Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.414
Filtrar
1.
Cells ; 12(9)2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174731

RESUMO

Spinal cord injury (SCI) is characterized by a cascade of events that lead to sensory and motor disabilities. To date, this condition is irreversible, and no cure exists. To improve myelin repair and limit secondary degeneration, we developed a multitherapy based on nanomedicines (NMeds) loaded with the promyelinating agent triiodothyronine (T3), used in combination with systemic ibuprofen and mouse nerve growth factor (mNGF). Poly-L-lactic-co-glycolic acid (PLGA) NMeds were optimized and loaded with T3 to promote sustained release. In vitro experiments confirmed the efficacy of T3-NMeds to differentiate oligodendrocyte precursor cells. In vivo rat experiments were performed in contusion SCI to explore the NMed biodistribution and efficacy of combo drugs at short- and long-term post-lesion. A strong anti-inflammatory effect was observed in the short term with a reduction of type M1 microglia and glutamate levels, but with a subsequent increase of TREM2. In the long term, an improvement of myelination in NG2-IR, an increase in MBP content, and a reduction of the demyelination area were observed. These data demonstrated that NMeds can successfully be used to obtain more controlled local drug delivery and that this multiple treatment could be effective in improving the outcome of SCIs.


Assuntos
Remielinização , Traumatismos da Medula Espinal , Ratos , Camundongos , Animais , Remielinização/fisiologia , Distribuição Tecidual , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Bainha de Mielina/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Glicoproteínas de Membrana/farmacologia , Receptores Imunológicos
2.
Bull Exp Biol Med ; 174(6): 810-815, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37160795

RESUMO

We studied the neuroprotective effect of local application of methylprednisolone in combination with a block copolymer after contusion spinal cord injury in rats. Histological analysis of the spinal cord showed that delivery of a complex of methylprednisolone with a block copolymer reduced the volume of white and gray matter lesions. An increase in the amplitude of the evoked response of the gastrocnemius muscle was observed during epidural stimulation of the spinal cord 6 h after the injury. The maximum amplitude of the muscle response was greater in the group with local delivery of the methylprednisolone complex with the polymer 72 h after the injury. The obtained results demonstrate the neuroprotective effect of the local administration of the complex and allow to make positive prognosis for the recovery of the sensorimotor functions in rats.


Assuntos
Contusões , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Ratos , Animais , Metilprednisolona/farmacologia , Metilprednisolona/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia , Contusões/tratamento farmacológico
3.
Eur Rev Med Pharmacol Sci ; 27(9): 3892-3905, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37203813

RESUMO

OBJECTIVE: One of the most pronounced phenomena of spinal cord injury (SCI) pathology is various changes caused by oxidative stress due to secondary damage. In recent years, it has been understood that valproic acid (VPA) has neuroprotective properties other than its clinical effect. The aim of this study is to investigate whether there is a change in antioxidant activity and trace the element level due to SCI-induced secondary damage, and to examine whether VPA has an effect on this change. MATERIALS AND METHODS: Experimentally, spinal damage was induced in a total of sixteen rats by compressing the infrarenal and iliac bifurcation parts of the aorta for 45 minutes and these rats were equally divided into SCI (control) and SCI + VPA groups. The treatment group was injected with VPA (300 mg/kg) intraperitoneally once following SCI. In addition, the motor neurological functions of both groups after SCI were evaluated with the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and Rivlin's angle of incline test. The spinal cord tissues of both groups were homogenized and the supernatants were separated for biochemical analysis. RESULTS: The results showed that SCI significantly reduced catalase (CAT), glutathione peroxidase (GPx), total antioxidant status (TAS), magnesium (Mg), zinc (Zn) and selenium (Se) levels and increased total oxidative status (TOS), oxidative stress indices (OSI), chromium (Cr), iron (Fe), and copper (Cu) in damaged spinal cord tissue. In particular, the administration of VPA prior to the significant increase in the effect of SCI-secondary damage turned these negative findings into positive. CONCLUSIONS: Our findings show that the spinal cord tissue damaged during SCI is protected against oxidative damage thanks to the neuroprotective property of VPA. Furthermore, it is an important finding that this neuroprotective mechanism contributes to the maintenance of the level of essential elements and antioxidant activity against SCI-induced secondary damage.


Assuntos
Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Oligoelementos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Oxidantes , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Fármacos Neuroprotetores/farmacologia
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108324

RESUMO

Edema after spinal cord injury (SCI) is one of the first observations after the primary injury and lasts for few days after trauma. It has serious consequences on the affected tissue and can aggravate the initial devastating condition. To date, the mechanisms of the water content increase after SCI are not fully understood. Edema formation results in a combination of interdependent factors related to mechanical damage after the initial trauma progressing, along with the subacute and acute phases of the secondary lesion. These factors include mechanical disruption and subsequent inflammatory permeabilization of the blood spinal cord barrier, increase in the capillary permeability, deregulation in the hydrostatic pressure, electrolyte-imbalanced membranes and water uptake in the cells. Previous research has attempted to characterize edema formation by focusing mainly on brain swelling. The purpose of this review is to summarize the current understanding of the differences in edema formation in the spinal cord and brain, and to highlight the importance of elucidating the specific mechanisms of edema formation after SCI. Additionally, it outlines findings on the spatiotemporal evolution of edema after spinal cord lesion and provides a general overview of prospective treatment strategies by focusing on insights to prevent edema formation after SCI.


Assuntos
Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Encéfalo/patologia , Permeabilidade Capilar/fisiologia , Edema/patologia
5.
Clin Imaging ; 99: 67-72, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119564

RESUMO

PURPOSE: Cervical spinal cord injury can be a particularly devastating sequela of trauma. The purpose of this study was to describe the imaging findings of adult patients with cervical spinal cord injury without computed tomography evidence of trauma (SCIWOCTET). METHODS: All adult patients (≥18 years) treated for acute cervical SCIWOCTET at a single Level I adult trauma center over an eight-year period were retrospectively identified. CT imaging was evaluated for degenerative changes narrowing the midsagittal canal diameter (SCD) of the cervical spine and relative congenital cervical stenosis (CCS; congenital narrowing of the SCD <13 mm). Magnetic resonance imaging (MRI) scans were evaluated for signal intensity change (SIC) suspicious for cord edema/contusion as well as ligamentous injury, hemorrhage, and epidural hematoma. RESULTS: Ninety-six patients with cervical SCIWOCTET met inclusion criteria. The most common mechanism of injury was fall from standing (47.9%). On CT, 86 patients (89.6%) had CCS. Degenerative changes were present in 95 patients (99.0%). In 98/99 patients (99.0%), the point of narrowest cervical SCD was ≤8 mm. On MRI, 79 patients (82.3%) demonstrated signal intensity change (SIC) indicative of cord edema/contusion, while 16 (16.7%) had ligamentous injury. Intramedullary cord hemorrhage was seen in two patients (2.1%) and epidural hematoma in three (3.1%). CONCLUSION: Degenerative changes or CCS may narrow the minimum cervical SCD beyond the threshold at which low-energy trauma results in C-SCI. Adult patients with cervical spinal stenosis, whether congenital and/or degenerative, and neurologic findings referable to the cervical spine should be assessed for C-SCI.


Assuntos
Medula Cervical , Contusões , Lesões dos Tecidos Moles , Traumatismos da Medula Espinal , Humanos , Adulto , Estudos Retrospectivos , Medula Cervical/diagnóstico por imagem , Medula Cervical/lesões , Medula Cervical/patologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/patologia , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia , Hematoma
6.
Spinal Cord ; 61(5): 307-312, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37005475

RESUMO

STUDY DESIGN: A retrospective study. OBJECTIVES: To assess the validity and reliability of cervical sagittal alignment parameters from multipositional magnetic resonance imaging (MRI) and dynamic cervical radiography. SETTING: Hospital in Suzhou, China. METHODS: Patients who underwent both multipositional MRI and dynamic plain radiography of the cervical spine within a 2-week interval between January 2013 and October 2021 were retrospectively enrolled in this study. The C2-7 angle, C2-7 cervical sagittal vertical axis (C2-7 SVA), T1 slope (T1S), cervical tilt, cranial tilt, and K-line tilt were measured in three different positions (neutral, flexion, and extension) with multipositional MRI and dynamic radiography. Inter- and intraobserver reliabilities were assessed by intraclass correlation coefficients (ICCs). Pearson correlation coefficients were used for statistical analyses. RESULTS: A total of 65 (30 males and 35 females) patients with a mean age of 53.4 years (range 23-69 years) were retrospectively enrolled in this study. Significant positive correlations were noted regarding all parameters between the plain radiographs and multipositional MRI images. Inter- and intraobserver reliabilities were excellent for all cervical sagittal alignment parameters measured in the two imaging modalities. All cervical sagittal parameters had significant positive correlations with those from multipositional MRI in all three positions (p < 0.05). Pearson correlation coefficients demonstrated moderate and strong correlations between the two examinations. CONCLUSIONS: Cervical sagittal alignment parameters measured on multipositional MRI could reliably substitute for those measured on plain radiographs. Multipositional MRI is a valuable, radiation-free alternative for diagnostic evaluation in degenerative cervical diseases.


Assuntos
Traumatismos da Medula Espinal , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Reprodutibilidade dos Testes , Traumatismos da Medula Espinal/patologia , Radiografia , Imageamento por Ressonância Magnética/métodos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia
7.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108209

RESUMO

Spinal cord injury (SCI) is a disabling neurological condition coursing with serious multisystem affections and morbidities. Changes in immune cell compartments have been consistently reported in previous works, representing a critical point of study for understanding the pathophysiology and progression of SCI from acute to chronic stages. Some relevant variations in circulating T cells have been noticed in patients with chronic SCI, although the number, distribution, and function of these populations remain to be fully elucidated. Likewise, the characterization of specific T cell subpopulations and their related cytokine production can aid in understanding the immunopathological role of T cells in SCI progression. In this sense, the objective of the present study was to analyze and quantify the total number of different cytokine-producers T cells in the serum of patients with chronic SCI (n = 105) in comparison to healthy controls (n = 38) by polychromatic flow cytometry. Having this goal, we studied CD4 and CD8 lymphocytes as well as naïve, effector, and effector/central memory subpopulations. SCI patients were classified according to the duration of the lesion in chronic SCI with a short period of evolution (SCI-SP) (comprised between 1 and 5 years since initial injury), early chronic phase (SCI-ECP) (between 5 and 15 years since initial injury) and late-chronic phase (SCI-LCP) (>15 years since initial injury). Our results show that patients with chronic SCI exhibited an altered immune profile of cytokine-producer T cells, including CD4/CD8 naïve, effector, and memory subpopulations in comparison to HC. In particular, IL-10 and IL-9 production seems to be importantly altered, especially in patients with SCI-LCP, whereas changes in IL-17, TNF-α, and IFN-γ T cell populations have also been reported in this and other chronic SCI groups. In conclusion, our study demonstrates an altered profile of cytokine-producer T cells in patients with chronic SCI, with marked changes throughout the course of the disease. In more detail, we have observed significant variations in cytokine production by circulating naive, effector, and effector/central memory CD4 and CD8 T cells. Future studies should be directed to explore the possible clinical consequences of these changes or develop additional translational approaches in these groups of patients.


Assuntos
Linfócitos T CD4-Positivos , Traumatismos da Medula Espinal , Humanos , Citocinas , Linfócitos T CD8-Positivos , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa
8.
Artigo em Inglês | MEDLINE | ID: mdl-37019668

RESUMO

BACKGROUND AND OBJECTIVES: Spinal cord injury (SCI) disrupts the fine-balanced interaction between the CNS and immune system and can cause maladaptive aberrant immune responses. The study examines emerging autoantibody synthesis after SCI with binding to conformational spinal cord epitopes and surface peptides located on the intact neuronal membrane. METHODS: This is a prospective longitudinal cohort study conducted in acute care and inpatient rehabilitation centers in conjunction with a neuropathologic case-control study in archival tissue samples ranging from acute injury (baseline) to several months thereafter (follow-up). In the cohort study, serum autoantibody binding was examined in a blinded manner using tissue-based assays (TBAs) and dorsal root ganglia (DRG) neuronal cultures. Groups with traumatic motor complete SCI vs motor incomplete SCI vs isolated vertebral fracture without SCI (controls) were compared. In the neuropathologic study, B cell infiltration and antibody synthesis at the spinal lesion site were examined by comparing SCI with neuropathologically unaltered cord tissue. In addition, the CSF in an individual patient was explored. RESULTS: Emerging autoantibody binding in both TBA and DRG assessments was restricted to an SCI patient subpopulation only (16%, 9/55 sera) while being absent in vertebral fracture controls (0%, 0/19 sera). Autoantibody binding to the spinal cord characteristically detected the substantia gelatinosa, a less-myelinated region of high synaptic density involved in sensory-motor integration and pain processing. Autoantibody binding was most frequent after motor complete SCI (grade American Spinal Injury Association impairment scale A/B, 22%, 8/37 sera) and was associated with neuropathic pain medication. In conjunction, the neuropathologic study demonstrated lesional spinal infiltration of B cells (CD20, CD79a) in 27% (6/22) of patients with SCI, the presence of plasma cells (CD138) in 9% (2/22). IgG and IgM antibody syntheses colocalized to areas of activated complement (C9neo) deposition. Longitudinal CSF analysis of an additional single patient demonstrated de novo (IgM) intrathecal antibody synthesis emerging with late reopening of the blood-spinal cord barrier. DISCUSSION: This study provides immunologic, neurobiological, and neuropathologic proof-of-principle for an antibody-mediated autoimmunity response emerging approximately 3 weeks after SCI in a patient subpopulation with a high demand of neuropathic pain medication. Emerging autoimmunity directed against specific spinal cord and neuronal epitopes suggests the existence of paratraumatic CNS autoimmune syndromes.


Assuntos
Neuralgia , Traumatismos da Medula Espinal , Fraturas da Coluna Vertebral , Humanos , Estudos Longitudinais , Estudos de Coortes , Estudos Prospectivos , Estudos de Casos e Controles , Fraturas da Coluna Vertebral/complicações , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/reabilitação , Neuralgia/etiologia , Autoanticorpos , Epitopos
9.
Matrix Biol ; 118: 69-91, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36918086

RESUMO

Fibrotic scars appear after spinal cord injury (SCI) and are mainly composed of fibroblasts and excess extracellular matrix (ECM), including different types of collagen. The temporal and spatial distribution and role of excess collagens and ECM after SCI are not yet fully understood. Here, we identified that the procollagen type I C-terminal propeptide (PICP), a marker of collagen type I deposition, and bone morphogenetic protein 1 (BMP1), a secreted procollagen c-proteinase (PCP) for type I collagen maturation, were significantly elevatedin cerebrospinal fluid of patients with SCI compared with healthy controls, and were associated with spinal cord compression and neurological symptoms. We revealed the deposition of type I collagen in the area damaged by SCI in mice and confirmed that BMP1 was the only expressed PCP and induced collagen deposition. Furthermore, transforming growth factor-ß (TGF-ß), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) can activate the expression of BMP1. However, inhibition of BMP1 at the acute phase eliminated fibrotic scars in the damaged area and inhibited activation and enrichment of astrocytes, which made the damage difficult to repair and increased hematoma. Unexpectedly, knockdown of Bmp1 by adeno-associated virus or the inhibition of BMP1 biological function by specific inhibitors and monoclonal antibodies at different time points after injury led to distinct therapeutic effects. Only delayed inhibition of BMP1 improved axonal regeneration and myelin repair at the subacute stage post-injury, and led to the recovery of motor function, suggesting that scarring had a dual effect. Early inhibition of the scarring was not conducive to limiting inflammation, while excessive scar formation inhibited the growth of axons. After SCI, the collagen deposition indicators increased in both human cerebrospinal fluid and mouse spinal cord. Therefore, suppression of BMP1 during the subacute phase improves nerve function after SCI and is a potential target for scar reduction.


Assuntos
Colágeno Tipo I , Traumatismos da Medula Espinal , Humanos , Camundongos , Animais , Proteína Morfogenética Óssea 1/genética , Proteína Morfogenética Óssea 1/metabolismo , Colágeno Tipo I/metabolismo , Cicatriz/patologia , Colágeno/genética , Colágeno/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Fibrose
10.
Neuroimage ; 271: 120046, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36948280

RESUMO

Short MRI acquisition time, high signal-to-noise ratio, and high reliability are crucial for image quality when scanning healthy volunteers and patients. Cross-sectional cervical cord area (CSA) has been suggested as a marker of neurodegeneration and potential outcome measure in clinical trials and is conventionally measured on T1-weigthed 3D Magnetization Prepared Rapid Acquisition Gradient-Echo (MPRAGE) images. This study aims to reduce the acquisition time for the comprehensive assessment of the spinal cord, which is typically based on MPRAGE for morphometry and multi-parameter mapping (MPM) for microstructure. The MPRAGE is replaced by a synthetic T1-w MRI (synT1-w) estimated from the MPM, in order to measure CSA. SynT1-w images were reconstructed using the MPRAGE signal equation based on quantitative maps of proton density (PD), longitudinal (R1) and effective transverse (R2*) relaxation rates. The reliability of CSA measurements from synT1-w images was determined within a multi-center test-retest study format and validated against acquired MPRAGE scans by assessing the agreement between both methods. The response to pathological changes was tested by longitudinally measuring spinal cord atrophy following spinal cord injury (SCI) for synT1-w and MPRAGE using linear mixed effect models. CSA measurements based on the synT1-w MRI showed high intra-site (Coefficient of variation [CoV]: 1.43% to 2.71%) and inter-site repeatability (CoV: 2.90% to 5.76%), and only a minor deviation of -1.65 mm2 compared to MPRAGE. Crucially, by assessing atrophy rates and by comparing SCI patients with healthy controls longitudinally, differences between synT1-w and MPRAGE were negligible. These results demonstrate that reliable estimates of CSA can be obtained from synT1-w images, thereby reducing scan time significantly.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Humanos , Reprodutibilidade dos Testes , Estudos Transversais , Medula Espinal/patologia , Imageamento por Ressonância Magnética/métodos , Traumatismos da Medula Espinal/patologia , Atrofia/patologia
11.
Front Immunol ; 14: 1119591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969234

RESUMO

Spinal cord injury (SCI) and spinal cord tumor are devastating events causing structural and functional impairment of the spinal cord and resulting in high morbidity and mortality; these lead to a psychological burden and financial pressure on the patient. These spinal cord damages likely disrupt sensory, motor, and autonomic functions. Unfortunately, the optimal treatment of and spinal cord tumors is limited, and the molecular mechanisms underlying these disorders are unclear. The role of the inflammasome in neuroinflammation in diverse diseases is becoming increasingly important. The inflammasome is an intracellular multiprotein complex and participates in the activation of caspase-1 and the secretion of pro-inflammatory cytokines such as interleukin (IL)-1ß and IL-18. The inflammasome in the spinal cord is involved in the stimulation of immune-inflammatory responses through the release of pro-inflammatory cytokines, thereby mediating further spinal cord damage. In this review, we highlight the role of inflammasomes in SCI and spinal cord tumors. Targeting inflammasomes is a promising therapeutic strategy for the treatment of SCI and spinal cord tumors.


Assuntos
Traumatismos da Medula Espinal , Neoplasias da Medula Espinal , Humanos , Inflamassomos , Traumatismos da Medula Espinal/patologia , Citocinas/uso terapêutico
12.
Adv Healthc Mater ; 12(11): e2203391, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36877863

RESUMO

Spinal cord injury (SCI) is one of the most common causes of death and disability. The effective modulation of complicated microenvironment, regeneration of injured spinal cord tissue, and the functional recovery after SCI are still clinical challenges. Recently, macrophages-derived exosomes have shown great potential for various diseases due to their inflammation-targeting property. However, further modifications are needed to endow exosomes with the neural regenerative potential for SCI recovery. In the current study, a novel nanoagent (MEXI) is designed for SCI treatment by conjugating bioactive IKVAV peptides to the surface of M2 macrophages-derived exosomes via an easy and rapid click chemistry method. In vitro, MEXI inhibits the inflammation by reprograming macrophages and promotes neuronal differentiation of neural stem cells. In vivo, engineered exosomes target the injured site of the spinal cord after tail vein injection. Furthermore, histological analysis reveals that MEXI improves motor functional recovery of SCI mice by reducing infiltration of macrophages, downregulating pro-inflammatory factors, and improving the regeneration of injured nervous tissues. Taken together, this study provides strong evidence for the significance of MEXI in SCI recovery.


Assuntos
Exossomos , Traumatismos da Medula Espinal , Camundongos , Animais , Química Click , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Macrófagos/patologia , Medula Espinal/patologia , Inflamação
13.
PLoS One ; 18(3): e0281045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36897852

RESUMO

Reactive oxygen species (ROS) are a contributing factor to impaired function and pathology after spinal cord injury (SCI). The NADPH oxidase (NOX) enzyme is a key source of ROS; there are several NOX family members, including NOX2 and NOX4, that may play a role in ROS production after SCI. Previously, we showed that a temporary inhibition of NOX2 by intrathecal administration of gp91ds-tat immediately after injury improved recovery in a mouse SCI model. However, chronic inflammation was not affected by this single acute treatment, and other NOX family members were not assessed. Therefore, we aimed to explore the effect of genetic knockout (KO) of NOX2 or acute inhibition of NOX4 with GKT137831. A moderate SCI contusion injury was performed in 3 month old NOX2 KO and wild-type (WT) mice, who received no treatment or GKT137831/vehicle 30 minutes post-injury. Motor function was assessed using the Basso Mouse Scale (BMS), followed by evaluation of inflammation and oxidative stress markers. NOX2 KO mice, but not GKT137831 treated mice, demonstrated significantly improved BMS scores at 7, 14, and 28 days post injury (DPI) in comparison to WT mice. However, both NOX2 KO and GKT137831 significantly reduced ROS production and oxidative stress markers. Furthermore, a shift in microglial activation toward a more neuroprotective, anti-inflammatory state was observed in KO mice at 7 DPI and a reduction of microglial markers at 28 days. While acute alterations in inflammation were noted with GKT137831 administration, this was not sustained through 28 days. In vitro analysis also showed that while GKT137831 reduced ROS production by microglia, it did not translate to changes in pro-inflammatory marker expression within these cells. These data demonstrate that NOX2 and NOX4 play a role in post-injury ROS, but a single dose of NOX4 inhibitor fails to enhance long-term recovery.


Assuntos
Roedores , Traumatismos da Medula Espinal , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidases/metabolismo , Traumatismos da Medula Espinal/patologia , Camundongos Knockout , NADPH Oxidase 4/metabolismo
14.
Cells ; 12(6)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980193

RESUMO

Spinal cord injury (SCI) is a complex tissue injury resulting in permanent and degenerating damage to the central nervous system (CNS). Detrimental cellular processes occur after SCI, including axonal degeneration, neuronal loss, neuroinflammation, reactive gliosis, and scar formation. The glial scar border forms to segregate the neural lesion and isolate spreading inflammation, reactive oxygen species, and excitotoxicity at the injury epicenter to preserve surrounding healthy tissue. The scar border is a physicochemical barrier composed of elongated astrocytes, fibroblasts, and microglia secreting chondroitin sulfate proteoglycans, collogen, and the dense extra-cellular matrix. While this physiological response preserves viable neural tissue, it is also detrimental to regeneration. To overcome negative outcomes associated with scar formation, therapeutic strategies have been developed: the prevention of scar formation, the resolution of the developed scar, cell transplantation into the lesion, and endogenous cell reprogramming. This review focuses on cellular/molecular aspects of glial scar formation, and discusses advantages and disadvantages of strategies to promote regeneration after SCI.


Assuntos
Gliose , Traumatismos da Medula Espinal , Humanos , Gliose/patologia , Cicatriz/patologia , Traumatismos da Medula Espinal/patologia , Astrócitos/patologia , Regeneração Nervosa
15.
Cells ; 12(6)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36980272

RESUMO

Despite important advances in the pre-clinical animal studies investigating the neuroinhibitory microenvironment at the injury site, traumatic injury to the spinal cord remains a major problem with no concrete response. Here, we examined whether (1) intranasal (IN) administration of miR133b/Ago2 can reach the injury site and achieve a therapeutic effect and (2) NEO100-based formulation of miR133b/Ago2 can improve effectiveness. 24 h after a cervical contusion, C57BL6 female mice received IN delivery of miR133b/Ago2 or miR133b/Ago2/NEO100 for 3 days, one dose per day. The pharmacokinetics of miR133b in the spinal cord lesion was determined by RT-qPCR. The role of IN delivery of miR133b on motor function was assessed by the grip strength meter (GSM) and hanging tasks. The activity of miR133b at the lesion site was established by immunostaining of fibronectin 1 (FN1), a miR133b target. We found that IN delivery of miR133b/Ago2 (1) reaches the lesion scar and co-administration of miR133b with NEO100 facilitated the cellular uptake; (2) enhanced the motor function and addition of NEO100 potentiated this effect and (3) targeted FN1 expression at the lesion scar. Our results suggest a high efficacy of IN delivery of miR133b/Ago2 to the injured spinal cord that translates to improved healing with NEO100 further potentiating this effect.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Animais , Feminino , Camundongos , Administração Intranasal , Proteínas Argonautas/farmacologia , Proteínas Argonautas/uso terapêutico , Cicatriz/patologia , Contusões , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
16.
Pflugers Arch ; 475(5): 621-635, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869900

RESUMO

Aging is associated with muscle atrophy, and erosion and destruction of neuronal pathways in the spinal cord. The study aim was to assess the effect of swimming training (Sw) and L-arginine loaded chitosan nanoparticles (LA-CNPs) on the sensory and motor neuron population, autophagy marker LC3, total oxidant status/total antioxidant capacity, behavioural test, GABA and BDNF-TrkB pathway in the spinal cord of aging rats. The rats were randomized to five groups: young (8-weeks) control (n = 7), old control (n = 7), old Sw (n = 7), old LA-CNPs (n = 7) and old Sw + LA-CNPs (n = 7). Groups under LA-CNPs supplementation received 500 mg/kg/day. Sw groups performed a swimming exercise programme 5 days per week for 6 weeks. Upon the completion of the interventions the rats were euthanized and the spinal cord was fixed and frozen for histological assessment, IHC, and gene expression analysis. The old group had more atrophy in the spinal cord with higher changes in LC3 as an indicator of autophagy in the spinal cord compared to the young group (p < 0.0001). The old Sw + LA-CNPs group increased (improved) spinal cord GABA (p = 0.0187), BDNF (p = 0.0003), TrkB (p < 0.0001) gene expression, decreased autophagy marker LC3 protein (p < 0.0001), nerve atrophy and jumping/licking latency (p < 0.0001), improved sciatic functional index score and total oxidant status/total antioxidant capacity compared to the old group (p < 0.0001). In conclusion, swimming and LA-CNPs seems to ameliorate aging-induced neuron atrophy, autophagy marker LC3, oxidant-antioxidant status, functional restoration, GABA and BDNF-TrkB pathway in the spinal cord of aging rats. Our study provides experimental evidence for a possible positive role of swimming and L-arginine loaded chitosan nanoparticles to decrease complications of aging.


Assuntos
Quitosana , Traumatismos da Medula Espinal , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Quitosana/metabolismo , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Natação , Antioxidantes/metabolismo , Medula Espinal , Neurônios Motores/patologia , Atrofia/metabolismo , Atrofia/patologia , Autofagia , Arginina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
17.
Stem Cell Res Ther ; 14(1): 52, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959678

RESUMO

BACKGROUND: Endogenous neural stem cells (NSCs) are critical for the remyelination of axons following spinal cord injury (SCI). Cell-cell communication plays a key role in the regulation of the differentiation of NSCs. Astrocytes act as immune cells that encounter early inflammation, forming a glial barrier to prevent the spread of destructive inflammation following SCI. In addition, the cytokines released from astrocytes participate in the regulation of the differentiation of NSCs. The aim of this study was to investigate the effects of cytokines released from inflammation-stimulated astrocytes on the differentiation of NSCs following SCI and to explore the influence of these cytokines on NSC-NSC communication. RESULTS: Lipopolysaccharide stimulation of astrocytes increased bone morphogenetic protein 2 (BMP2) release, which not only promoted the differentiation of NSCs into astrocytes and inhibited axon remyelination in SCI lesions but also enriched miRNA-22-3p within extracellular vesicles derived from NSCs. These miRNA-22 molecules function as a feedback loop to promote NSC differentiation into oligodendrocytes and the remyelination of axons following SCI by targeting KDM3A. CONCLUSIONS: This study revealed that by releasing BMP2, astrocytes were able to regulate the differentiation of NSCs and NSC-NSC communication by enriching miRNA-22 within NSC-EVs, which in turn promoted the regeneration and remyelination of axons by targeting the KDM3A/TGF-beta axis and the recovery of neurological outcomes following SCI.


Assuntos
MicroRNAs , Células-Tronco Neurais , Remielinização , Traumatismos da Medula Espinal , Humanos , Astrócitos/metabolismo , Células-Tronco Neurais/metabolismo , Diferenciação Celular/fisiologia , Traumatismos da Medula Espinal/patologia , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo
18.
Eur J Neurol ; 30(5): 1443-1452, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36773324

RESUMO

BACKGROUND: It is unknown if different etiologies or lesion topographies influence central neuropathic pain (CNP) clinical manifestation. METHODS: We explored the symptom-somatosensory profile relationships in CNP patients with different types of lesions to the central nervous system to gain insight into CNP mechanisms. We compared the CNP profile through pain descriptors, standardized bedside examination, and quantitative sensory test in two different etiologies with segregated lesion locations: the brain, central poststroke pain (CPSP, n = 39), and the spinal cord central pain due to spinal cord injury (CPSCI, n = 40) in neuromyelitis optica. RESULTS: Results are expressed as median (25th to 75th percentiles). CPSP presented higher evoked and paroxysmal pain scores compared to CPSCI (p < 0.001), and lower cold thermal limen (5.6°C [0.0-12.9]) compared to CPSCI (20.0°C [4.2-22.9]; p = 0.004). CPSCI also had higher mechanical pain thresholds (784.5 mN [255.0-1078.0]) compared to CPSP (235.2 mN [81.4-1078.0], p = 0.006) and higher mechanical detection threshold compared to control areas (2.7 [1.5-6.2] vs. 1.0 [1.0-3.3], p = 0.007). Evoked pain scores negatively correlated with mechanical pain thresholds (r = -0.38, p < 0.001) and wind-up ratio (r = -0.57, p < 0.001). CONCLUSIONS: CNP of different etiologies may present different pain descriptors and somatosensory profiles, which is likely due to injury site differences within the neuroaxis. This information may help better design phenotype mechanism correlations and impact trial designs for the main etiologies of CNP, namely stroke and spinal cord lesions. This study provides evidence that topography may influence pain symptoms and sensory profile. The findings suggest that CNP mechanisms might vary according to pain etiology or lesion topography, impacting future mechanism-based treatment choices.


Assuntos
Neuralgia , Traumatismos da Medula Espinal , Humanos , Neuralgia/etiologia , Limiar da Dor/fisiologia , Encéfalo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia
19.
Mol Neurobiol ; 60(5): 2937-2953, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36750527

RESUMO

Spinal cord injury is a severely debilitating condition affecting a significant population in the USA. Spinal cord injury patients often have increased risk of developing persistent neuropathic pain and other neurodegenerative conditions beyond the primary lesion center later in their life. The molecular mechanism conferring to the "latent" damages at distal tissues, however, remains elusive. Here, we studied molecular changes conferring abnormal functionality at distal spinal cord (T12) beyond the lesion center (T10) by combining next-generation sequencing (RNA- and bisulfite sequencing), super-resolution microscopy, and immunofluorescence staining at 7 days post injury. We observed significant transcriptomic changes primarily enriched in neuroinflammation and synaptogenesis associated pathways. Transcription factors (TFs) that regulate neurogenesis and neuron plasticity, including Egr1, Klf4, and Myc, are significantly upregulated. Along with global changes in chromatin arrangements and DNA methylation, including 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), bisulfite sequencing further reveals the involvement of DNA methylation changes in regulating cytokine, growth factor, and ion channel expression. Collectively, our results pave the way towards understanding transcriptomic and epigenomic mechanism in conferring long-term disease risks at distal tissues away from the primary lesion center and shed light on potential molecular targets that govern the regulatory mechanism at distal spinal cord tissues.


Assuntos
Contusões , Traumatismos da Medula Espinal , Ratos , Animais , Epigênese Genética , Transcriptoma/genética , Epigenômica/métodos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Metilação de DNA/genética , Medula Espinal/patologia
20.
ACS Nano ; 17(4): 3818-3837, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787636

RESUMO

Neural stem cells (NSCs) are considered to be prospective replacements for neuronal cell loss as a result of spinal cord injury (SCI). However, the survival and neuronal differentiation of NSCs are strongly affected by the unfavorable microenvironment induced by SCI, which critically impairs their therapeutic ability to treat SCI. Herein, a strategy to fabricate PDGF-MP hydrogel (PDGF-MPH) microspheres (PDGF-MPHM) instead of bulk hydrogels is proposed to dramatically enhance the efficiency of platelet-derived growth factor mimetic peptide (PDGF-MP) in activating its receptor. PDGF-MPHM were fabricated by a piezoelectric ceramic-driven thermal electrospray device, had an average size of 9 µm, and also had the ability to activate the PDGFRß of NSCs more effectively than PDGF-MPH. In vitro, PDGF-MPHM exerted strong neuroprotective effects by maintaining the proliferation and inhibiting the apoptosis of NSCs in the presence of myelin extracts. In vivo, PDGF-MPHM inhibited M1 macrophage infiltration and extrinsic or intrinsic cells apoptosis on the seventh day after SCI. Eight weeks after SCI, the T10 SCI treatment results showed that PDGF-MPHM + NSCs significantly promoted the survival of NSCs and neuronal differentiation, reduced lesion size, and considerably improved motor function recovery in SCI rats by stimulating axonal regeneration, synapse formation, and angiogenesis in comparison with the NSCs graft group. Therefore, our findings provide insights into the ability of PDGF-MPHM to be a promising therapeutic agent for SCI repair.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Diferenciação Celular , Microesferas , Estudos Prospectivos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Peptídeos/farmacologia , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...