suggested that the lncRNA STCAT16 may act as a tumour suppressor and may inhibit GC tumour cell growth and migration. Additionally, the decreased expression level of STCAT16 was identified to be associated with poor prognosis in patients with GC.


Assuntos
Proliferação de Células , RNA Longo não Codificante/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Progressão da Doença , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética
20.
Mol Med Rep ; 19(5): 4205-4212, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30942427

RESUMO

CBX3, namely chromobox protein homolog 3, a member of the heterochomatin protein 1 (HP1) family, has been shown to be associated with the tumorigenesis of various types of cancer. The aim of the present study was to assess the biological role and the clinicopathological importance of CBX3 in osteosarcoma. The Oncomine database was utilized to determine the CBX3 expression in sarcoma patients. A retrospective cohort study was conducted to evaluate the prognostic value of CBX3 expression. In addition, correlations between the clinicopathological features of the osteosarcoma patients and CBX3 expression were assessed and involved recurrence, distant metastasis, lymph node metastasis, response to chemotherapy, pathological differentiation, clinical stage, anatomic location, tumor size and age. To investigate the function of CBX3 in osteosarcoma, a small interfering RNA for CBX3 was designed and this was used for the transfection of osteosarcoma MG63 cells. Then, the effects of CBX3 on proliferation, cell cycle distribution and apoptosis of osteosarcoma cells were investigated via CCK­8 assay and cell cycle assay and cell apoptosis analysis, respectively. Based on our findings, upregulation of CBX3 expression was noted both in osteosarcoma and also other sarcoma types, which included pleomorphic liposarcoma, myxofibrosarcoma, myxoid/round cell liposarcoma and dedifferentiated liposarcoma. In addition, based on the retrospective cohort study, CBX3 expression was associated with the disease­free survival (DFS) and overall survival (OS) of the osteosarcoma patients and a large tumor size, high distant metastasis rate and high clinical stage rate. In addition, the proliferation ability was blocked by the knockdown of CBX3 through the application of CBX3 siRNA, and CBX3 knockdown also led to increased apoptosis and cell cycle arrest at G0 and G1 phases in osteosarcoma cells. CBX3 is highly expressed in human osteosarcoma tissues. Meanwhile, high CBX3 is a predictor of the poor prognosis of osteosarcoma patients. To conclude, the growth of osteosarcoma can be promoted by CBX3, which may be used as an independent potential prognostic biomarker for patients suffering from osteosarcoma.


Assuntos
Neoplasias Ósseas/genética , Transformação Celular Neoplásica/genética , Proteínas Cromossômicas não Histona/genética , Expressão Gênica , Osteossarcoma/genética , Adolescente , Apoptose/genética , Biomarcadores Tumorais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Criança , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Osteossarcoma/patologia , Osteossarcoma/terapia , Prognóstico , RNA Interferente Pequeno , Resultado do Tratamento , Carga Tumoral , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA