Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.431
Filtrar
1.
J Agric Food Chem ; 67(41): 11428-11435, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31589037

RESUMO

Diosgenin and diosgenyl saponins as the major bioactive compounds isolated from dietary fenugreek seeds, yam roots, etc. possessed strong antitumor effects. To understand their detailed antitumor mechanisms, a fluorophore-appended derivative of diosgenin [Glc/CNHphth-diosgenin (GND)] was synthesized, starting from diosgenin and glucosamine hydrochloride in overall yields of 7-12% over 7-10 steps. Co-localization of GND with organelle-specific stains, transmission electron microscopy, and relative protein analyses demonstrated that GND crossed the plasma membrane through organic anion-transporting polypeptide 1B1 and distributed in the endoplasmic reticulum (ER), lysosome, and mitochondria. In this process, GND induced ER swelling, mitochondrial damage, and autophagosome and upregulating IRE-1α to induce autophagy and apoptosis. Furthermore, autophagy inhibitor chloroquine delayed the appearance of cleaved poly(ADP-ribose) polymerase and inhibited cleaved caspase 8, which indicated that GND induced autophagy to activate caspase-8-dependent apoptosis. These observations suggested that diosgenyl saponin was a potent anticancer agent that elicited ER stress and mitochondria-mediated apoptotic pathways in liver cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Hepáticas/fisiopatologia , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo
2.
Adv Exp Med Biol ; 1155: 147-154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468393

RESUMO

It has been confirmed by our laboratory that taurine could decrease uric acid levels in hyperuricemic rats and regulate the expressions of some urate transporters. The present study aims to investigate the effects of taurine on uric acid uptake in human renal proximal tubular epithelial cells (HK-2). The cell growth inhibition rate was measured by MTS assay, which was up to 50% after treatment with 1.5 mmol/L uric acid. After administration of 15 mmol/L taurine, the inhibition rate and uric acid uptake were both significantly decreased. Then the HK-2 cells were grouped as follows: control group (C); model group (M), in which 1.5 mmol/L uric acid was added to the medium; taurine group (MT), in which 1.5 mmol/L uric acid and 15 mmol/L taurine were added to the medium; and taurine control group (T), in which 15 mmol/L taurine was added to the medium. The mRNA and protein expression levels of URAT1 and GLUT9 were measured by real-time PCR and western-blot. The results showed that URAT1 and GLUT9 mRNA/protein expression levels in group M were significantly increased compared with group C, and they were both down-regulated in MT group. In addition, the expression levels of these two transporters in group T were significantly lower than group C. The results indicated that taurine could inhibit uric acid uptake and down-regulate the expressions of URAT1 and GLUT9 in HK-2 cells.


Assuntos
Células Epiteliais/efeitos dos fármacos , Taurina/farmacologia , Ácido Úrico/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo
3.
Zhonghua Gan Zang Bing Za Zhi ; 27(7): 547-551, 2019 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-31357782

RESUMO

Objective: The characteristics of T1 relaxation values and the expression levels of organic anion transport system (OATP) and multidrug resistance protein carrier (MRP) on hepatocyte surface membrane were quantitatively studied to evaluate liver function in normal C57BL/6 mice with gadoxetic disodium-enhanced MRI. Methods: Ten 6-weeks-old, normal C57BL/6 mice were included in this study. Gadoxetic disodium- enhanced MRI examination was performed. Longitudinal relaxation time images before and 20 min after contrast injection (hepatobiliary-specific phase) were acquired. T1-relaxation time, T1 relaxation time decline rate (△T) and rapid initial enhancement slope percentage in the first-pass study of the liver parenchyma before and after administration of gadoxetate disodium were measured. Liver parenchyma specimens were detected by Western blotting and the values ​​of OATP1, MRP2, and MRP3 were recorded. Statistical results were expressed in mean. Results: The mean T1 relaxation time of 10 normal C57BL/6 mice before and after enhancement was 659.13 ± 24.07, and 408.87 ± 27.21 ms. The mean T1 relaxation time decline rate and rapid initial enhancement slope percentage in the first-pass study was 37.12% ± 4.95% and 4.14% ± 0.96% ms. Furthermore, the mean value of OATP1, MRP2 and MRP3 were 29 952.1 ± 11 475.2, 34 376.4 ± 33 228.4 and 357 308.9 ± 64 646.5. Conclusion: T1-relaxation values, T1 relaxation time decline rate and rapid initial enhancement slope percentage in the first-pass study before and after gadoxetic disodium-enhanced MRI were determined in normal C57BL/6 mice as well as quantitative values of OATP1, MRP2 and MRP3 at the molecular level on the hepatocyte surface membrane were helpful for liver injury model with control study.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Hepatócitos/metabolismo , Fígado/diagnóstico por imagem , Imagem por Ressonância Magnética , Transportadores de Ânions Orgânicos/metabolismo , Animais , Meios de Contraste , Gadolínio DTPA , Camundongos , Camundongos Endogâmicos C57BL
4.
Chem Biol Interact ; 311: 108761, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348918

RESUMO

Water contamination by cyanobacterial blooms is a worldwide health hazard to humans as well as livestock. Exposure to Microcystins (MCs), toxins produced by various cyanobacterial or blue green algae found in poorly treated drinking water or contaminated seafood such as fish or prawns are associated with hepatotoxicity, nephropathy and neurotoxicity and in extreme cases, death in humans. MC congeners, currently >240 known, differ dramatically in their uptake kinetics, i.e. their uptake via OATP1B1 and OATP1B3, in OATP overexpressing human HEK293 cells and primary human hepatocytes. It is thus likely that MC congeners will also differ with respect to the cellular efflux of the parent and conjugated congeners, e.g. via MRPs, MDRs, BCRP or BSEP. Consequently, the role and kinetics of different human efflux transporters - MRP, MDR, BCRP and BSEP in MC efflux was studied using insect membrane vesicles overexpressing the human transporters of interest. Of the efflux transporters investigated, MRP2 displayed MC transport. Michaelis-Menten kinetics displayed mild co-operativity and thus allosteric behavior of MRP2. MC transport by MRP2 was MC congener-specific, whereby MC-LF was transported more rapidly than MC-LR and -RR. Other human transporters (BCRP, BSEP, MRP1,3,5, MDR1) tested in this study did not exhibit interaction with MC. Although MRP2 showed specific MC transport, the MC-LR-GSH conjugate, was not transported suggesting the involvement of other transporters than MRP2 for the conjugate efflux.


Assuntos
Glutationa/química , Microcistinas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Benzobromarona/química , Benzobromarona/metabolismo , Cromatografia Líquida de Alta Pressão , Células HEK293 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Microcistinas/análise , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Espectrometria de Massas em Tandem
5.
World J Gastroenterol ; 25(14): 1753-1763, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31011259

RESUMO

BACKGROUND: We recently reported on a hereditary enteropathy associated with a gene encoding a prostaglandin transporter and referred to as chronic enteropathy associated with SLCO2A1 gene (CEAS). Crohn's disease (CD) is a major differential diagnosis of CEAS, because these diseases share some clinical features. Therefore, there is a need to develop a convenient screening test to distinguish CEAS from CD. AIM: To examine whether prostaglandin E major urinary metabolites (PGE-MUM) can serve as a biomarker to distinguish CEAS from CD. METHODS: This was a transactional study of 20 patients with CEAS and 98 patients with CD. CEAS was diagnosed by the confirmation of homozygous or compound heterozygous mutation of SLCO2A1. We measured the concentration of PGE-MUM in spot urine by radioimmunoassay, and the concentration was compared between the two groups of patients. We also determined the optimal cut-off value of PGE-MUM to distinguish CEAS from CD by receiver operating characteristic (ROC) curve analysis. RESULTS: Twenty Japanese patients with CEAS and 98 patients with CD were enrolled. PGE-MUM concentration in patients with CEAS was significantly higher than that in patients with CD (median 102.7 vs 27.9 µg/g × Cre, P < 0.0001). One log unit increase in PGE-MUM contributed to 7.3 increase in the likelihood for the diagnosis of CEAS [95% confidence interval (CI) 3.2-16.7]. A logistic regression analysis revealed that the association was significant even after adjusting confounding factors (adjusted odds ratio 29.6, 95%CI 4.7-185.7). ROC curve analysis revealed the optimal PGE-MUM cut-off value for the distinction of CEAS from CD to be 48.9 µg/g × Cre with 95.0% sensitivity and 79.6% specificity. CONCLUSION: PGE-MUM measurement is a convenient, non-invasive and useful test for the distinction of CEAS from CD.


Assuntos
Enteropatias/diagnóstico , Transportadores de Ânions Orgânicos/genética , Ácidos Prostanoicos/urina , Úlcera/diagnóstico , Adulto , Colo/patologia , Doença de Crohn/diagnóstico , Doença de Crohn/urina , Diagnóstico Diferencial , Feminino , Humanos , Íleo/patologia , Enteropatias/genética , Enteropatias/patologia , Enteropatias/urina , Masculino , Pessoa de Meia-Idade , Mutação , Transportadores de Ânions Orgânicos/metabolismo , Prostaglandinas E/metabolismo , Ácidos Prostanoicos/metabolismo , Úlcera/genética , Úlcera/patologia , Úlcera/urina
6.
Eur J Pharmacol ; 853: 371-380, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31009635

RESUMO

Hyperuricaemia, which results from the overproduction and underexcretion of uric acid, has been linked with chronic renal dysfunction, cardiovascular diseases, diabetes and metabolic syndrome. However, available clinical drugs cannot simultaneously target the production and excretion of uric acid. Norathyriol, a natural xanthone, was expected to have the dual actions. We previously reported that norathyriol possessed potent anti-hyperuricaemic activity related to the inhibition of uric acid production. Here, we investigated the uricosuric actions in hyperuricaemic animals and explored the possible molecular mechanisms associated with renal urate transporters and xanthine oxidase (XO). The results showed that norathyriol (0.5-4.0 mg/kg) dose- and time-dependently decreased serum urate levels in uric acid-induced hyperuricaemic mice and markedly increased the fractional excretion of urate in oxonate-induced hyperuricaemic rats, demonstrating a promotion of urate excretion in the kidney. Further evidence showed that norathyriol markedly increased renal mRNA and protein expression of the secretory organic anion transporter 1 (OAT1) in hyperuricaemic mice and strengthened its transport function in vitro. Moreover, norathyriol also upregulated the mRNA expression of the secretory transporters OAT3, ATP-binding cassette transporter G2 and multidrug resistance protein 4, but not their protein expression. Changes in the expression of the reabsorptive transporters were not observed. This is the first report that norathyriol has uricosuric effects by targeting OAT1. Moreover, norathyriol significantly inhibited XO activity in an uncompetitive manner. Taken together, these findings suggest that norathyriol has the potential to be developed as a new anti-hyperuricaemic agent with dual actions that activate OAT1 and inhibit XO activity.


Assuntos
Inibidores Enzimáticos/farmacologia , Hiperuricemia/tratamento farmacológico , Ácido Úrico/sangue , Ácido Úrico/urina , Xantenos/farmacologia , Xantina Oxidase/antagonistas & inibidores , Animais , Inibidores Enzimáticos/uso terapêutico , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Xantenos/uso terapêutico
7.
Ren Fail ; 41(1): 314-325, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30991873

RESUMO

Drug dosing adjustment in sepsis-induced acute kidney injury (sepsis-AKI) is currently adjusted based on renal function. Sepsis is a multiorgan injury, and thus, drug metabolism in sepsis-AKI might be interfered by non-renal factors such as changes in functions of drug-metabolizing enzymes in the liver and functions of intestinal drug transporters. We compared the defect on mouse CYP3A11 (human CYP3A4 representative) in liver and intestine along with several intestinal drug transporters (MDR1a, MRP2, and OATP3) in three mouse models; chronic ischemic reperfusion injury (Chr I/R; 4-week), acute ischemic reperfusion injury (Acute I/R; 24-h), and cecal ligation and puncture (CLP; 24-h) as representative of sepsis-AKI. Decreased expression of CYP3A11 and drug transporters was demonstrated in all models. Among these models, sepsis-AKI had the least severe renal injury (increased BUN and Scr) with the most severe liver injury (increased ALT and changes in liver histopathology), the most severe intestinal leakage (increased serum (1→3)-ß-D-glucan) and the highest increase in serum IL-6. A reduced expression and activity of liver and intestinal CYP3A11 along with intestinal efflux-drug transporter expressions (MDR1a and MRP2), but not drug uptake transporter (OATP3), was predominant in sepsis-AKI compared with acute I/R. Additionally, a reduction of CYP3A4 expression with IL-6 was demonstrated on HepG2 cells implying a direct injury of IL-6 on human liver cells. Differences in drug metabolism were reported between sepsis-AKI and ischemic-AKI confirming that drug dosing adjustment in sepsis-AKI depends not just only on renal function but also on several non-renal factors. Further studies are warranted.


Assuntos
Lesão Renal Aguda/patologia , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/patologia , Sepse/complicações , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Lesão Renal Aguda/etiologia , Animais , Quimiocinas CC/metabolismo , Citocromo P-450 CYP3A/metabolismo , Modelos Animais de Doenças , Células Hep G2 , Humanos , Interleucina-6/metabolismo , Intestinos/patologia , Fígado/patologia , Proteínas Inflamatórias de Macrófagos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Transportadores de Ânions Orgânicos/metabolismo , Insuficiência Renal Crônica/etiologia , Traumatismo por Reperfusão/etiologia
8.
Life Sci ; 224: 41-50, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902543

RESUMO

Common characteristics of drug induced nephrotoxicity are renal tubular and interstitial injury. Many studies have only focused on renal tubular injury. However, less is known about the effects of drugs in the renal interstitium on the nephrotoxicity. The aim of this study was to investigate the pharmacokinetics of adefovir (ADV) and the nephrotoxicity in the renal interstitium. Rats were treated with ADV alone or in combination with probenecid for 1, 7, 14, or 28 days. The renal interstitial fluid was collected by renal microdialysis. The concentration of ADV was determined by HPLC-MS/MS. Nephrotoxicity was evaluated by biochemical parameters or histological analysis. The results showed that organic anion transporters (OATs) inhibitor probenecid significantly increased the area under concentration-time curves (AUC) and peak concentration (Cmax) of ADV in the renal interstitium, while the clearance (CL) in the renal interstitium was decreased in the ADV plus probenecid group compared to the ADV groups. After long-term treatment, interstitial fibrosis was present in the ADV plus probenecid group, whereas no trace of that could be detected in the ADV groups. Furthermore, a decrease was observed in the expression of OATs/Oats, which was dependent upon the concentrations and time of ADV treatment. In conclusion, it is possible that ADV could be accumulated in the interstitium when Oats were inhibited, which could cause renal interstitial fibrosis. Simply reducing cell uptake in long-term treatment might not be an effective method to protect against chronic nephrotoxicity.


Assuntos
Adenina/análogos & derivados , Nefropatias/induzido quimicamente , Túbulos Renais/patologia , Transportadores de Ânions Orgânicos/metabolismo , Organofosfonatos/farmacocinética , Organofosfonatos/toxicidade , Adenina/farmacocinética , Adenina/toxicidade , Animais , Antivirais/farmacocinética , Antivirais/toxicidade , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Ratos , Ratos Wistar , Distribuição Tecidual
9.
Toxicon ; 162: 1-8, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849452

RESUMO

Microcystin-LR (MCLR) is a cyanotoxin produced by blue-green algae that causes liver and kidney toxicities. MCLR toxicity is dependent on cellular uptake through the organic anion transporting polypeptide (OATP) transporters. Nonalcoholic fatty liver disease (NAFLD) progresses through multiple stages, alters expression of hepatic OATPs, and is associated with chronic kidney disease. The purpose of this study was to determine whether NAFLD increases systemic exposure to MCLR and influences acute liver and kidney toxicities. Rats were fed a control diet or two dietary models of NAFLD; methionine and choline deficient (MCD) or high fat/high cholesterol (HFHC). Two studies were performed in these groups: 1) a single dose intravenous toxicokinetic study (20 µg/kg), and 2) a single dose intraperitoneal toxicity study (60 µg/kg). Compared to control rats, plasma MCLR area under the concentration-time curve (AUC) in MCD rats doubled, whereas biliary clearance (Clbil) was unchanged; in contrast, plasma AUC in HFHC rats was unchanged, whereas Clbil approximately doubled. Less MCLR bound to PP2A was observed in the liver of MCD rats. This shift in exposure decreased the severity of liver pathology only in the MCD rats after a single toxic dose of MCLR (60 µg/kg). In contrast, the single toxic dose of MCLR increased hepatic inflammation, plasma cholesterol, proteinuria, and urinary KIM1 in HFHC rats more than MCLR exposed control rats. In conclusion, rodent models of NAFLD alter MCLR toxicokinetics and acute toxicity and may have implications for liver and kidney pathologies in NAFLD patients.


Assuntos
Fígado/efeitos dos fármacos , Microcistinas/toxicidade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Moléculas de Adesão Celular/urina , Colesterol/metabolismo , Colina/metabolismo , Dieta Hiperlipídica , Eliminação Hepatobiliar , Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/metabolismo , Fígado/fisiopatologia , Masculino , Metionina/deficiência , Microcistinas/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Transportadores de Ânions Orgânicos/metabolismo , Proteína Fosfatase 2/metabolismo , Proteinúria/induzido quimicamente , Proteinúria/metabolismo , Ratos Sprague-Dawley , Toxicocinética
10.
Oncol Rep ; 41(4): 2558-2566, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30816509

RESUMO

Curcumin is a natural polyphenolic compound with pronounced anticancer properties, despite its low bioavailability caused by extensive glucuronidation and sulfation. Information on the cellular uptake mechanisms and their contribution to the anticancer effects of curcumin and its biotransformation products is limited. The present study, therefore, investigated the role of organic anion­transporting polypeptides (OATPs) in the cellular uptake of curcumin and its major metabolites in OATP­expressing Chinese hamster ovary (CHO) and human ZR­75­1 breast cancer cells. The uptake rates for curcumin in OATP1B1­, OATP1B3­ and OATP2B1­transfected CHO cells were 2­ to 3­fold higher than wild­type cells. Curcumin sulfate was transported by all three OATPs, although to a much lesser extent, while uptake of tetrahydrocurcumin was the highest but only via OATP1B1 and OATP1B3. Notably, curcumin glucuronide did not exhibit any affinity for these OATPs. The increased mRNA levels of OATP1B1 in wild­type human breast cancer ZR­75­1 cells compared with OATP1B1 knockdown cells was associated with a higher initial uptake of curcumin and tetrahydrocurcumin leading to decreased IC50 values. In conclusion, our data revealed that OATPs act as cellular uptake transporters for curcumin and its major metabolites, and this may also be applicable to patients undergoing cancer therapy.


Assuntos
Antineoplásicos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Curcumina/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/patologia , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Curcumina/farmacologia , Curcumina/uso terapêutico , Técnicas de Silenciamento de Genes , Humanos , Transportadores de Ânions Orgânicos/genética
11.
J Biol Chem ; 294(15): 6142-6156, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30770467

RESUMO

In plants, strict regulation of stomatal pores is critical for modulation of CO2 fixation and transpiration. Under certain abiotic and biotic stressors, pore closure is initiated through anionic flux, with calcium (Ca2+) playing a central role. The aluminum-activated malate transporter 12 (ALMT12) is a malate-activated, voltage-dependent member of the aluminum-activated malate transporter family that has been implicated in anionic flux from guard cells controlling the stomatal aperture. Herein, we report the characterization of the regulatory mechanisms mediating channel activities of an ALMT from the grass Brachypodium distachyon (BdALMT12) that has the highest sequence identity to Arabidopsis thaliana ALMT12. Electrophysiological studies in a heterologous cell system confirmed that this channel is malate- and voltage-dependent. However, this was shown to be true only in the presence of Ca2+ Although a general kinase inhibitor increased the current density of BdALMT12, a calmodulin (CaM) inhibitor reduced the Ca2+-dependent channel activation. We investigated the physiological relevance of the CaM-based regulation in planta, where stomatal closure, induced by exogenous Ca2+ ionophore and malate, was shown to be inhibited by exogenous application of a CaM inhibitor. Subsequent analyses revealed that the double substitutions R335A/R338A and R335A/K342A, within a predicted BdALMT12 CaM-binding domain (CBD), also decreased the channels' ability to activate. Using isothermal titration calorimetry and CBD-mimetic peptides, as well as CaM-agarose affinity pulldown of full-length recombinant BdALMT12, we confirmed the physical interaction between the CBD and CaM. Together, these findings support a co-regulatory mechanism of BdALMT12 activation by malate, and Ca2+/CaM, emphasizing that a complex regulatory network modulates BdALMT12 activity.


Assuntos
Brachypodium , Cálcio , Calmodulina , Transportadores de Ânions Orgânicos , Proteínas de Plantas , Estômatos de Plantas , Substituição de Aminoácidos , Brachypodium/química , Brachypodium/genética , Brachypodium/metabolismo , Cálcio/química , Cálcio/metabolismo , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo , Ativação do Canal Iônico/fisiologia , Malatos/química , Malatos/metabolismo , Mutação de Sentido Incorreto , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/química , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo
12.
Pharm Res ; 36(4): 59, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30809779

RESUMO

PURPOSE: Recently, several studies have shown that renal failure decreases the metabolic clearance of drugs and the transportation capability of some drug transporters. However, whether organic anion transporting polypeptide (OATP)1B activities decrease in renal failure remains unknown. In this study, we measured plasma concentrations of coproporphyrin-I (CP-I), a specific endogenous OATP1B probe, in patients with end stage renal disease before and after living kidney transplantation and evaluated the effect of renal function on OATP1B activity. METHODS: This prospective study recruited 13 patients with end-stage renal disease. Plasma CP-I concentrations were measured before and 7, 14, 30 and 90 days after living kidney transplantation. RESULTS: Plasma CP-I concentrations decreased over time after living kidney transplantation and showed significant difference on day 90 compared with before living kidney transplantation [1.12 ± 0.59 vs 0.65 ± 0.27 ng/mL, p < 0.05 (95% CI of difference - 0.927, -0.013)]. A significant negative correlation was observed between estimated glomerular filtration rate and plasma CP-I concentration (r = -0.30, p < 0.05), suggesting recovery of OATP1B activity with improvement in renal function. CONCLUSIONS: OATP1B activity may decrease in renal failure and dose adjustment of OATP1B substrates may be needed in patients with renal failure.


Assuntos
Coproporfirinas/sangue , Falência Renal Crônica/sangue , Falência Renal Crônica/cirurgia , Transplante de Rim , Transportadores de Ânions Orgânicos/metabolismo , Adulto , Idoso , Creatinina/sangue , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
13.
Mol Pharmacol ; 95(5): 490-506, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782852

RESUMO

The organic anion transporting polypeptides (OATPs) are a superfamily of drug transporters involved in the uptake and disposition of a wide array of structurally divergent endogenous and exogenous substrates, including steroid hormones, bile acids, and commonly used drugs, such as anti-infectives, antihypertensives, and cholesterol lowering agents. In the past decade, OATPs, primarily OATP1A2, OATP1B1, and OATP1B3, have emerged as potential mediators of chemotherapy disposition, including drugs such as methotrexate, doxorubicin, paclitaxel, docetaxel, irinotecan and its important metabolite 7-ethyl-10-hydroxycamptothecin, and certain tyrosine kinase inhibitors. Furthermore, OATP family members are polymorphic and numerous studies have shown OATP variants to have differential uptake, disposition, and/or pharmacokinetics of numerous drug substrates with important implications for interindividual differences in efficacy and toxicity. Additionally, certain OATPs have been found to be overexpressed in a variety of human solid tumors, including breast, liver, colon, pancreatic, and ovarian cancers, suggesting potential roles for OATPs in tumor development and progression and as novel targets for cancer therapy. This review focuses on the emerging roles for selected OATPs in cancer pharmacology, including preclinical and clinical studies suggesting roles in chemotherapy disposition, the pharmacogenetics of OATPs in cancer therapy, and OATP overexpression in various tumor tissues with implications for OATPs as therapeutic targets.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Humanos , Neoplasias/genética , Farmacogenética/métodos
14.
BMC Complement Altern Med ; 19(1): 10, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621705

RESUMO

BACKGROUND: ChondroT, a new herbal medication, consists of the water extracts of Osterici Radix, Lonicerae Folium, Angelicae Gigantis Radix, Clematidis Radix, and Phellodendri Cortex (6:4:4:4:3). We previously reported that ChondroT showed significant anti-arthritis and anti-inflammatory effects. METHODS: This study was designed to evaluate the effect of ChondroT on hyperuricemia. First, the effect of ChondroT was evaluated on xanthine oxidase (XOD) activity in vitro. The anti-hyperuricemic effect of ChondroT was also studied in potassium oxonate (PO)-induced hyperuricemic model mice. Uric acid (UA) and XOD were evaluated in the serum, urine, and liver of the mice. In addition, we measured serum creatinine (Cr) and blood urea nitrogen (BUN) levels as well as mRNA expression of the mouse urate transporter 1 (mURAT1) to evaluate kidney function and urate excretion in hyperuricemic mice. RESULTS: ChondroT showed in vitro XOD inhibitory activity in a dose-dependent manner (P < 0.05). We demonstrated that ChondroT (37.5, 75 and 150 mg/kg) significantly reduced serum UA (P < 0.01 and P < 0.001, respectively), and upregulated urinary UA (P < 0.001, respectively) in PO-induced hyperuricemic mice. In addition, ChondroT (75 and 150 mg/kg) significantly reduced Cr (P < 0.05 and P < 0.01, respectively), BUN (P < 0.05 and P < 0.001, respectively), GOT (P < 0.05 and P < 0.01, respectively), and GPT (P > 0.05 and P < 0.05, respectively) levels in PO-induced hyperuricemic mice. ChondroT (75 and 150 mg/kg) also significantly downregulated serum (P < 0.05) and liver (P < 0.05) XOD activity. Compared to the hyperuricemic mice, the ChondroT (37.5, 75, and 150 mg/kg)-treated mice showed decreased mURAT1 protein expression level. CONCLUSION: ChondroT displayed anti-hyperuricemic effects by regulating XOD activity and kidney mURAT1.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Hiperuricemia/tratamento farmacológico , Transportadores de Ânions Orgânicos/genética , Ácido Oxônico/efeitos adversos , Xantina Oxidase/genética , Animais , Creatinina/sangue , Avaliação Pré-Clínica de Medicamentos , Humanos , Hiperuricemia/induzido quimicamente , Hiperuricemia/genética , Hiperuricemia/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transportadores de Ânions Orgânicos/metabolismo , Ácido Úrico/sangue , Xantina Oxidase/sangue
15.
Biopharm Drug Dispos ; 40(2): 62-69, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30652318

RESUMO

The hepatic uptake of clinical drugs mediated by human hepatic organic anion transporting polypeptides (OATP/SLCO) has been reported extensively. In this study, hepatic uptake by recombinantly expressed monkey OATP1B1, OATP1B3 and OATP2B1 was investigated using three human OATP1B1 and OATP1B3 substrates (pitavastatin, pravastatin and rosuvastatin) and one OATP1B3 substrate (telmisartan), as the governmental drug interaction guidelines recommend, and seven reported clinical drugs. The uptake of known human probes into recombinant OATP-expressing cells was significantly greater than that of mock cells. Consequently, pitavastatin, pravastatin and rosuvastatin were suggested to be substrates of recombinant monkey OATP1B1 and OATP1B3, and telmisartan was suggested to be a substrate of recombinant monkey OATP1B3, in a manner similar to human OATPs. In contrast, atorvastatin, bosentan, etoposide, fexofenadine, fluvastatin, glibenclamide and simeprevir were broadly transported by recombinant monkey OATP1B1, OATP1B3 and OATP2B1. Furthermore, some of the 16 non-synonymous monkey OATP1B1 variants found in 64 cynomolgus and 32 rhesus monkeys mediated up to a 1.6-fold [3 H]pitavastatin uptake (with low Michaelis constant values) in comparison with the wild type under the present conditions. Despite sequences of monkey recombinant OATPs not being totally reflective of those of human OATPs, our results collectively suggested that OATP1B1, OATP1B3 or OATP2B1 in monkeys could mediate roughly a similar hepatic uptake of various OATP probes. Recombinant monkey OATPs would be good experimental tools for in vitro hepatic uptake in cell systems.


Assuntos
Transportadores de Ânions Orgânicos/metabolismo , Quinolinas/metabolismo , Proteínas Recombinantes/metabolismo , Telmisartan/metabolismo , Animais , Interações de Medicamentos , Células HEK293 , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Macaca fascicularis , Macaca mulatta , Transportadores de Ânions Orgânicos/genética , Plasmídeos , Pravastatina/metabolismo , Proteínas Recombinantes/genética , Rosuvastatina Cálcica/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Especificidade por Substrato
16.
Drug Metab Dispos ; 47(3): 215-226, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593544

RESUMO

In the present study, the beagle dog was evaluated as a preclinical model to investigate organic anion transporting polypeptide (OATP)-mediated hepatic clearance. In vitro studies were performed with nine OATP substrates in three lots of plated male dog hepatocytes ± OATP inhibitor cocktail to determine total uptake clearance (CLuptake) and total and unbound cell-to-medium concentration ratio (Kpuu). In vivo intrinsic hepatic clearances (CLint,H) were determined following intravenous drug administration (0.1 mg/kg) in male beagle dogs. The in vitro parameters were compared with those previously reported in plated human, monkey, and rat hepatocytes; the ability of cross-species scaling factors to improve prediction of human in vivo clearance was assessed. CLuptake in dog hepatocytes ranged from 9.4 to 135 µl/min/106 cells for fexofenadine and telmisartan, respectively. Active process contributed >75% to CLuptake for 5/9 drugs. Rosuvastatin and valsartan showed Kpuu > 10, whereas cerivastatin, pitavastatin, repaglinide, and telmisartan had Kpuu < 5. The extent of hepatocellular binding in dog was consistent with other preclinical species and humans. The bias (2.73-fold) obtained from comparison of predicted versus in vivo dog CLint,H was applied as an average empirical scaling factor (ESFav) for in vitro-in vivo extrapolation of human CLint,H The ESFav based on dog reduced underprediction of human CLint,H for the same data set (geometric mean fold error = 2.1), highlighting its utility as a preclinical model to investigate OATP-mediated uptake. The ESFav from all preclinical species resulted in comparable improvement of human clearance prediction, in contrast to drug-specific empirical scalars, rationalized by species differences in expression and/or relative contribution of particular transporters to drug hepatic uptake.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Taxa de Depuração Metabólica , Transportadores de Ânions Orgânicos/metabolismo , Preparações Farmacêuticas/metabolismo , Especificidade da Espécie , Animais , Cães , Hepatócitos/metabolismo , Humanos , Infusões Intravenosas , Fígado/citologia , Fígado/metabolismo , Masculino , Modelos Animais , Modelos Biológicos , Preparações Farmacêuticas/administração & dosagem
17.
Circulation ; 139(1): 78-96, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30586693

RESUMO

BACKGROUND: Chronic kidney disease (CKD) increases cardiovascular risk. Underlying mechanisms, however, remain obscure. The uremic toxin indoxyl sulfate is an independent cardiovascular risk factor in CKD. We explored the potential impact of indoxyl sulfate on proinflammatory activation of macrophages and its underlying mechanisms. METHODS: We examined in vitro the effects of clinically relevant concentrations of indoxyl sulfate on proinflammatory responses of macrophages and the roles of organic anion transporters and organic anion transporting polypeptides (OATPs). A systems approach, involving unbiased global proteomics, bioinformatics, and network analysis, then explored potential key pathways. To address the role of Delta-like 4 (Dll4) in indoxyl sulfate-induced macrophage activation and atherogenesis in CKD in vivo, we used 5/6 nephrectomy and Dll4 antibody in low-density lipoprotein receptor-deficient (Ldlr-/-) mice. To further determine the relative contribution of OATP2B1 or Dll4 to proinflammatory activation of macrophages and atherogenesis in vivo, we used siRNA delivered by macrophage-targeted lipid nanoparticles in mice. RESULTS: We found that indoxyl sulfate-induced proinflammatory macrophage activation is mediated by its uptake through transporters, including OATP2B1, encoded by the SLCO2B1 gene. The global proteomics identified potential mechanisms, including Notch signaling and the ubiquitin-proteasome pathway, that mediate indoxyl sulfate-triggered proinflammatory macrophage activation. We chose the Notch pathway as an example of key candidates for validation of our target discovery platform and for further mechanistic studies. As predicted computationally, indoxyl sulfate triggered Notch signaling, which was preceded by the rapid induction of Dll4 protein. Dll4 induction may result from inhibition of the ubiquitin-proteasome pathway, via the deubiquitinating enzyme USP5. In mice, macrophage-targeted OATP2B1/Slco2b1 silencing and Dll4 antibody inhibited proinflammatory activation of peritoneal macrophages induced by indoxyl sulfate. In low-density lipoprotein receptor-deficient mice, Dll4 antibody abolished atherosclerotic lesion development accelerated in Ldlr-/- mice. Moreover, coadministration of indoxyl sulfate and OATP2B1/Slco2b1 or Dll4 siRNA encapsulated in macrophage-targeted lipid nanoparticles in Ldlr-/- mice suppressed lesion development. CONCLUSIONS: These results suggest that novel crosstalk between OATP2B1 and Dll4-Notch signaling in macrophages mediates indoxyl sulfate-induced vascular inflammation in CKD.


Assuntos
Aterosclerose/metabolismo , Indicã/toxicidade , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Receptores Notch/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Transportadores de Ânions Orgânicos/genética , Fenótipo , Placa Aterosclerótica , Células RAW 264.7 , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Notch/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Transdução de Sinais/efeitos dos fármacos , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
18.
Circulation ; 139(1): 119-133, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30586707

RESUMO

BACKGROUND: We have previously shown that activation of cell-autonomous innate immune signaling facilitates the transdifferentiation of fibroblasts into induced endothelial cells, and is required to generate induced endothelial cells with high fidelity for endothelial lineage. Recent studies indicate that a glycolytic switch plays a role in induced pluripotent stem cell generation from somatic cells. METHODS: Seahorse and metabolomics flux assays were used to measure the metabolic changes during transdifferentiation in vitro, and Matrigel plug assay was used to assess the effects of glycolysis modulators on transdifferentiation in vivo. RESULTS: The metabolic switch begins rapidly after activation of innate immunity, before the expression of markers of endothelial lineage. Inhibiting glycolysis impaired, whereas facilitating glycolysis enhanced, the generation of induced endothelial cells. The toll-like receptor 3 agonist poly I:C increased expression of the mitochondrial citrate transporter Slc25A1, and the nuclear ATP-citrate lyase, in association with intracellular accumulation of citrate, the precursor for acetyl coenzyme A. These metabolic changes were coordinated with increased histone acetylation during transdifferentiation. CONCLUSION: Innate immune signaling promotes a glycolytic switch that is required for transdifferentiation, both processes being attenuated by ATP-citrate lyase knockdown. These data shed light on a novel link between metabolism and epigenetic modulation in transdifferentiation.


Assuntos
Linhagem da Célula , Transdiferenciação Celular , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Glicólise , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Acetilação , Animais , Linhagem da Célula/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ácido Cítrico/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Epigênese Genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Glicólise/efeitos dos fármacos , Histonas/metabolismo , Imunidade Inata , Camundongos Endogâmicos NOD , Camundongos SCID , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Fenótipo , Poli I-C/farmacologia , Transdução de Sinais , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/metabolismo
19.
Mol Pharmacol ; 95(3): 313-323, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30573512

RESUMO

The herbal remedy St. John's wort (SJW) is used in the treatment of mild depressive symptoms and is known for its drug-drug interaction potential when enhanced expression of CYP3A4 modifies clearance of concomitantly applied substrate drugs. Hyperforin is one constituent of SJW that alters CYP3A4 expression by activation of the nuclear receptor pregnane X receptor (PXR). However, little is known about the transmembrane transport of hyperforin. One membrane protein that modulates cellular entry of drugs is the organic anion-transporting polypeptide (OATP) 2B1. It was the aim of this study to test whether hyperforin interacts with this transport protein. Transport inhibition studies and competitive counterflow experiments suggested that hyperforin is a substrate of OATP2B1. This notion was validated by showing that the presence of OATP2B1 enhanced the hyperforin-induced PXR activation in cell-based luciferase assays. Moreover, in Caco-2 cells transcellular transport of the known OATP2B1 substrate atorvastatin was changed in the presence of hyperforin, resulting in an increased efflux ratio. Eleven commercially available SJW formulations were assessed for their influence on OATP2B1-mediated transport of estrone 3-sulfate and for their impact on CYP3A4 promoter transactivation. The correlation between effect size and the hyperforin content as determined by high-performance liquid chromatography with ultraviolet detection suggested that hyperforin is the major determinant. Our results indicate an interaction between hyperforin and OATP2B1, which is not only known to contribute to hepatocellular uptake but also to intestinal absorption of its substrates. These findings extend the complexity of mechanisms that should be considered when evaluating the interaction potential of SJW preparations.


Assuntos
Transportadores de Ânions Orgânicos/metabolismo , Floroglucinol/análogos & derivados , Receptor de Pregnano X/metabolismo , Terpenos/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/metabolismo , Interações de Medicamentos/fisiologia , Estrona/análogos & derivados , Estrona/metabolismo , Células HeLa , Células Hep G2 , Humanos , Absorção Intestinal/efeitos dos fármacos , Floroglucinol/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos
20.
Kidney Blood Press Res ; 43(6): 1822-1831, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30537749

RESUMO

BACKGROUND/AIMS: Hyperglycemia and hyperuricemia are two major disorders of Metabolic syndrome. Kidney plays a crucial role in maintaining the homeostasis of uric acid and glucose. The aim of the study was to examine the changes of renal glucose and uric acid transporters in animals with metabolic syndrome. METHODS: Sprague-Dawley rats were fed with high fructose diet (60%) for 3 months (FR-3) and 5 months (FR-5). At the end study, serum and urine biochemical data were compared. Gene expression and protein abundance of renal GLUT1, GLUT2, GLUT9, SGLT1, SGLT2, UAT and URAT1 was investigated by using RT-PCR and immunohistochemical staining. RESULTS: Metabolic syndrome was induced by high-fructose diet. Systolic blood pressure and proteinuria was significantly increased in FR-5 animals. In kidney tissue, gene expression of GLUT2 and SGLT2 increased significantly in a time dependent manner. GLUT9, SGLT1 and UAT were also significantly upregulated in FR-5. Immunohistochemical study showed a significant increase of SGLT1 in both FR-3 (413.5 ± 88.3% of control, p< 0.001) and FR-5 (677.6 ± 26.5% of control, p< 0.001). Also, SGLT2 protein was increased in both FR-3 (643.1 ± 41.3% of control, p< 0.001) and FR-5 (563.3 ± 21.7% of control, p< 0.001). Fructose rich food also induced increase of UAT by nearly 5-fold in both FR-3 and FR-5 (both p< 0.05) and more than 3-fold of GLUT-9 in FR-3 and FR-5 (both p< 0.05). CONCLUSION: Long term high fructose diet induced metabolic syndrome with increased blood pressure and proteinuria in rats. Metabolic syndrome was associated with dual increase in renal glucose and uric acid transporters, including SGLT1, SGLT2, GLUT2, GLUT9 and UAT.


Assuntos
Frutose/efeitos adversos , Síndrome Metabólica/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Epitélio/química , Rim/química , Rim/citologia , Síndrome Metabólica/induzido quimicamente , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA