Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.355
Filtrar
1.
Nat Commun ; 12(1): 1273, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627667

RESUMO

Multicilia are delicate motile machineries, and how they are accurately assembled is poorly understood. Here, we show that fibrogranular materials (FGMs), large arrays of electron-dense granules specific to multiciliated cells, are essential for their ultrastructural fidelity. Pcm1 forms the granular units that further network into widespread FGMs, which are abundant in spherical FGM cores. FGM cores selectively concentrate multiple important centriole-related proteins as clients, including Cep131 that specifically decorates a foot region of ciliary central pair (CP) microtubules. FGMs also tightly contact deuterosome-procentriole complexes. Disruption of FGMs in mouse cells undergoing multiciliogenesis by Pcm1 RNAi markedly deregulates centriolar targeting of FGM clients, elongates CP-foot, and alters deuterosome size, number, and distribution. Although the multicilia are produced in correct numbers, they display abnormal ultrastructure and motility. Our results suggest that FGMs organize deuterosomes and centriole-related proteins to facilitate the faithful assembly of basal bodies and multiciliary axonemes.


Assuntos
Células Epiteliais/metabolismo , Microtúbulos/metabolismo , Animais , Axonema/metabolismo , Corpos Basais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Camundongos , Traqueia/citologia , Traqueia/metabolismo
2.
Ecotoxicol Environ Saf ; 210: 111870, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33440271

RESUMO

Ammonia is the main harmful gas in livestock houses. However, the toxic mechanism of ammonia is still unclear. Therefore, we examined the effects of ammonia exposure on different tissues of fattening pigs by histological analysis and transcriptome techniques in this study. The results showed that there were varying degrees of pathological changes in liver, kidney, hypothalamus, jejunum, lungs, spleen, heart and trachea of fattening pigs under ammonia exposure. Notably, the extent of damage in liver, kidney, jejunum, lungs, hypothalamus and trachea was more severe than that in heart and spleen. Transcriptome results showed that ammonia exposure caused changes in 349, 335, 340, 229, 120, 578, 407 and 115 differentially expressed genes in liver, kidney, spleen, lung, trachea, hypothalamus, jejunum and heart, respectively. Interestingly, the changes in solute vector (SLC) family genes were found in all 8 tissues, and the verified gene results (SLC11A1, SLC17A7, SLC17A6, SLC6A4, SLC22A7, SLC25A3, SLC28A3, SLC7A2, SLC6A6, SLC38A5, SLC22A12, SLC34A1, SLC26A1, SLC26A6, SLC27A5, SLC22A8 and SLC44A4) were consistent with qRT-PCR results. In conclusion, ammonia exposure can cause pathological changes in many tissues and organs of fattening pigs and changes in the SCL family gene network. Importantly, the SCL family is involved in the toxic mechanism of ammonia. Our findings will provide a new insight for better assessing the mechanism of ammonia toxicity.


Assuntos
Amônia/toxicidade , Proteínas de Membrana Transportadoras/genética , Animais , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Jejuno/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Miocárdio/patologia , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Suínos , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/patologia , Transcriptoma/efeitos dos fármacos
3.
Ecotoxicol Environ Saf ; 212: 111974, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508713

RESUMO

Ammonia (NH3) is the most alkaline gaseous compound in the atmosphere and the primary gas pollutant in the piggery. It can cause irritation and damage to the airway after inhalation. However, the effects and toxicity mechanism of NH3 on the trachea are still unclear. In order to evaluate the toxic effects of NH3 inhalation on pig trachea, the changes of oxidative stress parameters (SOD, GSH, GSH-Px, and MDA), tissue structure and transcriptome in the trachea of pigs were examined after 30 days of exposure to NH3. Our results showed SOD, GSH-Px and GSH in the trachea in the NH3-treatment group were significantly decreased (P < 0.05) compared with the control group, on the contrary, MDA content was significantly higher (P < 0.05). The analysis of differentially expressed genes (DEGs) showed that 2542 DEGs (1109 up-regulated DEGs and 1433 down-regulated DEGs) were significantly changed under NH3 exposure, including many DEGs associated with inflammation, oxidative stress, microtubule activity and SLC family, and the qRT-PCR verification results of these DEGs were consistent with the transcriptome results. The results indicated that NH3 exposure could break down the mucosal barrier of the respiratory tract, induce oxidative stress and inflammation, reduce the activity of microtubules and disrupt the balance of SLC transporters. In this study, transcriptome analysis was used for the first time to explore the toxic mechanism of NH3 on pig trachea, providing new insights for better assessing the toxicity mechanism of NH3, as well as references for comparative medicine.


Assuntos
Amônia/toxicidade , Poluentes Ambientais/toxicidade , Traqueia/metabolismo , Animais , Galinhas/genética , Regulação para Baixo , Perfilação da Expressão Gênica , Inflamação , Masculino , Microtúbulos , Estresse Oxidativo/fisiologia , Suínos , Transcriptoma , Regulação para Cima
4.
PLoS Genet ; 16(12): e1009232, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347437

RESUMO

Motile cilia can beat with distinct patterns, but how motility variations are regulated remain obscure. Here, we have studied the role of the coiled-coil protein CFAP53 in the motility of different cilia-types in the mouse. While node (9+0) cilia of Cfap53 mutants were immotile, tracheal and ependymal (9+2) cilia retained motility, albeit with an altered beat pattern. In node cilia, CFAP53 mainly localized at the base (centriolar satellites), whereas it was also present along the entire axoneme in tracheal cilia. CFAP53 associated tightly with microtubules and interacted with axonemal dyneins and TTC25, a dynein docking complex component. TTC25 and outer dynein arms (ODAs) were lost from node cilia, but were largely maintained in tracheal cilia of Cfap53-/- mice. Thus, CFAP53 at the base of node cilia facilitates axonemal transport of TTC25 and dyneins, while axonemal CFAP53 in 9+2 cilia stabilizes dynein binding to microtubules. Our study establishes how differential localization and function of CFAP53 contributes to the unique motion patterns of two important mammalian cilia-types.


Assuntos
Dineínas do Axonema/metabolismo , Axonema/metabolismo , Transporte Biológico Ativo/genética , Movimento Celular/genética , Cílios/metabolismo , Embrião de Mamíferos/metabolismo , Microtúbulos/metabolismo , Animais , Dineínas do Axonema/genética , Axonema/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cílios/genética , Embrião de Mamíferos/fisiologia , Embrião de Mamíferos/ultraestrutura , Epêndima/embriologia , Epêndima/metabolismo , Epêndima/fisiologia , Imunofluorescência , Genótipo , Imunoprecipitação , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microtúbulos/genética , Mutação , Fenótipo , Traqueia/embriologia , Traqueia/metabolismo , Traqueia/fisiologia , Traqueia/ultraestrutura
5.
Viruses ; 12(11)2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114247

RESUMO

Porcine respiratory coronavirus (PRCoV) infects the epithelial cells in the respiratory tract of pigs, causing a mild respiratory disease. We applied air-liquid interface (ALI) cultures of well-differentiated porcine airway cells to mimic the respiratory tract epithelium in vitro and use it for analyzing the infection by PRCoV. As reported for most coronaviruses, virus entry and virus release occurred mainly via the apical membrane domain. A novel finding was that PRCoV preferentially targets non-ciliated and among them the non-mucus-producing cells. Aminopeptidase N (APN), the cellular receptor for PRCoV was also more abundantly expressed on this type of cell suggesting that APN is a determinant of the cell tropism. Interestingly, differentiation-dependent differences were found both in the expression of pAPN and the susceptibility to PRCoV infection. Cells in an early differentiation stage express higher levels of pAPN and are more susceptible to infection by PRCoV than are well-differentiated cells. A difference in the susceptibility to infection was also detected when tracheal and bronchial cells were compared. The increased susceptibility to infection of bronchial epithelial cells was, however, not due to an increased abundance of APN on the cell surface. Our data reveal a complex pattern of infection in porcine differentiated airway epithelial cells that could not be elucidated with immortalized cell lines. The results are expected to have relevance also for the analysis of other respiratory viruses.


Assuntos
Antígenos CD13/metabolismo , Células Epiteliais/metabolismo , Coronavirus Respiratório Porcino/fisiologia , Receptores Virais/metabolismo , Mucosa Respiratória/virologia , Tropismo Viral , Animais , Brônquios/metabolismo , Brônquios/virologia , Diferenciação Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/virologia , Suínos , Traqueia/metabolismo , Traqueia/virologia , Internalização do Vírus , Liberação de Vírus , Replicação Viral
6.
Nat Commun ; 11(1): 4159, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855415

RESUMO

The periodic cartilage and smooth muscle structures in mammalian trachea are derived from tracheal mesoderm, and tracheal malformations result in serious respiratory defects in neonates. Here we show that canonical Wnt signaling in mesoderm is critical to confer trachea mesenchymal identity in human and mouse. At the initiation of tracheal development, endoderm begins to express Nkx2.1, and then mesoderm expresses the Tbx4 gene. Loss of ß-catenin in fetal mouse mesoderm causes loss of Tbx4+ tracheal mesoderm and tracheal cartilage agenesis. The mesenchymal Tbx4 expression relies on endodermal Wnt activation and Wnt ligand secretion but is independent of known Nkx2.1-mediated respiratory development, suggesting that bidirectional Wnt signaling between endoderm and mesoderm promotes trachea development. Activating Wnt, Bmp signaling in mouse embryonic stem cell (ESC)-derived lateral plate mesoderm (LPM) generates tracheal mesoderm containing chondrocytes and smooth muscle cells. For human ESC-derived LPM, SHH activation is required along with WNT to generate proper tracheal mesoderm. Together, these findings may contribute to developing applications for human tracheal tissue repair.


Assuntos
Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Traqueia/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Endoderma/citologia , Endoderma/embriologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Mesoderma/citologia , Mesoderma/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo , Traqueia/citologia , Traqueia/embriologia , beta Catenina/metabolismo
7.
Nanotoxicology ; 14(7): 908-928, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574512

RESUMO

Silver nanoparticles (AgNP) are used in multiple applications but primarily in the manufacturing of antimicrobial products. Previous studies have identified AgNP toxicity in airway epithelial cells, but no in vitro studies to date have used organotypic cultures as a high-content in vitro model of the conducting airway to characterize the effects of interactions between host genetic and acquired factors, or gene × phenotype interactions (G × P), on AgNP toxicity. In the present study, we derived organotypic cultures from primary murine tracheal epithelial cells (MTEC) to characterize nominal and dosimetric dose-response relationships for AgNPs with a gold core on barrier dysfunction, glutathione (GSH) depletion, reactive oxygen species (ROS) production, lipid peroxidation, and cytotoxicity across two genotypes (A/J and C57BL/6J mice), two phenotypes ('Normal' and 'Type 2 [T2]-Skewed'), and two exposures (an acute exposure of 24 h and a subacute exposure of 4 h, every other day, over 5 days [5 × 4 h]). We characterized the 'T2-Skewed' phenotype as an in vitro model of chronic respiratory diseases, which was marked by increased sensitivity to AgNP-induced barrier dysfunction, GSH depletion, ROS production, lipid peroxidation, and cytotoxicity, suggesting that asthmatics are a sensitive population to AgNP exposures in occupational settings. This also suggests that exposure limits, which should be based upon the most sensitive population, should be derived using in vitro and in vivo models of chronic respiratory diseases. This study highlights the importance of considering dosimetry as well as G × P effects when screening and prioritizing potential respiratory toxicants. Such in vitro studies can be used to inform regulatory policy aimed at special protections for all populations.


Assuntos
Antibacterianos/toxicidade , Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Traqueia/efeitos dos fármacos , Animais , Antibacterianos/química , Técnicas de Cultura de Células , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Genótipo , Glutationa/metabolismo , Ouro/química , Ouro/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Propriedades de Superfície , Traqueia/metabolismo , Traqueia/patologia
8.
Am J Respir Crit Care Med ; 202(2): 219-229, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32432483

RESUMO

Rationale: Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease (COVID-19), a predominantly respiratory illness. The first step in SARS-CoV-2 infection is binding of the virus to ACE2 (angiotensin-converting enzyme 2) on the airway epithelium.Objectives: The objective was to gain insight into the expression of ACE2 in the human airway epithelium.Methods: Airway epithelia sampled by fiberoptic bronchoscopy of trachea, large airway epithelia (LAE), and small airway epithelia (SAE) of nonsmokers and smokers were analyzed for expression of ACE2 and other coronavirus infection-related genes using microarray, RNA sequencing, and 10x single-cell transcriptome analysis, with associated examination of ACE2-related microRNA.Measurements and Main Results: 1) ACE2 is expressed similarly in the trachea and LAE, with lower expression in the SAE; 2) in the SAE, ACE2 is expressed in basal, intermediate, club, mucus, and ciliated cells; 3) ACE2 is upregulated in the SAE by smoking, significantly in men; 4) levels of miR-1246 expression could play a role in ACE2 upregulation in the SAE of smokers; and 5) ACE2 is expressed in airway epithelium differentiated in vitro on air-liquid interface cultures from primary airway basal stem/progenitor cells; this can be replicated using LAE and SAE immortalized basal cell lines derived from healthy nonsmokers.Conclusions: ACE2, the gene encoding the receptor for SARS-CoV-2, is expressed in the human airway epithelium, with variations in expression relevant to the biology of initial steps in SARS-CoV-2 infection.


Assuntos
Betacoronavirus , Infecções por Coronavirus/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Mucosa Respiratória/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Pulmão/metabolismo , Masculino , Pandemias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores Sexuais , Fumar/metabolismo , Traqueia/metabolismo
9.
Nat Commun ; 11(1): 2485, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427931

RESUMO

Cigarette smoke first interacts with the lung through the cellularly diverse airway epithelium and goes on to drive development of most chronic lung diseases. Here, through single cell RNA-sequencing analysis of the tracheal epithelium from smokers and non-smokers, we generate a comprehensive atlas of epithelial cell types and states, connect these into lineages, and define cell-specific responses to smoking. Our analysis infers multi-state lineages that develop into surface mucus secretory and ciliated cells and then contrasts these to the unique specification of submucosal gland (SMG) cells. Accompanying knockout studies reveal that tuft-like cells are the likely progenitor of both pulmonary neuroendocrine cells and CFTR-rich ionocytes. Our smoking analysis finds that all cell types, including protected stem and SMG populations, are affected by smoking through both pan-epithelial smoking response networks and hundreds of cell-specific response genes, redefining the penetrance and cellular specificity of smoking effects on the human airway epithelium.


Assuntos
Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Pulmão/metabolismo , Mucosa Respiratória/metabolismo , Fumar/genética , Traqueia/metabolismo , Animais , Células Cultivadas , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Humanos , Pulmão/citologia , Camundongos , Células NIH 3T3 , não Fumantes/estatística & dados numéricos , Mucosa Respiratória/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Fumantes/estatística & dados numéricos , Traqueia/citologia
10.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1270-L1279, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348677

RESUMO

The organization of the normal airway mucus system differs in small experimental animals from that in humans and large mammals. To address normal murine airway mucociliary clearance, Alcian blue-stained mucus transport was measured ex vivo on tracheal tissues of naïve C57BL/6, Muc5b-/-, Muc5ac-/-, and EGFP-tagged Muc5b reporter mice. Close to the larynx with a few submucosal glands, the mucus appeared as thick bundles. More distally in the trachea and in large bronchi, Alcian blue-stained mucus was organized in cloud-like formations based on the Muc5b mucin. On tilted tissue, the mucus clouds moved upward toward the larynx with an average velocity of 12 µm/s compared with 20 µm/s for beads not associated with clouds. In Muc5ac-/- mice, Muc5b formed mucus strands attached to the tissue surface, while in Muc5b-/- mice, Muc5ac had a more variable appearance. The normal mouse lung mucus thus appears as discontinuous clouds, clearly different from the stagnant mucus layer in diseased lungs.


Assuntos
Mucina-5B/metabolismo , Muco/metabolismo , Sistema Respiratório/metabolismo , Animais , Transporte Biológico , Fluorescência , Células Caliciformes/metabolismo , Camundongos Endogâmicos C57BL , Mucina-5AC/metabolismo , Membrana Mucosa/metabolismo , Traqueia/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L943-L952, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32233794

RESUMO

Transient receptor potential ankyrin-1 (TRPA1) is a ligand-gated cation channel that responds to endogenous and exogenous irritants. TRPA1 is expressed on multiple cell types throughout the lungs, but previous studies have primarily focused on TRPA1 stimulation of airway sensory nerves. We sought to understand the integrated physiological airway response to TRPA1 stimulation. The TRPA1 agonists allyl isothiocyanate (AITC) and cinnamaldehyde (CINN) were tested in sedated, mechanically ventilated guinea pigs in vivo. Reproducible bronchoconstrictions were induced by electrical stimulation of the vagus nerves. Animals were then treated with intravenous AITC or CINN. AITC and CINN were also tested on isolated guinea pig and mouse tracheas and postmortem human trachealis muscle strips in an organ bath. Tissues were contracted with methacholine, histamine, or potassium chloride and then treated with AITC or CINN. Some airways were pretreated with TRPA1 antagonists, the cyclooxygenase inhibitor indomethacin, the EP2 receptor antagonist PF 04418948, or tetrodotoxin. AITC and CINN blocked vagally mediated bronchoconstriction in guinea pigs. Pretreatment with indomethacin completely abolished the airway response to TRPA1 agonists. Similarly, AITC and CINN dose-dependently relaxed precontracted guinea pig, mouse, and human airways in the organ bath. AITC- and CINN-induced airway relaxation required TRPA1, prostaglandins, and PGE2 receptor activation. TRPA1-induced airway relaxation did not require epithelium or tetrodotoxin-sensitive nerves. Finally, AITC blocked airway hyperreactivity in two animal models of allergic asthma. These data demonstrate that stimulation of TRPA1 causes bronchodilation of intact airways and suggest that the TRPA1 pathway is a potential pharmacological target for bronchodilation.


Assuntos
Dinoprostona/metabolismo , Músculo Liso/metabolismo , Canal de Cátion TRPA1/genética , Traqueia/metabolismo , Acroleína/análogos & derivados , Acroleína/farmacologia , Animais , Broncoconstrição/efeitos dos fármacos , Estimulação Elétrica , Regulação da Expressão Gênica , Cobaias , Histamina/farmacologia , Humanos , Indometacina/farmacologia , Isotiocianatos/farmacologia , Masculino , Cloreto de Metacolina/farmacologia , Camundongos , Músculo Liso/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Cloreto de Potássio/farmacologia , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Respiração Artificial , Transdução de Sinais , Canal de Cátion TRPA1/agonistas , Canal de Cátion TRPA1/antagonistas & inibidores , Canal de Cátion TRPA1/metabolismo , Tetrodotoxina/farmacologia , Traqueia/efeitos dos fármacos , Nervo Vago/fisiologia
12.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L1036-L1055, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32130030

RESUMO

Mechanical tension and humoral stimuli can induce transitions in airway smooth muscle phenotype between a synthetic inflammatory state that promotes cytokine secretion and a differentiated state that promotes the expression of smooth muscle phenotype-specific proteins. When tissues are maintained under high tension, Akt activation and eotaxin secretion are suppressed, but expression of the differentiation marker protein, smooth muscle myosin heavy chain (SmMHC), is promoted. When tissues are maintained under low tension, Akt activation and eotaxin secretion are stimulated, and the differentiated phenotype is suppressed. We hypothesized that mechanical stimuli are differentially transduced to Akt-mediated signaling pathways that regulate phenotype expression by α-parvin and ß-parvin integrin-linked kinase/PINCH/parvin (IPP) signaling complexes within integrin adhesomes. High tension or ACh triggered paxillin phosphorylation and the binding of phospho-paxillin to ß-parvin IPP complexes. This inhibited Akt activation and promoted SmMHC expression. Low tension or IL-4 did not elicit paxillin phosphorylation and triggered the binding of unphosphorylated paxillin to α-parvin IPP complexes, which promoted Akt activation and eotaxin secretion and suppressed SmMHC expression. Expression of a nonphosphorylatable paxillin mutant or ß-parvin depletion by siRNA promoted the inflammatory phenotype, whereas the depletion of α-parvin promoted the differentiated phenotype. Results demonstrate that phenotype expression is regulated by the differential interaction of phosphorylated and unphosphorylated paxillin with α-parvin and ß-parvin IPP complexes and that these complexes have opposite effects on the activation of Akt. Our results describe a novel molecular mechanism for transduction of mechanical and humoral stimuli within integrin signaling complexes to regulate phenotype expression in airway smooth muscle.


Assuntos
Actinina/genética , Mecanotransdução Celular , Músculo Liso/metabolismo , Paxilina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Traqueia/metabolismo , Acetilcolina/farmacologia , Actinina/metabolismo , Animais , Quimiocina CCL11/genética , Quimiocina CCL11/metabolismo , Cães , Feminino , Regulação da Expressão Gênica , Interleucina-4/genética , Interleucina-4/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Paxilina/metabolismo , Fenótipo , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Miosinas de Músculo Liso/genética , Miosinas de Músculo Liso/metabolismo , Traqueia/efeitos dos fármacos
13.
Life Sci ; 249: 117472, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32112870

RESUMO

Aim Determine changes in the expressions of the ion channel-TRPV1-and neuropeptides-NKA, NKB, calcitonin gene-related peptide (CGRP), and SP-in 14-, 21-, and 42-day-old rats after inhaling 1.5% and 2.6% sevoflurane. MAIN METHODS: A small in-house inhalation anesthesia chamber was designed to allow 14-, 21-, and 42-day-old rats inhale 1.5% and 2.6% sevoflurane, and rats in the control group inhaled carrier gas(1 L/min air +1 L/min O2). In addition, 14- and 21-day-old rats were pretreated with capsazepine, followed by inhalation of 1.5% and 2.6% sevoflurane or the carrier gas. The expression of TRPV1 in lung tissues was detected by Western blotting, whereas the expressions of NKA, NKB, CGRP, and SP in the trachea were detected by immunohistochemistry. KEY FINDINGS: After inhalation of 1.5% sevoflurane, the expression of TRPV1 in the lung tissues of 14- and 21-day-old rats was significantly increased compared with that in the control group, which was antagonized by capsazepine pretreatment. Moreover, inhalation of 1.5% sevoflurane markedly increased the expressions of NKA, NKB, CGRP, and SP in the trachea of 21-day-old rats and of NKB, CGRP, and SP in the trachea of 14-day-old rats. The expressions of these molecules were antagonized by capsazepine pretreatment. Conversely, inhalation of 2.6% sevoflurane decreased the expressions of NKA and NKB in the trachea of 42-day-old rats. SIGNIFICANCE: Sevoflurane did not upregulate the expression of TRPV1 in the airways of late-developing rats. This anesthetic may have a two-way effect on airways, resulting in considerable effects in pediatric clinical anesthesia management.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Sevoflurano/administração & dosagem , Canais de Cátion TRPV/metabolismo , Traqueia/metabolismo , Administração por Inalação , Fatores Etários , Animais , Gasometria , Peso Corporal/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Relação Dose-Resposta a Droga , Neurocinina A/metabolismo , Neurocinina B/metabolismo , Ratos , Ratos Sprague-Dawley , Respiração/efeitos dos fármacos , Substância P/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L873-L887, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32160007

RESUMO

Tenacious mucus produced by tracheal and bronchial submucosal glands is a defining feature of several airway diseases, including cystic fibrosis (CF). Airway acidification as a driving force of CF airway pathology has been controversial. Here we tested the hypothesis that transient airway acidification produces pathologic mucus and impairs mucociliary transport. We studied pigs challenged with intra-airway acid. Acid had a minimal effect on mucus properties under basal conditions. However, cholinergic stimulation in acid-challenged pigs revealed retention of mucin 5B (MUC5B) in the submucosal glands, decreased concentrations of MUC5B in the lung lavage fluid, and airway obstruction. To more closely mimic a CF-like environment, we also examined mucus secretion and transport following cholinergic stimulation under diminished bicarbonate and chloride transport conditions ex vivo. Under these conditions, airways from acid-challenged pigs displayed extensive mucus films and decreased mucociliary transport. Pretreatment with diminazene aceturate, a small molecule with ability to inhibit acid detection through blockade of the acid-sensing ion channel (ASIC) at the doses provided, did not prevent acid-induced pathologic mucus or transport defects but did mitigate airway obstruction. These findings suggest that transient airway acidification early in life has significant impacts on mucus secretion and transport properties. Furthermore, they highlight diminazene aceturate as an agent that might be beneficial in alleviating airway obstruction.


Assuntos
Ácido Acético/administração & dosagem , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/genética , Obstrução das Vias Respiratórias/induzido quimicamente , Fibrose Cística/induzido quimicamente , Diminazena/análogos & derivados , Canais Iônicos Sensíveis a Ácido/metabolismo , Obstrução das Vias Respiratórias/tratamento farmacológico , Obstrução das Vias Respiratórias/metabolismo , Obstrução das Vias Respiratórias/patologia , Animais , Animais Recém-Nascidos , Bicarbonatos/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Líquido da Lavagem Broncoalveolar/química , Cloretos/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Diminazena/farmacologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Masculino , Mucina-5AC/genética , Mucina-5AC/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , Depuração Mucociliar/efeitos dos fármacos , Muco/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Suínos , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/patologia
15.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178446

RESUMO

In Ts1Rhr, a Down syndrome model mouse, the airway ciliary beatings are impaired; that is, decreases in ciliary beat frequency (CBF) and ciliary bend angle (CBA, an index of ciliary beat amplitude)). A resumption to two copies of the Pcp4 gene on the Ts1Rhr trisomic segment (Ts1Rhr:Pcp4+/+/-) rescues the decreases in CBF and CBA that occur in Ts1Rhr. In airway cilia, upon stimulation with procaterol (a ß2-agonist), the CBF increase is slower over the time course than the CBA increase because of cAMP degradation by Ca2+/calmodulin-dependent phosphodiesterase 1 (PDE1) existing in the metabolon regulating CBF. In Ts1Rhr, procaterol-stimulated CBF increase was much slower over the time course than in the wild-type mouse (Wt) or Ts1Rhr:Pcp4+/+/-. However, in the presence of 8MmIBMX (8-methoxymethyl isobutylmethyl xanthine, an inhibitor of PDE1) or calmidazolium (an inhibitor of calmodulin), in both Wt and Ts1Rhr, procaterol stimulates CBF and CBA increases over a similar time course. Measurements of cAMP revealed that the cAMP contents were lower in Ts1Rhr than in Wt or in Ts1Rhr:Pcp4+/+/-, suggesting the activation of PDE1A that is present in Ts1Rhr airway cilia. Measurements of the intracellular Ca2+ concentration ([Ca2+]i) in airway ciliary cells revealed that temperature (increasing from 25 to 37 °C) or 4αPDD (a selective transient receptor potential vanilloid 4 (TRPV4) agonist) stimulates a larger [Ca2+]i increase in Ts1Rhr than in Wt or Ts1Rhr:Pcp4+/+/-. In airway ciliary cells of Ts1Rhr, Pcp4-dose dependent activation of TRPV4 appears to induce an increase in the basal [Ca2+]i. In early embryonic day mice, a basal [Ca2+]i increased by PCP4 expressed may affect axonemal regulatory complexes regulated by the Ca2+-signal in Ts1Rhr, leading to a decrease in the basal CBF and CBA of airway cilia.


Assuntos
Cálcio/metabolismo , Cílios/metabolismo , Síndrome de Down/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Calmodulina/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Cátion TRPV/metabolismo , Traqueia/metabolismo
16.
Pharm Biol ; 58(1): 257-264, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32208946

RESUMO

Context: Curcumin, the active component of Curcuma longa L. (Zingiberaceae), exhibits a wide variety of biological activities including vasodilation and anti-inflammation.Objective: The relaxant effect of curcumin in tracheal smooth muscle (TSM) was not examined so far, thus, this study was designed to assess the relaxant effect of curcumin on rat TSM and examine the underlying mechanism(s) responsible for this effect.Materials and methods: TSM was contracted by KCl (60 mM) or methacholine (10 µM), and cumulative concentrations of curcumin (12.5, 25, 50, and 100 mg/mL) or theophylline (0.2, 0.4, 0.6, and 0.8 mM, as positive control) were added to organ bath. The relaxant effect of curcumin was examined in non-incubated or incubated tissues with atropine (1 µM), chlorpheniramine (1 µM), indomethacin (1 µM), and papaverine (100 µM).Results: In non-incubated TSM, curcumin showed significant relaxant effects on KCl-induced contraction in a concentration-dependent manner (p < 0.001 for all concentrations). The relaxant effects of curcumin 12.5, 25, and 50 mg/mL were significantly lower in atropine-incubated tissue compared to non-incubated TSM (p < 0.05 to p < 0.001). A significant difference was observed in EC50 between atropine-incubated (48.10 ± 2.55) and non-incubated (41.65 ± 1.81) tissues (p < 0.05). Theophylline showed a significant relaxant effect on both KCl and methacholine-induced contraction in a concentration-dependent manner (p < 0.001 for all cases).Conclusions: The results indicated a relatively potent relaxant effect of curcumin on TSM, which was less marked than the effect of theophylline. Calcium channel blocking and/or potassium channel opening properties of curcumin may be responsible for TSM relaxation.


Assuntos
Canais de Cálcio/metabolismo , Curcumina/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Canais de Potássio/metabolismo , Traqueia/efeitos dos fármacos , Animais , Curcuma/química , Curcumina/isolamento & purificação , Relação Dose-Resposta a Droga , Técnicas In Vitro , Masculino , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Ratos Wistar , Traqueia/metabolismo , Traqueia/fisiopatologia
17.
Proc Natl Acad Sci U S A ; 117(8): 4252-4261, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32041884

RESUMO

The diversity in the organization of the tracheal system is one of the drivers of insect evolutionary success; however, the genetic mechanisms responsible are yet to be elucidated. Here, we highlight the advantages of utilizing hemimetabolous insects, such as the milkweed bug Oncopeltus fasciatus, in which the final adult tracheal patterning can be directly inferred by examining its blueprint in embryos. By reporting the expression patterns, functions, and Hox gene regulation of trachealess (trh), ventral veinless (vvl), and cut (ct), key genes involved in tracheal development, this study provides important insights. First, Hox genes function as activators, modifiers, and suppressors of trh expression, which in turn results in a difference between the thoracic and abdominal tracheal organization. Second, spiracle morphogenesis requires the input of both trh and ct, where ct is positively regulated by trh As Hox genes regulate trh, we can now mechanistically explain the previous observations of their effects on spiracle formation. Third, the default state of vvl expression in the thorax, in the absence of Hox gene expression, features three lateral cell clusters connected to ducts. Fourth, the exocrine scent glands express vvl and are regulated by Hox genes. These results extend previous findings [Sánchez-Higueras et al., 2014], suggesting that the exocrine glands, similar to the endocrine, develop from the same primordia that give rise to the trachea. The presence of such versatile primordia in the miracrustacean ancestor could account for the similar gene networks found in the glandular and respiratory organs of both insects and crustaceans.


Assuntos
Insetos/crescimento & desenvolvimento , Insetos/genética , Animais , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/metabolismo , Morfogênese , Traqueia/crescimento & desenvolvimento , Traqueia/metabolismo
18.
Int J Mol Sci ; 21(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102323

RESUMO

Translational readthrough (TRT) of aquaporin-4 (AQP4) has remarkably expanded the importance of this new post-transcriptional mechanism, as well as the regulation potential of AQP4. The TRT isoform of AQP4, named AQP4ex, is central for both AQP4 polarization and water channel activity in the central nervous system (CNS). Here we evaluate the relevance of the TRT mechanism by analyzing whether AQP4ex is also expressed in peripheral tissues and whether the expression of AQP4ex is necessary for its polarized expression as it occurs in perivascular astrocyte processes. To this purpose, AQP4ex null mice were used, and analysis was performed by immunolocalization and immunoblot. The results demonstrate that AQP4ex is expressed in kidney, stomach, trachea and skeletal muscle with the same localization pattern as the canonical AQP4 isoforms. AQP4ex protein levels vary from 6% to about 13% of the total AQP4 protein levels in peripheral tissues. Immunogold electron microscopy experiments demonstrated the localization of AQP4ex at the astrocytic endfeet, and experiments conducted on AQP4ex null mice CNS confirmed that the expression of AQP4ex is necessary for anchoring of the perivascular AQP4. Without the readthrough isoform, AQP4 assemblies are mis-localized, being uniformly distributed on the astrocyte processes facing the neuropile. No alteration of AQP4 polarization was found in AQP4ex null kidney, stomach, trachea or skeletal muscle, suggesting that AQP4ex does not have a role for proper membrane localization of AQP4 in peripheral tissues. We conclude that a dual role for AQP4ex is limited to the CNS.


Assuntos
Aquaporina 4/genética , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica , Animais , Aquaporina 4/metabolismo , Astrócitos/ultraestrutura , Sistema Nervoso Central/ultraestrutura , Immunoblotting , Rim/metabolismo , Camundongos , Camundongos Knockout , Microscopia Imunoeletrônica , Músculo Esquelético/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estômago/química , Traqueia/metabolismo
19.
Am J Respir Crit Care Med ; 201(8): 946-954, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31898911

RESUMO

Rationale: Enhancing non-CFTR (cystic fibrosis transmembrane conductance regulator)-mediated anion secretion is an attractive therapeutic approach for the treatment of cystic fibrosis (CF) and other mucoobstructive diseases.Objectives: To determine the effects of TMEM16A potentiation on epithelial fluid secretion and mucociliary clearance.Methods: The effects of a novel low-molecular-weight TMEM16A potentiator (ETX001) were evaluated in human cell and animal models of airway epithelial function and mucus transport.Measurements and Main Results: Potentiating the activity of TMEM16A with ETX001 increased the Ca2+-activated Cl- channel activity and anion secretion in human bronchial epithelial (HBE) cells from patients with CF without impacting calcium signaling. ETX001 rapidly increased fluid secretion and airway surface liquid height in CF-HBE cells under both static conditions and conditions designed to mimic the shear stress associated with tidal breathing. In ovine models of mucus clearance (tracheal mucus velocity and mucociliary clearance), inhaled ETX001 was able to accelerate clearance both when CFTR function was reduced by administration of a pharmacological blocker and when CFTR was fully functional.Conclusions: Enhancing the activity of TMEM16A increases epithelial fluid secretion and enhances mucus clearance independent of CFTR function. TMEM16A potentiation is a novel approach for the treatment of patients with CF and non-CF mucoobstructive diseases.


Assuntos
Anoctamina-1/efeitos dos fármacos , Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Depuração Mucociliar/efeitos dos fármacos , Muco/efeitos dos fármacos , Administração por Inalação , Animais , Anoctamina-1/metabolismo , Brônquios/citologia , Sinalização do Cálcio/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Técnicas de Patch-Clamp , Respiração , Mucosa Respiratória/citologia , Ovinos , Traqueia/efeitos dos fármacos , Traqueia/metabolismo
20.
FASEB J ; 34(1): 316-332, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914675

RESUMO

For protection from inhaled pathogens many strategies have evolved in the airways such as mucociliary clearance and cough. We have previously shown that protective respiratory reflexes to locally released bacterial bitter "taste" substances are most probably initiated by tracheal brush cells (BC). Our single-cell RNA-seq analysis of murine BC revealed high expression levels of cholinergic and bitter taste signaling transcripts (Tas2r108, Gnat3, Trpm5). We directly demonstrate the secretion of acetylcholine (ACh) from BC upon stimulation with the Tas2R agonist denatonium. Inhibition of the taste transduction cascade abolished the increase in [Ca2+]i in BC and subsequent ACh-release. ACh-release is regulated in an autocrine manner. While the muscarinic ACh-receptors M3R and M1R are activating, M2R is inhibitory. Paracrine effects of ACh released in response to denatonium included increased [Ca2+]i in ciliated cells. Stimulation by denatonium or with Pseudomonas quinolone signaling molecules led to an increase in mucociliary clearance in explanted tracheae that was Trpm5- and M3R-mediated. We show that ACh-release from BC via the bitter taste cascade leads to immediate paracrine protective responses that can be boosted in an autocrine manner. This mechanism represents the initial step for the activation of innate immune responses against pathogens in the airways.


Assuntos
Acetilcolina/metabolismo , Comunicação Autócrina , Cálcio/metabolismo , Aromatizantes/farmacologia , Comunicação Parácrina , Paladar/fisiologia , Traqueia/metabolismo , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/metabolismo , Colina O-Acetiltransferase/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Muscarínicos/fisiologia , Transdução de Sinais , Análise de Célula Única , Canais de Cátion TRPM/fisiologia , Paladar/efeitos dos fármacos , Traqueia/efeitos dos fármacos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...