Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.302
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2703-2718, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472290

RESUMO

Plants with alien genomic components (alien chromosomes / chromosomal fragments / genes) are important materials for genomic research and crop improvement. To date, four strategies based on trait observation, chromosome analysis, specific proteins, and DNA sequences have been developed for the identification of alien genomic components. Among them, DNA sequence-based molecular markers are mainly used to identify alien genomic components. This review summarized several molecular markers for identification of alien genomic components in wheat, cabbage and other important crops. We also compared the characteristics of nine common molecular markers, such as simple sequence repeat (SSR), insertion-deletion (InDel) and single nucleotide polymorphism (SNP). In general, the accuracy of using a combination of different identification methods is higher than using a single identification method. We analyzed the application of different combination of identification methods, and provided the best combination for wheat, brassica and other crops. High-throughput detection can be easily achieved by using the new generation molecular markers such as InDel and SNP, which can be used to determine the precise localization of alien introgression genes. To increase the identification efficiency, other new identification methods, such as microarray comparative genomic hybridization (array-CGH) and suppression subtractive hybridization (SSH), may also be included.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Hibridização Genômica Comparativa , Genoma de Planta/genética , Genômica , Triticum/genética
2.
J Agric Food Chem ; 69(36): 10496-10505, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34488337

RESUMO

Lipid peroxidation is a common event during aluminum (Al) toxicity in plants, and it generates an array of aldehyde fragments. The present study investigated and compared the profile and physiological functions of lipid peroxide-derived aldehydes under Al stress in two wheat genotypes that differed in Al resistance. Under Al stress, the sensitive genotype Yangmai-5 suffered more severe plasma membrane damage and accumulated higher levels of aldehydes in roots than the Al-tolerant genotype Jian-864. The complementary use of high-resolution mass spectrometry and standard compounds allowed the identification and quantification of 13 kinds of short-chain aldehydes sourced from lipids in wheat roots. Among these aldehydes, acetaldehyde, isovaldehyde, valeraldehyde, (E)-2-hexenal (HE), heptaldehyde, and nonyl aldehyde were the predominant species. Moreover, it was found that HE in the sensitive genotype was over 2.63 times higher than that in the tolerant genotype after Al treatment. Elimination of aldehydes using carnosine rescued root growth inhibition by 19.59 and 11.63% in Jian-864 and Yangmai-5, respectively, and alleviated Al-induced membrane damage and protein oxidation. Exogenous aldehyde application further inhibited root elongation and exacerbated oxidative injury. The tolerant genotype Jian-864 showed elevated aldehyde detoxifying enzyme activity and transcript levels. These results suggest that lipid peroxide-derived short-chain aldehydes are involved in Al toxicity, and a higher aldehyde-detoxifying capacity may be responsible for Al tolerance.


Assuntos
Alumínio , Triticum , Aldeídos/toxicidade , Alumínio/toxicidade , Peróxidos Lipídicos , Raízes de Plantas/genética , Triticum/genética
3.
BMC Plant Biol ; 21(1): 418, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517837

RESUMO

BACKGROUND: Bread wheat (Triticum aestivum L.) is one of the most widely consumed cereal crops, but its complex genome makes it difficult to investigate the genetic effect on important agronomic traits. Genome-wide association (GWA) analysis is a useful method to identify genetic loci controlling complex phenotypic traits. With the RNA-sequencing based gene expression analysis, putative candidate genes governing important agronomic trait can be suggested and also molecular markers can be developed. RESULTS: We observed major quantitative agronomic traits of wheat; the winter survival rate (WSR), days to heading (DTH), days to maturity (DTM), stem length (SL), spike length (SPL), awn length (AL), liter weight (LW), thousand kernel weight (TKW), and the number of seeds per spike (SPS), of 287 wheat accessions from diverse country origins. A significant correlation was observed between the observed traits, and the wheat genotypes were divided into three subpopulations according to the population structure analysis. The best linear unbiased prediction (BLUP) values of the genotypic effect for each trait under different environments were predicted, and these were used for GWA analysis based on a mixed linear model (MLM). A total of 254 highly significant marker-trait associations (MTAs) were identified, and 28 candidate genes closely located to the significant markers were predicted by searching the wheat reference genome and RNAseq data. Further, it was shown that the phenotypic traits were significantly affected by the accumulation of favorable or unfavorable alleles. CONCLUSIONS: From this study, newly identified MTA and putative agronomically useful genes will help to study molecular mechanism of each phenotypic trait. Further, the agronomically favorable alleles found in this study can be used to develop wheats with superior agronomic traits.


Assuntos
Genótipo , Fenótipo , Locos de Características Quantitativas , Sementes/anatomia & histologia , Sementes/genética , Triticum/anatomia & histologia , Triticum/genética , Grão Comestível/anatomia & histologia , Grão Comestível/genética , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla
4.
BMC Plant Biol ; 21(1): 417, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507551

RESUMO

BACKGROUND: The future productivity of wheat (T. aestivum L.) as the most grown crop worldwide is of utmost importance for global food security. Thousand kernel weight (TKW) in wheat is closely associated with grain architecture-related traits, e.g. kernel length (KL), kernel width (KW), kernel area (KA), kernel diameter ratio (KDR), and factor form density (FFD). Discovering the genetic architecture of natural variation in these traits, identifying QTL and candidate genes are the main aims of this study. Therefore, grain architecture-related traits in 261 worldwide winter accessions over three field-year experiments were evaluated. RESULTS: Genome-wide association analysis using 90K SNP array in FarmCPU model revealed several interesting genomic regions including 17 significant SNPs passing false discovery rate threshold and strongly associated with the studied traits. Four of associated SNPs were physically located inside candidate genes within LD interval e.g. BobWhite_c5872_589 (602,710,399 bp) found to be inside TraesCS6A01G383800 (602,699,767-602,711,726 bp). Further analysis reveals the four novel candidate genes potentially involved in more than one grain architecture-related traits with a pleiotropic effects e.g. TraesCS6A01G383800 gene on 6A encoding oxidoreductase activity was associated with TKW and KA. The allelic variation at the associated SNPs showed significant differences betweeen the accessions carying the wild and mutated alleles e.g. accessions carying C allele of BobWhite_c5872_589, TraesCS6A01G383800 had significantly higher TKW than the accessions carying T allele. Interestingly, these genes were highly expressed in the grain-tissues, demonstrating their pivotal role in controlling the grain architecture. CONCLUSIONS: These results are valuable for identifying regions associated with kernel weight and dimensions and potentially help breeders in improving kernel weight and architecture-related traits in order to increase wheat yield potential and end-use quality.


Assuntos
Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Sementes/anatomia & histologia , Sementes/genética , Triticum/anatomia & histologia , Triticum/genética , Grão Comestível/anatomia & histologia , Grão Comestível/genética , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas
5.
Planta ; 254(3): 48, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34379202

RESUMO

MAIN CONCLUSION: During antipodal cells PCD, polytene chromosomes rearrangement, segregation of nucleoli components and extrusion of nuclear components occur, cytochrome c is released from the mitochondria and DNA breaks appear. We studied in detail the nuclei of cells of the antipodal complex of wheat embryo sac (Triticum aestivum L.) during programmed cell death (PCD). The antipodal complex has been reported to be formed before double fertilisation of the embryo sac. Polyploidisation leads to the formation of giant polytene chromosomes in the nuclei of antipodal cells. These chromosomes are involved in secretory functions and are important for the development of cellular endosperm. Terminal deoxynucleotidyl transferase dUTP nick end labelling assay and immunodetection revealed DNA breaks in the nuclei and release of cytochrome c from mitochondria into the cytoplasm of antipodal cells during PCD. We used transmission electron microscopy, immunodetection and histochemistry to analyse the characteristic structural changes in the nuclei of antipodal cells during PCD. These included sequential structural changes in the nuclei containing polytene chromosomes, segregation of some components of the nucleolus into the bodies of polytene chromosomes, extrusion of nucleolar components and parts of chromosomes into the cytoplasm of antipodal cells and then into the endosperm coenocyte. The obtained results expand the understanding of the structural changes of plant cells with giant polytene chromosomes during PCD.


Assuntos
Núcleo Celular , Triticum , Apoptose , Núcleo Celular/metabolismo , Endosperma , Mitocôndrias , Triticum/genética
6.
BMC Genomics ; 22(1): 630, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461830

RESUMO

BACKGROUND: Fusarium culmorum is an important pathogen causing head blight of cereals in Europe. This disease is of worldwide importance leading to reduced yield, grain quality, and contamination by mycotoxins. These mycotoxins are harmful for livestock and humans; therefore, many countries have strict regulatory limits for raw materials and processed food. Extensive genetic diversity is described among field populations of F. culmorum isolates for aggressiveness and production of the trichothecene mycotoxin deoxynivalenol (DON). However, the causes for this quantitative variation are not clear, yet. We analyzed 92 isolates sampled from different field populations in Germany, Russia, and Syria together with an international collection for aggressiveness and DON production in replicated field experiments at two locations in two years with two hosts, wheat and rye. The 30x coverage whole-genome resequencing of all isolates resulted in the identification of 130,389 high quality single nucleotide polymorphisms (SNPs) that were used for the first genome-wide association study in this phytopathogenic fungus. RESULTS: In wheat, 20 and 27 SNPs were detected for aggressiveness and DON content, respectively, of which 10 overlapped. Additionally, two different SNPs were significantly associated with aggressiveness in rye that were among those SNPs being associated with DON production in wheat. Most of the SNPs explained only a small proportion of genotypic variance (pG), however, four SNPs were associated with major quantitative trait loci (QTLs) with pG ranging from 12 to 48%. The QTL with the highest pG was involved in DON production and associated with a SNP most probably located within the Tri4 gene. CONCLUSIONS: The diversity of 92 isolates of F. culmorum were captured using a heuristic approach. Key phenotypic traits, SNPs, and candidate genes underlying aggressiveness and DON production were identified. Clearly, many QTLs are responsible for aggressiveness and DON content in wheat, both traits following a quantitative inheritance. Several SNPs involved in DON metabolism, among them the Tri4 gene of the trichothecene pathway, were inferred as important source of variation in fungal aggressiveness. Using this information underlying the phenotypic variation will be of paramount importance in evaluating strategies for successful resistance breeding.


Assuntos
Fusarium , Fusarium/genética , Estudo de Associação Genômica Ampla , Humanos , Melhoramento Vegetal , Doenças das Plantas/genética , Secale/genética , Tricotecenos , Triticum/genética
7.
BMC Plant Biol ; 21(1): 380, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407757

RESUMO

BACKGROUND: The C2H2-type zinc finger proteins (C2H2-ZFPs) are one of major classes of transcription factors that play important roles in plant growth, development and stress responses. Limit information about the C2H2-ZF genes hinders the molecular breeding in bread wheat (Triticum aestivum). RESULTS: In this study, 457 C2H2-ZFP proteins (including 253 splice variants), which contain four types of conserved domain (named Q, M, Z, and D), could be further classified into ten subsets. They were identified to be distributed in 21 chromosomes in T. aestivum. Subset-specific motifs, like NPL-, SFP1-, DL- (EAR-like-motif), R-, PL-, L- and EK-, might make C2H2-ZFP diverse multifunction. Interestingly, NPL- and SFP1-box were firstly found to be located in C2H2-ZFP proteins. Synteny analyses showed that only 4 pairs of C2H2 family genes in T. aestivum, 65 genes in B. distachyon, 66 genes in A. tauschii, 68 genes in rice, 9 genes in Arabidopsis, were syntenic relationships respectively. It indicated that TaZFPs were closely related to genes in Poaceae. From the published transcriptome data, totally 198 of 204 TaC2H2-ZF genes have expression data. Among them, 25 TaC2H2-ZF genes were certificated to be significantly differentially expressed in 5 different organs and 15 different development stages by quantitative RT-PCR. The 18 TaC2H2-ZF genes were verified in response to heat, drought, and heat & drought stresses. According to expression pattern analysis, several TaZFPs, like Traes_5BL_D53A846BE.1, were not only highly expressed in L2DAAs, RTLS, RMS, but also endowed tolerance to drought and heat stresses, making them good candidates for molecular breeding. CONCLUSIONS: This study systematically characterized the TaC2H2-ZFPs and their potential roles in T. aestivum. Our findings provide new insights into the C2H2-ZF genes in T. aestivum as well as a foundation for further studies on the roles of TaC2H2-ZF genes in T. aestivum molecular breeding.


Assuntos
Dedos de Zinco CYS2-HIS2/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Triticum/genética , Triticum/metabolismo , Dedos de Zinco/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Filogenia
8.
BMC Plant Biol ; 21(1): 381, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412589

RESUMO

BACKGROUND: Phosphate (Pi) deficiency severely affects crop growth and productivity, including wheat, therefore it is necessary to develop cultivars with enhanced Pi-deficiency tolerance. However, the underlying mechanism of Pi-deficiency tolerance in wheat is still elusive. Two contrasting wheat cultivars, low-Pi tolerant Kenong199 (KN199) and low-Pi sensitive Chinese Spring (CS) were used to reveal adaptations in response to Pi deficiency at the morphological, physiological, metabolic, and molecular levels. RESULTS: KN199 was more tolerant to Pi deficiency than CS with significantly increased root biomass and R/S ratio. Root traits, the total root length, total root surface area, and total root volume, were remarkably enhanced by Pi deficiency in KN199. The shoot total P and soluble Pi concentrations of KN199 were significantly higher than those of CS, but not in roots. In KN199, high Pi level in shoots is a higher priority than that in roots under Pi deficiency. It was probably due to differentially regulation in the miR399-mediated signaling network between the shoots of the two cultivars. The Pi deficiency-induced root architecture adaptation in KN199 was attributed to the regulation of the hormone-mediated signaling (ethylene, gibberellin, and jasmonates). The expression of genes associated with root development and Pi uptake was enhanced in KN199. Some primary metabolites (amino acids and organic acids) were significantly accumulated in roots of KN199 under Pi deficiency. CONCLUSIONS: The low-Pi tolerant wheat cultivar KN199 possessed greater morphological and primary metabolic adaptations in roots than CS under Pi deficiency. The adaption and the underlying molecular mechanisms in wheat provide a better understanding of the Pi-deficiency tolerance and the strategies for improving Pi efficiency in wheat.


Assuntos
Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Fosfatos/deficiência , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Triticum/genética , Triticum/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Variação Genética , Genótipo , Melhoramento Vegetal , Plântula/metabolismo
9.
BMC Plant Biol ; 21(1): 393, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418972

RESUMO

BACKGROUND: Mycotoxins are among the environmental stressors whose oxidative action is currently widely studied. The aim of this paper was to investigate the response of seedling leaves to zearalenone (ZEA) applied to the leaves (directly) and to the grains (indirectly) in tolerant and sensitive wheat cultivars. RESULTS: Biochemical analyses of antioxidant activity were performed for chloroplasts and showed a similar decrease in this activity irrespective of plant sensitivity and the way of ZEA application. On the other hand, higher amounts of superoxide radical (microscopic observations) were generated in the leaves of plants grown from the grains incubated in ZEA solution and in the sensitive cultivar. Electron paramagnetic resonance (EPR) studies showed that upon ZEA treatment greater numbers of Mn - aqua complexes were formed in the leaves of the tolerant wheat cultivar than in those of the sensitive one, whereas the degradation of Fe-protein complexes occurred independently of the cultivar sensitivity. CONCLUSION: The changes in the quantity of stable, organic radicals formed by stabilizing reactive oxygen species on biochemical macromolecules, indicated greater potential for their generation in leaf tissues subjected to foliar ZEA treatment. This suggested an important role of these radical species in protective mechanisms mainly against direct toxin action. The way the defense mechanisms were activated depended on the method of the toxin application.


Assuntos
Imunidade Vegetal/genética , Folhas de Planta/imunologia , Sementes/imunologia , Triticum/genética , Triticum/imunologia , Zearalenona/efeitos adversos , Grão Comestível/genética , Grão Comestível/imunologia , Espectroscopia de Ressonância de Spin Eletrônica , Variação Genética , Genótipo , Imunidade Vegetal/fisiologia , Folhas de Planta/genética , Plântula/genética , Plântula/imunologia , Sementes/genética
10.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445247

RESUMO

The utilization of heterosis is an important way to improve wheat yield, and the production of wheat hybrid seeds mainly relies on male-sterile lines. Male sterility in line 15 Fan 03 derived from a cross of 72,180 and Xiaoyan 6 is controlled by a single recessive gene. The gene was mapped to the distal region of chromosome 4BS in a genetic interval of 1.4 cM and physical distance of 6.57 Mb between SSR markers Ms4BS42 and Ms4BS199 using an F2 population with 1205 individuals. Sterile individuals had a deletion of 4.57 Mb in the region presumed to carry the Ms1 locus. The allele for sterility was therefore named ms1s. Three CAPS markers were developed and verified from the region upstream of the deleted fragment and can be used for ms1s marker-assisted selection in wheat hybrid breeding. This work will enrich the utilization of male sterility genetic resources.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Genes Recessivos , Loci Gênicos , Infertilidade das Plantas/genética , Triticum/genética , Melhoramento Vegetal
11.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445790

RESUMO

The normal developmental sequence in a grass grain entails the death of several maternal and filial tissues in a genetically regulated process termed programmed cell death (PCD). The progression and molecular aspects of PCD in developing grains have been reported for domesticated species such as barley, rice, maize and wheat. Here, we report a detailed investigation of PCD in the developing grain of the wild model species Brachypodium distachyon. We detected PCD in developing Brachypodium grains using molecular and histological approaches. We also identified in Brachypodium the orthologs of protease genes known to contribute to grain PCD and surveyed their expression. We found that, similar to cereals, PCD in the Brachypodium nucellus occurs in a centrifugal pattern following anthesis. However, compared to cereals, the rate of post-mortem clearance in the Brachypodium nucellus is slower. However, compared to wheat and barley, mesocarp PCD in Brachypodium proceeds more rapidly in lateral cells. Remarkably, Brachypodium mesocarp PCD is not coordinated with endosperm development. Phylogenetic analysis suggests that barley and wheat possess more vacuolar processing enzymes that drive nucellar PCD compared to Brachypodium and rice. Our expression analysis highlighted putative grain-specific PCD proteases in Brachypodium. Combined with existing knowledge on grain PCD, our study suggests that the rate of nucellar PCD moderates grain size and that the pattern of mesocarp PCD influences grain shape.


Assuntos
Apoptose/genética , Brachypodium/genética , Grão Comestível/genética , Cisteína Endopeptidases/genética , Endosperma/genética , Hordeum/genética , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Sementes/genética , Triticum/genética
12.
BMC Genomics ; 22(1): 597, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353288

RESUMO

BACKGROUND: Bread wheat (Triticum aestivum L.) is one of the most important cereal food crops for the global population. Spike-layer uniformity (the consistency of the spike distribution in the vertical space)-related traits (SLURTs) are quantitative and have been shown to directly affect yield potential by modifying the plant architecture. Therefore, these parameters are important breeding targets for wheat improvement. The present study is the first genome-wide association study (GWAS) targeting SLURTs in wheat. In this study, a set of 225 diverse spring wheat accessions were used for multi-locus GWAS to evaluate SLURTs, including the number of spikes per plant (NSPP), spike length (SL), number of spikelets per spike (NSPS), grain weight per spike (GWPS), lowest tiller height (LTH), spike-layer thickness (SLT), spike-layer number (SLN) and spike-layer uniformity (SLU). RESULTS: In total, 136 significant marker trait associations (MTAs) were identified when the analysis was both performed individually and combined for two environments. Twenty-nine MTAs were detected in environment one, 48 MTAs were discovered in environment two and 59 MTAs were detected using combined data from the two environments. Altogether, 15 significant MTAs were found for five traits in one of the two environments, and four significant MTAs were detected for the two traits, LTH and SLU, in both environments i.e. E1, E2 and also in combined data from the two environments. In total, 279 candidate genes (CGs) were identified, including Chaperone DnaJ, ABC transporter-like, AP2/ERF, SWEET sugar transporter, as well as genes that have previously been associated with wheat spike development, seed development and grain yield. CONCLUSIONS: The MTAs detected through multi-locus GWAS will be useful for improving SLURTs and thus yield in wheat production through marker-assisted and genomic selection.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Pão , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética
13.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360921

RESUMO

Hybrid varieties can provide the boost needed to increase stagnant wheat yields through heterosis. The lack of an efficient hybridization system, which can lower the cost of goods of hybrid seed production, has been a major impediment to commercialization of hybrid wheat varieties. In this review, we discuss the progress made in characterization of nuclear genetic male sterility (NGMS) in wheat and its advantages over two widely referenced hybridization systems, i.e., chemical hybridizing agents (CHAs) and cytoplasmic male sterility (CMS). We have characterized four wheat genes, i.e., Ms1, Ms5, TaMs26 and TaMs45, that sporophytically contribute to male fertility and yield recessive male sterility when mutated. While Ms1 and Ms5 are Triticeae specific genes, analysis of TaMs26 and TaMs45 demonstrated conservation of function across plant species. The main features of each of these genes is discussed with respect to the functional contribution of three sub-genomes and requirements for complementation of their respective mutants. Three seed production systems based on three genes, MS1, TaMS26 and TaMS45, were developed and a proof of concept was demonstrated for each system. The Tams26 and ms1 mutants were maintained through a TDNA cassette in a Seed Production Technology-like system, whereas Tams45 male sterility was maintained through creation of a telosome addition line. These genes represent different options for hybridization systems utilizing NGMS in wheat, which can potentially be utilized for commercial-scale hybrid seed production.


Assuntos
Hibridização Genética , Melhoramento Vegetal , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Pólen/genética , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento
14.
Ecotoxicol Environ Saf ; 223: 112623, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388658

RESUMO

Cadmium (Cd) is present in many soils and, when enter a food chain, represents a major health threat to humans. The existent large variation in grain Cd content amongst wheat genotypes opens prospects for genetic improvement for reduced Cd uptake in this species. However, selecting low-Cd-accumulating varieties comes with a possible caveat of affecting uptake other essential nutrients. In this work, we screened 134 wheat varieties in 3 various field studies and selected 15 high- and 15 low-Cd accumulating varieties in grains for ionomics analysis. Our results showed that high-Cd accumulating varieties also possessed an ability to accumulate mineral elements of calcium, magnesium, manganese, iron and zinc, while varieties with low Cd content were deficient in many essential nutrients and, especially, zinc (Zn). The above data was confirmed in an independent trail involving another 97 wheat varieties. Thus, selecting plants for high Zn accumulation (as a part of biofortification programs) resulted in an inadvertent increase in accumulation of the toxic Cd in wheat. Vice versa, selecting low Cd-accumulating varieties comes with a danger of reducing their Zn content, with major consequences to food quality and human health. We suggest that the above conundrum can be resolved by understanding the structure-function relations of various transporters isoforms involved in Zn and Cd transport and issue-specific mode of their operation, via cell-based phenotyping followed by molecular breeding.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Grão Comestível/química , Humanos , Solo , Poluentes do Solo/análise , Triticum/genética , Zinco/análise
15.
Plant Physiol Biochem ; 166: 950-957, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34247109

RESUMO

Durable disease resistance genes such as the wheat gene Lr34 are valuable sources of resistance for agricultural breeding programs. Lr34 encodes an ATP-binding cassette transporter protein involved in the transport of the phytohormone abscisic acid. Lr34 from wheat is functionally transferable to barley, maize, rice and sorghum. A pleiotropic effect of Lr34 induces the development of a senescence-like phenotype, referred to as leaf tip necrosis. We used Lr34-expressing wheat and transgenic barley plants to elucidate the role of abscisic acid in the development of leaf tip necrosis. Leaf tips in Lr34-expressing wheat and barley showed an accumulation of abscisic acid. No increase of Lr34 expression was detected in the leaf tip. Instead, the development of ectopic, Lr34-induced leaf tip necrosis after removing the leaf tip suggests an increased flux of abscisic acid towards the tip, where it accumulates and mediates the development of leaf tip necrosis. This redistribution of abscisic acid was also observed in adult transgenic barley plants with a high Lr34 expression level growing in the field and coincided with leaf tip necrosis as well as complete field resistance against Puccinia hordei and Blumeria graminis f. sp. hordei. In a barley transgenic line with a lower Lr34 expression level, a quantitative resistance against Puccinia hordei was still observed, but without a significant redistribution of abscisic acid or apparent leaf tip necrosis. Thus, our results imply that fine-tuning the Lr34 expression level is essential to balance disease resistance versus leaf tip necrosis to deploy transgenic Lr34 in breeding programs.


Assuntos
Basidiomycota , Hordeum , Ácido Abscísico , Ascomicetos , Resistência à Doença/genética , Hordeum/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Folhas de Planta/genética , Triticum/genética
16.
BMC Genomics ; 22(1): 493, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210256

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have been shown to play important roles in the regulation of plant growth and development. Recent transcriptomic analyses have revealed the gene expression profiling in wheat spike development, however, the possible regulatory roles of lncRNAs in wheat spike morphogenesis remain largely unclear. RESULTS: Here, we analyzed the genome-wide profiling of lncRNAs during wheat spike development at six stages, and identified a total of 8,889 expressed lncRNAs, among which 2,753 were differentially expressed lncRNAs (DE lncRNAs) at various developmental stages. Three hundred fifteen differentially expressed cis- and trans-regulatory lncRNA-mRNA pairs comprised of 205 lncRNAs and 279 genes were predicted, which were found to be mainly involved in the stress responses, transcriptional and enzymatic regulations. Moreover, the 145 DE lncRNAs were predicted as putative precursors or target mimics of miRNAs. Finally, we identified the important lncRNAs that participate in spike development by potentially targeting stress response genes, TF genes or miRNAs. CONCLUSIONS: This study outlines an overall view of lncRNAs and their possible regulatory networks during wheat spike development, which also provides an alternative resource for genetic manipulation of wheat spike architecture and thus yield.


Assuntos
MicroRNAs , RNA Longo não Codificante , Perfilação da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro , Triticum/genética
17.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203629

RESUMO

Drought and salinity are major constraints to agriculture. In this review, we present an overview of the global situation and the consequences of drought and salt stress connected to climatic changes. We provide a list of possible genetic resources as sources of resistance or tolerant traits, together with the previous studies that focused on transferring genes from the germplasm to cultivated varieties. We explained the morphological and physiological aspects connected to hydric stresses, described the mechanisms that induce tolerance, and discussed the results of the main studies. Finally, we described more than 100 genes associated with tolerance to hydric stresses in the Triticeae. These were divided in agreement with their main function into osmotic adjustment and ionic and redox homeostasis. The understanding of a given gene function and expression pattern according to hydric stress is particularly important for the efficient selection of new tolerant genotypes in classical breeding. For this reason, the current review provides a crucial reference for future studies on the mechanism involved in hydric stress tolerance and the use of these genes in mark assistance selection (MAS) to select the wheat germplasm to face the climatic changes.


Assuntos
Secas , Estudos de Associação Genética , Tolerância ao Sal/genética , Triticum/genética , Osmose , Salinidade
18.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203740

RESUMO

Heterosis utilization is very important in hybrid seed production. An AL-type cytoplasmic male sterile (CMS) line has been used in wheat-hybrid seed production, but its sterility mechanism has not been explored. In the present study, we sequenced and verified the candidate CMS gene in the AL-type sterile line (AL18A) and its maintainer line (AL18B). In the late uni-nucleate stage, the tapetum cells of AL18A showed delayed programmed cell death (PCD) and termination of microspore at the bi-nucleate stage. As compared to AL18B, the AL18A line produced 100% aborted pollens. The mitochondrial genomes of AL18A and AL18B were sequenced using the next generation sequencing such as Hiseq and PacBio. It was found that the mitochondrial genome of AL18A had 99% similarity with that of Triticum timopheevii, AL18B was identical to that of Triticum aestivum cv. Chinese Yumai. Based on transmembrane structure prediction, 12 orfs were selected as candidate CMS genes, including a previously suggested orf256. Only the lines harboring orf279 showed sterility in the transgenic Arabidopsis system, indicating that orf279 is the CMS gene in the AL-type wheat CMS lines. These results provide a theoretical basis and data support to further analyze the mechanism of AL-type cytoplasmic male sterility in wheat.


Assuntos
Genes de Plantas , Genoma Mitocondrial , Infertilidade das Plantas/genética , Triticum/genética , Arabidopsis/genética , Mapeamento Cromossômico , DNA Mitocondrial/genética , Estudos de Associação Genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética
19.
BMC Plant Biol ; 21(1): 311, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210282

RESUMO

BACKGROUND: Mineral elements are important for maintaining good human health besides heavy metals. Mining genes that control mineral elements are paramount for improving their accumulation in the wheat grain. Although previous studies have reported some loci for beneficial trace elements, they have mainly focused on Zn and Fe content. However, little information is available regarding the genetic loci differences in dissecting synchronous accumulation of multiple mineral elements in wheat grains, including beneficial and heavy elements. Therefore, a genome-wide association study (GWAS) was conducted on 205 wheat accessions with 24,355 single nucleotide polymorphisms (SNPs) to identify important loci and candidate genes for controlling Ca, Fe, Zn, Se, Cu, Mn, Cd, As, and Pb accumulation in wheat grains. RESULTS: A total of 101 marker-trait associations (MTAs) (P < 10-5) loci affecting the content of nine mineral elements was identified on chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 3D, 4A, 4B, 5A, 5B, 5D, 6B, 7A, 7B, and 7D. Among these, 17 major MTAs loci for the nine mineral elements were located, and four MTAs loci (P < 10-5) were found on chromosomes 1B, 6B, 7B, and 7D. Eight multi-effect MTAs loci were detected that are responsible for the control of more than one trait, mainly distributed on chromosomes 3B, 7B, and 5A. Furthermore, sixteen candidate genes controlling Ca, Fe, Zn, Se, Cd, and Pb were predicted, whose functions were primarily related to ion binding, including metals, Fe, Ca, Cu, Mg, and Zn, ATP binding, ATPase activity, DNA binding, RNA binding, and protein kinase activity. CONCLUSIONS: Our study indicated the existence of gene interactions among mineral elements based on multi-effect MTAs loci and candidate genes. Meanwhile this study provided new insights into the genetic control of mineral element concentrations, and the important loci and genes identified may contribute to the rapid development of beneficial mineral elements and a reduced content of harmful heavy metals in wheat grain.


Assuntos
Genoma de Planta , Minerais/metabolismo , Estações do Ano , Sementes/genética , Triticum/genética , Alelos , Mapeamento Cromossômico , Loci Gênicos , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Fenótipo
20.
BMC Plant Biol ; 21(1): 316, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215204

RESUMO

BACKGROUND: Ergot, caused by the fungal pathogen Claviceps purpurea, infects the female flowers of a range of cereal crops, including wheat. To understand the interaction between C. purpurea and hexaploid wheat we undertook an extensive examination of the reprogramming of the wheat transcriptome in response to C. purpurea infection through floral tissues (i.e. the stigma, transmitting and base ovule tissues of the ovary) and over time. RESULTS: C. purpurea hyphae were observed to have grown into and down the stigma at 24 h (H) after inoculation. By 48H hyphae had grown through the transmitting tissue into the base, while by 72H hyphae had surrounded the ovule. By 5 days (D) the ovule had been replaced by fungal tissue. Differential gene expression was first observed at 1H in the stigma tissue. Many of the wheat genes differentially transcribed in response to C. purpurea infection were associated with plant hormones and included the ethylene (ET), auxin, cytokinin, gibberellic acid (GA), salicylic acid and jasmonic acid (JA) biosynthetic and signaling pathways. Hormone-associated genes were first detected in the stigma and base tissues at 24H, but not in the transmitting tissue. Genes associated with GA and JA pathways were seen in the stigma at 24H, while JA and ET-associated genes were identified in the base at 24H. In addition, several defence-related genes were differential expressed in response to C. purpurea infection, including antifungal proteins, endocytosis/exocytosis-related proteins, NBS-LRR class proteins, genes involved in programmed cell death, receptor protein kinases and transcription factors. Of particular interest was the identification of differential expression of wheat genes in the base tissue well before the appearance of fungal hyphae, suggesting that a mobile signal, either pathogen or plant-derived, is delivered to the base prior to colonisation. CONCLUSIONS: Multiple host hormone biosynthesis and signalling pathways were significantly perturbed from an early stage in the wheat - C. purpurea interaction. Differential gene expression at the base of the ovary, ahead of arrival of the pathogen, indicated the potential presence of a long-distance signal modifying host gene expression.


Assuntos
Claviceps/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/genética , Triticum/genética , Triticum/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Reguladores de Crescimento de Plantas/farmacologia , RNA-Seq , Fatores de Tempo , Triticum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...