Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.391
Filtrar
1.
Nat Commun ; 11(1): 5085, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033250

RESUMO

Tibetan wheat is grown under environmental constraints at high-altitude conditions, but its underlying adaptation mechanism remains unknown. Here, we present a draft genome sequence of a Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) accession Zang1817 and re-sequence 245 wheat accessions, including world-wide wheat landraces, cultivars as well as Tibetan landraces. We demonstrate that high-altitude environments can trigger extensive reshaping of wheat genomes, and also uncover that Tibetan wheat accessions accumulate high-altitude adapted haplotypes of related genes in response to harsh environmental constraints. Moreover, we find that Tibetan semi-wild wheat is a feral form of Tibetan landrace, and identify two associated loci, including a 0.8-Mb deletion region containing Brt1/2 homologs and a genomic region with TaQ-5A gene, responsible for rachis brittleness during the de-domestication episode. Our study provides confident evidence to support the hypothesis that Tibetan semi-wild wheat is de-domesticated from local landraces, in response to high-altitude extremes.


Assuntos
Adaptação Fisiológica , Altitude , Triticum/fisiologia , Adaptação Fisiológica/genética , Domesticação , Ecótipo , Genoma de Planta , Geografia , Metagenômica , Fenótipo , Análise de Componente Principal , Tibet , Triticum/genética
2.
Plant Genome ; 13(1): e20011, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016629

RESUMO

Genome-wide association mapping identifies quantitative trait loci (QTL) that influence the mean differences between the marker genotypes for a given trait. While most loci influence the mean value of a trait, certain loci, known as variance heterogeneity QTL (vQTL) determine the variability of the trait instead of the mean trait value (mQTL). In the present study, we performed a variance heterogeneity genome-wide association study (vGWAS) for grain cadmium (Cd) concentration in bread wheat. We used double generalized linear model and hierarchical generalized linear model to identify vQTL associated with grain Cd. We identified novel vQTL regions on chromosomes 2A and 2B that contribute to the Cd variation and loci that affect both mean and variance heterogeneity (mvQTL) on chromosome 5A. In addition, our results demonstrated the presence of epistatic interactions between vQTL and mvQTL, which could explain variance heterogeneity. Overall, we provide novel insights into the genetic architecture of grain Cd concentration and report the first application of vGWAS in wheat. Moreover, our findings indicated that epistasis is an important mechanism underlying natural variation for grain Cd concentration.


Assuntos
Pão , Triticum , Cádmio , Estudo de Associação Genômica Ampla , Genômica , Triticum/genética
3.
Nat Commun ; 11(1): 4876, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978378

RESUMO

In most crops, genetic and environmental factors interact in complex ways giving rise to substantial genotype-by-environment interactions (G×E). We propose that computer simulations leveraging field trial data, DNA sequences, and historical weather records can be used to tackle the longstanding problem of predicting cultivars' future performances under largely uncertain weather conditions. We present a computer simulation platform that uses Monte Carlo methods to integrate uncertainty about future weather conditions and model parameters. We use extensive experimental wheat yield data (n = 25,841) to learn G×E patterns and validate, using left-trial-out cross-validation, the predictive performance of the model. Subsequently, we use the fitted model to generate circa 143 million grain yield data points for 28 wheat genotypes in 16 locations in France, over 16 years of historical weather records. The phenotypes generated by the simulation platform have multiple downstream uses; we illustrate this by predicting the distribution of expected yield at 448 cultivar-location combinations and performing means-stability analyses.


Assuntos
Simulação por Computador , Produtos Agrícolas/genética , Genótipo , Incerteza , Tempo (Meteorologia) , Agricultura/métodos , DNA de Plantas , Grão Comestível/genética , França , Interação Gene-Ambiente , Modelos Genéticos , Fenótipo , Triticum/genética
4.
Nat Commun ; 11(1): 4408, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879311

RESUMO

Understanding extreme weather impacts on staple crops such as wheat is vital for creating adaptation strategies and increasing food security, especially in dryland cropping systems across Southern Africa. This study analyses heat impacts on wheat using daily weather information and a dryland wheat dataset for 71 cultivars across 17 locations in South Africa from 1998 to 2014. We estimate temperature impacts on yields in extensive regression models, finding that extreme heat drives wheat yield losses, with an additional 24 h of exposure to temperatures above 30 °C associated with a 12.5% yield reduction. Results from a uniform warming scenario of +1 °C show an average wheat yield reduction of 8.5%, which increases to 18.4% and 28.5% under +2 and +3 °C scenarios. We also find evidence of differences in heat effects across cultivars, which suggests warming impacts may be reduced through the sharing of gene pools amongst wheat breeding programs.


Assuntos
Adaptação Fisiológica , Produtos Agrícolas , Triticum , Cruzamento/métodos , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Genótipo , Aquecimento Global , Temperatura Alta , África do Sul , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
5.
Nat Commun ; 11(1): 4572, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917907

RESUMO

Undomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs.


Assuntos
Variação Genética , Genoma de Planta , Triticum/genética , Alelos , Domesticação , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Tetraploidia
6.
PLoS One ; 15(8): e0236226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866160

RESUMO

Amine oxidases (AOs) including copper containing amine oxidases (CuAOs) and FAD-dependent polyamine oxidases (PAOs) are associated with polyamine catabolism in the peroxisome, apoplast and cytoplasm and play an essential role in growth and developmental processes and response to biotic and abiotic stresses. Here, we identified PAO genes in common wheat (Triticum aestivum), T. urartu and Aegilops tauschii and reported the genome organization, evolutionary features and expression profiles of the wheat PAO genes (TaPAO). Expression analysis using publicly available RNASeq data showed that TaPAO genes are expressed redundantly in various tissues and developmental stages. A large percentage of TaPAOs respond significantly to abiotic stresses, especially temperature (i.e. heat and cold stress). Some TaPAOs were also involved in response to other stresses such as powdery mildew, stripe rust and Fusarium infection. Overall, TaPAOs may have various functions in stress tolerances responses, and play vital roles in different tissues and developmental stages. Our results provided a reference for further functional investigation of TaPAO proteins.


Assuntos
Resposta ao Choque Frio/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Proteínas de Plantas/genética , Termotolerância/genética , Triticum/genética , Aegilops/enzimologia , Aegilops/genética , Processamento Alternativo , Sequência de Aminoácidos , Conjuntos de Dados como Assunto , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Cadeias de Markov , Modelos Genéticos , Peso Molecular , Família Multigênica , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos/genética , RNA-Seq , Alinhamento de Sequência , Triticum/enzimologia
7.
PLoS One ; 15(8): e0236186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866164

RESUMO

AIM: To establish a gene co-expression network for identifying principal modules and hub genes that are associated with drought resistance mechanisms, analyzing their mechanisms, and exploring candidate genes. METHODS AND FINDINGS: 42 data sets including PRJNA380841 and PRJNA369686 were used to construct the co-expression network through weighted gene co-expression network analysis (WGCNA). A total of 1,896,897,901 (284.30 Gb) clean reads and 35,021 differentially expressed genes (DEGs) were obtained from 42 samples. Functional enrichment analysis indicated that photosynthesis, DNA replication, glycolysis/gluconeogenesis, starch and sucrose metabolism, arginine and proline metabolism, and cell cycle were significantly influenced by drought stress. Furthermore, the DEGs with similar expression patterns, detected by K-means clustering, were grouped into 29 clusters. Genes involved in the modules, such as dark turquoise, yellow, and brown, were found to be appreciably linked with drought resistance. Twelve central, greatly correlated genes in stage-specific modules were subsequently confirmed and validated at the transcription levels, including TraesCS7D01G417600.1 (PP2C), TraesCS5B01G565300.1 (ERF), TraesCS4A01G068200.1 (HSP), TraesCS2D01G033200.1 (HSP90), TraesCS6B01G425300.1 (RBD), TraesCS7A01G499200.1 (P450), TraesCS4A01G118400.1 (MYB), TraesCS2B01G415500.1 (STK), TraesCS1A01G129300.1 (MYB), TraesCS2D01G326900.1 (ALDH), TraesCS3D01G227400.1 (WRKY), and TraesCS3B01G144800.1 (GT). CONCLUSIONS: Analyzing the response of wheat to drought stress during different growth stages, we have detected three modules and 12 hub genes that are associated with drought resistance mechanisms, and five of those genes are newly identified for drought resistance. The references provided by these modules will promote the understanding of the drought-resistance mechanism. In addition, the candidate genes can be used as a basis of transgenic or molecular marker-assisted selection for improving the drought resistance and increasing the yields of wheat.


Assuntos
Aclimatação/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estresse Fisiológico/genética , Triticum/genética , China , Análise por Conglomerados , Conjuntos de Dados como Assunto , Secas , Perfilação da Expressão Gênica , Genes de Plantas , Melhoramento Vegetal/métodos , RNA-Seq , Seleção Genética
8.
BMC Bioinformatics ; 21(1): 360, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807073

RESUMO

BACKGROUND: Discovering single nucleotide polymorphisms (SNPs) from agriculture crop genome sequences has been a widely used strategy for developing genetic markers for several applications including marker-assisted breeding, population diversity studies for eco-geographical adaption, genotyping crop germplasm collections, and others. Accurately detecting SNPs from large polyploid crop genomes such as wheat is crucial and challenging. A few variant calling methods have been previously developed but they show a low concordance between their variant calls. A gold standard of variant sets generated from one human individual sample was established for variant calling tool evaluations, however hitherto no gold standard of crop variant set is available for wheat use. The intent of this study was to evaluate seven SNP variant calling tools (FreeBayes, GATK, Platypus, Samtools/mpileup, SNVer, VarScan, VarDict) with the two most popular mapping tools (BWA-mem and Bowtie2) on wheat whole exome capture (WEC) re-sequencing data from allohexaploid wheat. RESULTS: We found the BWA-mem mapping tool had both a higher mapping rate and a higher accuracy rate than Bowtie2. With the same mapping quality (MQ) cutoff, BWA-mem detected more variant bases in mapping reads than Bowtie2. The reads preprocessed with quality trimming or duplicate removal did not significantly affect the final mapping performance in terms of mapped reads. Based on the concordance and receiver operating characteristic (ROC), the Samtools/mpileup variant calling tool with BWA-mem mapping of raw sequence reads outperformed other tests followed by FreeBayes and GATK in terms of specificity and sensitivity. VarDict and VarScan were the poorest performing variant calling tools with the wheat WEC sequence data. CONCLUSION: The BWA-mem and Samtools/mpileup pipeline, with no need to preprocess the raw read data before mapping onto the reference genome, was ascertained the optimum for SNP calling for the complex wheat genome re-sequencing. These results also provide useful guidelines for reliable variant identification from deep sequencing of other large polyploid crop genomes.


Assuntos
Genoma de Planta , Triticum/genética , Sequenciamento Completo do Genoma/métodos , Área Sob a Curva , Humanos , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Componente Principal , Curva ROC , Software
9.
Plant Mol Biol ; 104(1-2): 173-185, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32734417

RESUMO

KEY MESSAGE: A novel and major QTL for the effective tiller number was identified on chromosomal arm 1BL and validated in two genetic backgrounds The effective tiller number (ETN) substantially influences plant architecture and the wheat yield improvement. In this study, we constructed a genetic map of the 2SY (20828/SY95-71) recombinant inbred line population based on the Wheat 55K array as well as the simple sequence repeat (SSR) and Kompetitive Allele Specific PCR (KASP) markers. A comparison between the genetic and physical maps indicated the marker positions were consistent in the two maps. Additionally, we identified seven tillering-related quantitative trait locus (QTLs), including Qetn-sau-1B.1, which is a major QTL localized to a 6.17-cM interval flanked by markers AX-89635557 and AX-111544678 on chromosome 1BL. The Qetn-sau-1B.1 QTL was detected in eight environments and explained 12.12-55.71% of the phenotypic variance. Three genes associated with the ETN were detected in the physical interval of Qetn-sau-1B.1. We used a tightly linked KASP marker, KASP-AX-110129912, to further validate this QTL in two other populations with different genetic backgrounds. The results indicated that Qetn-sau-1B.1 significantly increased the ETN by up to 23.5%. The results of this study will be useful for the precise mapping and cloning of Qetn-sau-1B.1.


Assuntos
Cromossomos de Plantas , Locos de Características Quantitativas/genética , Triticum/genética , Bangladesh , Mapeamento Cromossômico , Marcadores Genéticos/genética , Genótipo , Repetições de Microssatélites , Anotação de Sequência Molecular , Fenótipo
10.
PLoS One ; 15(8): e0237711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32810182

RESUMO

Alleles at the Glu-1 loci play important roles in the functional properties of wheat flour. The effects of various high-molecular-weight glutenin subunit (HMW-GS) compositions on quality traits and bread-making properties were evaluated using 235 doubled haploid lines (DHs). The experiment was conducted in a split plot design with two water regimes as the main plot treatment, and DH lines as the subplot treatments. Results showed that the presence of subunit pair 5+10 at the Glu-D1 locus, either alone or in combination with others, appears to provide an improvement in quality and bread-making properties. At the Glu-A1 locus, subunit 1 produced a higher Zeleny sedimentation value (Zel) and stretch area (SA) than subunit 2* when subunits 14+15 and 5+10 were expressed at the Glu-B1 and Glu-D1 loci, and 2* had a positive effect on the maximum dough resistance (Rmax) when subunits 14+15 and 5'+12 were expressed at the Glu-B1 and Glu-D1 loci, respectively. Given subunit 1 at the Glu-A1 locus and 5'+12 at the Glu-D1 locus, the effects of Glu-B1 subunits 14+15 on the tractility (Tra), dough stability time (ST), and dough development time (DT) under the well-watered regime were significantly higher than those of Glu-B1 subunits 13+16. However, 13+16 had a positive effect on SA under the rain-fed regime when subunits 2* and 5+10 were expressed at the Glu-A1 and Glu-D1 loci, respectively. Multiple comparisons analysis revealed that the Zel and Rmax of the six subunits and eight HMW-GS compositions were stable under different water regimes. Overall, subunit compositions 1, 13+16 and 5+10 and 1, 14+15 and 5+10 had higher values for quality traits and bread-baking properties under the two water regimes. These results could play a positive guiding role in selecting and popularizing varieties suitable for production and cultivation in local areas.


Assuntos
Qualidade dos Alimentos , Glutens/genética , Melhoramento Vegetal , Subunidades Proteicas/genética , Triticum/química , Irrigação Agrícola/métodos , Pão/normas , China , Farinha/normas , Genes de Plantas/genética , Loci Gênicos , Glutens/metabolismo , Haploidia , Peso Molecular , Subunidades Proteicas/química , Triticum/genética , Triticum/crescimento & desenvolvimento
11.
PLoS One ; 15(8): e0236351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32785293

RESUMO

Hybrid performance during wheat breeding can be improved by analyzing genetic distance (GD) among wheat genotypes and determining its correlation with heterosis. This study evaluated the GD between 16 wheat genotypes by using 60 simple sequence repeat (SSR) markers to classify them according to their relationships and select those with greater genetic diversity, evaluate the correlation of the SSR marker distance with heterotic performance and specific combining ability (SCA) for heat stress tolerance, and identify traits that most influence grain yield (GY). Eight parental genotypes with greater genetic diversity and their 28 F1 hybrids generated using diallel crossing were evaluated for 12 measured traits in two seasons. The GD varied from 0.235 to 0.911 across the 16 genotypes. Cluster analysis based on the GD estimated using SSRs classified the genotypes into three major groups and six sub-groups, almost consistent with the results of principal coordinate analysis. The combined data indicated that five hybrids showed 20% greater yield than mid-parent or better-parent. Two hybrids (P2 × P4) and (P2 × P5), which showed the highest performance of days to heading (DH), grain filling duration (GFD), and GY, and had large genetic diversity among themselves (0.883 and 0.911, respectively), were deemed as promising heat-tolerant hybrids. They showed the best mid-parent heterosis and better-parent heterosis (BPH) for DH (-11.57 and -7.65%; -13.39 and -8.36%, respectively), GFD (12.74 and 12.17%; 12.09 and 10.59%, respectively), and GY (36.04 and 20.04%; 44.06 and 37.73%, respectively). Correlation between GD and each of BPH and SCA effects based on SSR markers was significantly positive for GFD, hundred kernel weight, number of kernels per spike, harvest index, GY, and grain filling rate and was significantly negative for DH. These correlations indicate that the performance of wheat hybrids with high GY and earliness could be predicted by determining the GD of the parents by using SSR markers. Multivariate analysis (stepwise regression and path coefficient) suggested that GFD, hundred kernel weight, days to maturity, and number of kernels per spike had the highest influence on GY.


Assuntos
Resposta ao Choque Térmico/genética , Vigor Híbrido/genética , Seleção Genética/genética , Triticum/genética , Pão , Cruzamento , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Genótipo , Humanos , Hibridização Genética/genética , Repetições de Microssatélites/genética , Fenótipo , Triticum/crescimento & desenvolvimento
12.
PLoS One ; 15(6): e0235482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603342

RESUMO

Fusarium head blight (FHB) is one of the most devastating fungal diseases affecting grain crops and Fusarium graminearum is the most aggressive causal species. Several evidences shown that stomatal closure is involved in the first line of defence against plant pathogens. However, there is very little evidence to show that photosynthetic parameters change in inoculated plants. The aim of the present study was to study the role of stomatal regulation in wheat after F. graminearum inoculation and explore its possible involvement in FHB resistance. RT-qPCR revealed that genes involved in stomatal regulation are induced in the resistant Sumai3 cultivar but not in the susceptible Rebelde cultivar. Seven genes involved in the positive regulation of stomatal closure were up-regulated in Sumai3, but it is most likely, that two genes, TaBG and TaCYP450, involved in the negative regulation of stomatal closure, were strongly induced, suggesting that FHB response is linked to cross-talk between the genes promoting and inhibiting stomatal closure. Increasing temperature of spikes in the wheat genotypes and a decrease in photosynthetic efficiency in Rebelde but not in Sumai3, were observed, confirming the hypothesis that photosynthetic parameters are related to FHB resistance.


Assuntos
Resistência à Doença/genética , Fusariose/imunologia , Fotossíntese , Estômatos de Plantas , Triticum/imunologia , Fusarium/imunologia , Fusarium/patogenicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fotossíntese/genética , Fotossíntese/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/fisiologia , Triticum/genética , Triticum/microbiologia
13.
PLoS Genet ; 16(7): e1008713, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658889

RESUMO

Thaumatin-like proteins (TLPs), which are defined as pathogenesis-related protein family 5 (PR5) members, are common plant proteins involved in defense responses and confer antifungal activity against many plant pathogens. Our earlier studies have reported that the TaTLP1 gene was isolated from wheat and proved to be involved in wheat defense in response to leaf rust attack. The present study aims to identify the interacting proteins of TaTLP1 and characterize the role of the interaction between wheat and Puccinia triticina (Pt). Pull-down experiments designed to isolate the molecular target of TaTLP1 in tobacco resulted in the identification of TaPR1, a pathogenesis-related protein of family 1, and the interaction between TaTLP1 and TaPR1 was confirmed by yeast two-hybrid experiments (Y2H), bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP). In vitro, TaTLP1 and TaPR1 together increased antifungal activity against Pt. In vivo, the disease resistance phenotype, histological observations of fungal growth and host responses, and accumulation of H2O2 in TaTLP1-TaPR1 in co-silenced plants indicated that co-silencing significantly enhanced wheat susceptibility compared to single knockdown TaTLP1 or TaPR1 plants. The accumulation of reactive oxygen species (ROS) was significantly reduced in co-silenced plants compared to controls during Pt infection, which suggested that the TaTLP1-TaPR1 interaction positively modulates wheat resistance to Pt in an ROS-dependent manner. Our findings provide new insights for understanding the roles of two different PRs, TaTLP1 and TaPR1, in wheat resistance to leaf rust.


Assuntos
Antígenos de Plantas/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
14.
PLoS Genet ; 16(7): e1008812, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658893

RESUMO

In Arabidopsis, CONSTANS (CO) integrates light and circadian clock signals to promote flowering under long days (LD). In the grasses, a duplication generated two paralogs designated as CONSTANS1 (CO1) and CONSTANS2 (CO2). Here we show that in tetraploid wheat plants grown under LD, combined loss-of-function mutations in the A and B-genome homeologs of CO1 and CO2 (co1 co2) result in a small (3 d) but significant (P<0.0001) acceleration of heading time both in PHOTOPERIOD1 (PPD1) sensitive (Ppd-A1b, functional ancestral allele) and insensitive (Ppd-A1a, functional dominant allele) backgrounds. Under short days (SD), co1 co2 mutants headed 13 d earlier than the wild type (P<0.0001) in the presence of Ppd-A1a. However, in the presence of Ppd-A1b, spikes from both genotypes failed to emerge by 180 d. These results indicate that CO1 and CO2 operate mainly as weak heading time repressors in both LD and SD. By contrast, in ppd1 mutants with loss-of-function mutations in both PPD1 homeologs, the wild type Co1 allele accelerated heading time >60 d relative to the co1 mutant allele under LD. We detected significant genetic interactions among CO1, CO2 and PPD1 genes on heading time, which were reflected in complex interactions at the transcriptional and protein levels. Loss-of-function mutations in PPD1 delayed heading more than combined co1 co2 mutations and, more importantly, PPD1 was able to perceive and respond to differences in photoperiod in the absence of functional CO1 and CO2 genes. Similarly, CO1 was able to accelerate heading time in response to LD in the absence of a functional PPD1. Taken together, these results indicate that PPD1 and CO1 are able to respond to photoperiod in the absence of each other, and that interactions between these two photoperiod pathways at the transcriptional and protein levels are important to fine-tune the flowering response in wheat.


Assuntos
Epistasia Genética/genética , Fotoperíodo , Proteínas de Plantas/genética , Triticum/genética , Alelos , Arabidopsis , Relógios Circadianos/genética , Ritmo Circadiano/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Fatores de Transcrição/genética , Triticum/crescimento & desenvolvimento
15.
Plant Dis ; 104(9): 2411-2417, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32658634

RESUMO

Chinese wheat landrace Youbailan has excellent resistance to powdery mildew caused by Blumeria graminis f. sp. tritici. In the present study, genetic analysis indicated that a recessive gene, tentatively designated pmYBL, was responsible for the powdery mildew resistance of Youbailan. pmYBL was located in the 695-to-715-Mb genomic region of chromosome 7BL, with 19 gene-linked single-nucleotide polymorphism (SNP) markers. It was flanked by SNP1-12 and SNP1-2 with genetic distances of 0.6 and 1.8 centimorgans, respectively. The disease reaction patterns of Youbailan and four cultivars (lines) carrying the powdery mildew (Pm) genes located on chromosome arm 7BL indicated that pmYBL may be allelic or closely linked to these genes. All of the SNP markers linked to pmYBL were diagnostic, indicating that these markers will be useful for pyramiding pmYBL using marker-assisted selection.


Assuntos
Resistência à Doença/genética , Triticum/genética , Mapeamento Cromossômico , Genes de Plantas , Humanos , Doenças das Plantas
16.
Plant Dis ; 104(9): 2369-2376, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32689920

RESUMO

Fusarium head blight (FHB) and stem rust are among the most devastating diseases of wheat worldwide. Fhb1 is the most widely utilized and the only isolated gene for FHB resistance, while Sr2 is a durable stem rust resistance gene used in rust-prone areas. The two loci are closely linked on the short arm of chromosome 3B and the two genes are in repulsion phase among cultivars. With climate change and the shift in Fusarium populations, it is imperative to develop wheat cultivars resistant to both diseases. The present study was dedicated to developing wheat germplasm combining Fhb1 and Sr2 resistance alleles in the International Maize and Wheat Improvement Center (CIMMYT)'s elite cultivars' backgrounds. Four recombinant inbred lines (RILs) in Hartog background that have the resistant Fhb1 and Sr2 alleles in coupled phase linkage were crossed with seven CIMMYT bread wheat lines, resulting in 208 lines. Molecular markers for both genes were employed in addition to the use of pseudo-black chaff (PBC) as a phenotypic marker for the selection of Sr2. At various stages of the selection process, progeny lines were assessed for FHB index, Fusarium damaged kernels (FDK), stem rust, and PBC expression as well as other diseases of interest (stripe rust and leaf spotting diseases). The 25 best lines were selected for CIMMYT's wheat breeding program. In addition to expressing resistance to FHB, most of these 25 lines have an acceptable level of resistance to other tested diseases. These lines will be useful for wheat breeding programs worldwide and potentially speed up the resistance breeding efforts against FHB and stem rust.


Assuntos
Resistência à Doença , Triticum/genética , Cromossomos de Plantas , Marcadores Genéticos , Humanos , Doenças das Plantas
17.
Plant Mol Biol ; 104(1-2): 113-136, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32627097

RESUMO

KEY MESSAGE: Present study revealed a complex relationship among histone H3 methylation (examined using H3K4/K27me3 marks), cytosine DNA methylation and differential gene expression during Lr28 mediated leaf rust resistance in wheat. During the present study, genome-wide histone modifications were examined in a pair of near isogenic lines (NILs) (with and without Lr28 in the background of cv. HD2329). The two histone marks used included H3K4me3 (an activation mark) and H3K27me3 (a repression mark). The results were compared with levels of expression (using RNA-seq) and DNA methylation (MeDIP) data obtained using the same pair of NILs. Some of the salient features of the present study include the following: (i) large scale differential binding sites (DBS) were available for only H3K4me3 in the susceptible cultivar, but for both H3K4me3 and H3K27me3 in its resistant NIL; (ii) DBSs for H3K27me3 mark were more abundant (> 80%) in intergenic regions, whereas DBSs for H3K4me3 were distributed in all genomic regions including exons, introns, intergenic, TTS (transcription termination sites) and promoters; (iii) fourteen (14) genes associated with DBSs showed co-localization for both the marks; (iv) only a small fraction (7% for H3K4me3 and 12% for H3K27me3) of genes associated with DBSs matched with the levels of gene expression inferred from RNA-seq data; (v) validation studies using qRT-PCR were conducted on 26 selected representative genes; results for only 11 genes could be validated. The proteins encoded by important genes involved in promoting infection included domains generally carried by R gene proteins such as Mlo like protein, protein kinases and purple acid phosphatase. Similarly, proteins encoded by genes involved in resistance included those carrying domains for lectin kinase, R gene, aspartyl protease, etc. Overall, the results suggest a very complex network of downstream genes that are expressed during compatible and incompatible interactions; some of the genes identified during the present study may be used in future validation studies involving RNAi/overexpression approaches.


Assuntos
Basidiomycota/metabolismo , Resistência à Doença/genética , Genes de Plantas/genética , Genoma de Planta/genética , Histonas/genética , Doenças das Plantas/genética , Triticum/genética , Triticum/metabolismo , Imunoprecipitação da Cromatina , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Ligação Genética , Histonas/metabolismo , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Alinhamento de Sequência , Análise de Sequência , Análise de Sequência de RNA , Transcrição Genética , Triticum/microbiologia
18.
BMC Bioinformatics ; 21(1): 311, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677889

RESUMO

BACKGROUND: Polyploid organisms such as wheat complicate even the simplest of procedures in molecular biology. Whilst knowledge of genomic sequences in crops is increasing rapidly, the scientific community is still a long way from producing a full pan-genome for every species. Polymerase chain reaction and Sanger sequencing therefore remain widely used as methods for characterizing gene sequences in many varieties of crops. High sequence similarity between genomes in polyploids means that if primers are not homeologue-specific via the incorporation of a SNP at the 3' tail, sequences other than the target sequence will also be amplified. Current consensus for gene cloning in wheat is to manually perform many steps in a long bioinformatics pipeline. RESULTS: Here we present AutoCloner ( www.autocloner.com ), a fully automated pipeline for crop gene cloning that includes a free-to-use web interface for users. AutoCloner takes a sequence of interest from the user and performs a basic local alignment search tool (BLAST) search against the genome assembly for their particular polyploid crop. Homologous sequences are then compiled with the input sequence into a multiple sequence alignment which is mined for single-nucleotide polymorphisms (SNPs). Various combinations of potential primers that cover the entire gene of interest are then created and evaluated by Primer3; the set of primers with the highest score, as well as all possible primers at every SNP location, are then returned to the user for polymerase chain reaction (PCR). We have successfully used AutoCloner to clone various genes of interest in the Apogee wheat variety, which has no current genome sequence. In addition, we have successfully run the pipeline on ~ 80,000 high-confidence gene models from a wheat genome assembly. CONCLUSION: AutoCloner is the first tool to fully-automate primer design for gene cloning in polyploids, where previously the consensus within the wheat community was to perform this process manually. The web interface for AutoCloner provides a simple and effective polyploid primer-design method for gene cloning, with no need for researchers to download software or input any other details other than their sequence of interest.


Assuntos
Clonagem Molecular , Biologia Computacional/métodos , Primers do DNA/metabolismo , Poliploidia , Homologia de Sequência , Software , Triticum/genética , Substituição de Aminoácidos/genética , Sequência de Bases , Primers do DNA/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único/genética
19.
PLoS One ; 15(7): e0236317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32702002

RESUMO

Heterodera avenae, as an obligate endoparasite, causes severe yield loss in wheat (Triticum aestivum). Investigation on the mechanisms how H. avenae perceives wheat roots is limited. Here, the attractiveness of root exudates from eight plant genotypes to H. avenae were evaluated on agar plates. Results showed that the attraction of H. avenae to the root exudates from the non-host Brachypodium distachyon variety Bd21-3 was the highest, approximately 50 infective second-stage juveniles (J2s) per plate, followed by that from three H. avenae-susceptible wheat varieties, Zhengmai9023, Yanmai84 and Xiangmai25, as well as the resistant one of Xinyuan958, whereas the lowest attractive activity was observed in the two H. avenae-resistant wheat varieties, Xianmai20 (approximately 12 J2s/plate) and Liangxing66 (approximately 11 J2s/plate). Then Bd21-3, Zhengmai9023 and Heng4399 were selected for further assays as their different attractiveness and resistance to H. avenae, and attractants for H. avenae in their root exudates were characterized to be heat-labile and low-molecular compounds (LM) by behavioral bioassay. Based on these properties of the attractants, a principle of identifying attractants for H. avenae was set up. Then LM of six root exudates from the three plants with and without heating were separated and analyzed by HPLC-MS. Finally, dihydroxyacetone (DHA), methylprednisolone succinate, embelin and diethylpropionin in the root exudates were identified to be putative attractants for H. avenae according to the principle, and the attraction of DHA to H. avenae was validated by behavioral bioassay on agar. Our study enhances the recognition to the orientation mechanism of H. avenae towards wheat roots.


Assuntos
Di-Hidroxiacetona/química , Doenças das Plantas/parasitologia , Raízes de Plantas/química , Triticum/química , Animais , Brachypodium/genética , Brachypodium/parasitologia , Di-Hidroxiacetona/fisiologia , Resistência à Doença/genética , Resistência à Doença/fisiologia , Genótipo , Doenças das Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Raízes de Plantas/fisiologia , Triticum/genética , Triticum/parasitologia , Triticum/fisiologia , Tylenchoidea/genética , Tylenchoidea/patogenicidade
20.
Physiol Plant ; 169(4): 499-500, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32729121

RESUMO

A major part of the human diet is made up by seeds such as wheat, rice and maize; both as staple crops and as raw material for livestock feed. The yield of these crops is highly dependent on successful flower development, pollination and proper timing of seed set. However, significant yield loss is caused by stress factors such as excessive heat and drought, which are being exacerbated by ongoing climate change (Zhao et al. 2017). Pollen development, in particular, is highly sensitive to heat stress (Mesihovic et al. 2016) and in an effort to enhance our understanding of plant responses to heat stress, with the view of aiding breeding efforts, Bheemanahalli et al. (2020) used metabolic and hormonal profiling to investigate the regulation of heat stress tolerance in two wheat genotypes.


Assuntos
Produtos Agrícolas , Secas , Mudança Climática , Resposta ao Choque Térmico , Temperatura Alta , Humanos , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA