Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.658
Filtrar
1.
J Theor Biol ; 573: 111590, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37562673

RESUMO

We propose an integrated dynamical model for oxygen and carbon dioxide transfer from the lung into the blood, coupled with a lumped mechanical model for the ventilation process, for healthy patients as well as in pathological cases. In particular, we take into account the nonlinear interaction between oxygen and carbon dioxide in the blood volume, referred to as the Bohr and Haldane effects. We also propose a definition of the physiological dead space volume (the lung volume that does not contribute to gas exchange) which depends on the pathological state and the breathing scenario. This coupled ventilation-gas diffusion model is driven by the sole action of the respiratory muscles. We analyse its sensitivity with respect to characteristic parameters: the resistance of the bronchial tree, the elastance of the lung tissue and the oxygen and carbon dioxide diffusion coefficients of the alveolo-capillary membrane. Idealized pathological situations are also numerically investigated. We obtain realistic qualitative tendencies, which represent a first step towards classification of the pathological behaviours with respect to the considered input parameters.


Assuntos
Dióxido de Carbono , Espaço Morto Respiratório , Humanos , Volume de Ventilação Pulmonar/fisiologia , Espaço Morto Respiratório/fisiologia , Pulmão , Oxigênio , Troca Gasosa Pulmonar
3.
Int Immunopharmacol ; 123: 110638, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37494838

RESUMO

INTRODUCTION: Treatment of ARDS caused by smoke inhalation is challenging with no specific therapies available. The aim of this study was to test the efficacy of nebulized adipose-derived mesenchymal stem cells (ASCs) in a well-characterized, clinically relevant ovine model of smoke inhalation injury. MATERIAL AND METHODS: Fourteen female Merino sheep were surgically instrumented 5-7 days prior to study. After induction of acute lung injury (ALI) by cooled cotton smoke insufflation into the lungs (under anesthesia and analgesia), sheep were placed on a mechanical ventilator for 48 hrs and monitored for cardiopulmonary hemodynamics in a conscious state. ASCs were isolated from ovine adipose tissue. Sheep were randomly allocated to two groups after smoke injury: 1) ASCs group (n = 6): 10 million ASCs were nebulized into the airway at 1 hr post-injury; and 2) Control group (n = 8): Nebulized with saline into the airways at 1 hr post-injury. ASCs were labeled with green fluorescent protein (GFP) to trace cells within the lung. ASCs viability was determined in bronchoalveolar lavage fluid (BALF). RESULTS: PaO2/FiO2 in the ASCs group was significantly higher than in the control group (p = 0.001) at 24 hrs. Oxygenation index: (mean airway pressure × FiO2/PaO2) was significantly lower in the ASCs group at 36 hr (p = 0.003). Pulmonary shunt fraction tended to be lower in the ASCs group as compared to the control group. GFP-labelled ASCs were found on the surface of trachea epithelium 48 hrs after injury. The viability of ASCs in BALF was significantly lower than those exposed to the control vehicle solution. CONCLUSION: Nebulized ASCs moderately improved pulmonary function and delayed the onset of ARDS.


Assuntos
Lesão Pulmonar Aguda , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Lesão por Inalação de Fumaça , Ovinos , Animais , Feminino , Lesão por Inalação de Fumaça/terapia , Lesão por Inalação de Fumaça/complicações , Troca Gasosa Pulmonar , Pulmão , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/complicações , Fumaça/efeitos adversos , Síndrome do Desconforto Respiratório/etiologia , Modelos Animais de Doenças
4.
J Appl Physiol (1985) ; 135(3): 584-600, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439241

RESUMO

A step-transition in external work rate (WR) increases pulmonary O2 uptake (V̇o2p) in a monoexponential fashion. Although the rate of this increase, quantified by the time constant (τ), has frequently been shown to be similar between multiple different WR amplitudes (ΔWR), the adjustment of O2 delivery to the muscle (via blood flow; BF), a potential regulator of V̇o2p kinetics, has not been extensively studied. To investigate the role of BF on V̇o2p kinetics, 10 participants performed step-transitions on a knee-extension ergometer from a common baseline WR (3 W) to: 24, 33, 45, 54, and 66 W. Each transition lasted 8 min and was repeated four to six times. Volume turbinometry and mass spectrometry, Doppler ultrasound, and near-infrared spectroscopy were used to measure V̇o2p, BF, and muscle deoxygenation (deoxy[Hb + Mb]), respectively. Similar transitions were ensemble-averaged, and phase II V̇o2p, BF, and deoxy[Hb + Mb] were fit with a monoexponential nonlinear least squares regression equation. With increasing ΔWR, τV̇o2p became larger at the higher ΔWRs (P < 0.05), while τBF did not change significantly, and the mean response time (MRT) of deoxy[Hb + Mb] became smaller. These findings that V̇o2p kinetics become slower with increasing ΔWR, while BF kinetics are not influenced by ΔWR, suggest that O2 delivery could not limit V̇o2p in this situation. However, the speeding of deoxy[Hb + Mb] kinetics with increasing ΔWR does imply that the O2 delivery-to-O2 utilization of the microvasculature decreases at higher ΔWRs. This suggests that the contribution of O2 delivery and O2 extraction to V̇O2 in the muscle changes with increasing ΔWR.NEW & NOTEWORTHY A step increase in work rate produces a monoexponential increase in V̇o2p and blood flow to a new steady-state. We found that step transitions from a common metabolic baseline to increasing work rate amplitudes produced a slowing of V̇o2p kinetics, no change in blood flow kinetics, and a speeding of muscle deoxygenation kinetics. As work rate amplitude increased, the ratio of blood flow to V̇o2p became smaller, while the amplitude of muscle deoxygenation became greater. The gain in vascular conductance became smaller, while kinetics tended to become slower at higher work rate amplitudes.


Assuntos
Exercício Físico , Consumo de Oxigênio , Humanos , Consumo de Oxigênio/fisiologia , Exercício Físico/fisiologia , Pulmão/fisiologia , Troca Gasosa Pulmonar/fisiologia , Músculo Esquelético/fisiologia , Cinética , Oxigênio/metabolismo
5.
J Intensive Care Med ; 38(9): 775-784, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437083

RESUMO

Purpose: Pulse oximetry is a noninvasive medical technique that measures the amount of oxygen in a person's blood by shining light through their skin. It is widely used in medical care and is considered as important as the 4 traditional vital signs. In this article, it was aimed to review all aspects of pulse oximetry in detail. Materials and Methods: The international and national reliable sources were used in the literature review for critical data analysis. A total of 13 articles including 9 reviews, 1 comparative clinical research, 1 cost-saving quality improvement project, 1 cross-sectional and multicenter descriptive study, and 1 questionnaire study were used for the preparation of this part of the review. Results: The history, principles, advantages, limitations inaccuracies, cost analysis, the level of knowledge about pulse oximeter among clinicians, and pulse oximetry versus tissue oximetry were all reviewed in detail. Conclusion: The device has a significant impact on modern medicine, allowing continuous monitoring of hemoglobin oxygen saturation in arterial blood. Oximeters are valuable in managing oxygen levels in respiratory and nonrespiratory diseases and have become an essential tool in hospital settings. Detecting low levels of oxygen saturation early can alert patients to seek medical attention promptly. It is crucial to comprehend the working and limitations of pulse oximetry technology to ensure patient safety.


Assuntos
Oximetria , Oxigênio , Humanos , Estudos Transversais , Oximetria/métodos , Troca Gasosa Pulmonar , Custos e Análise de Custo , Estudos Multicêntricos como Assunto
6.
Medicine (Baltimore) ; 102(20): e33495, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37335721

RESUMO

RATIONALE: Near-infrared spectroscopy (NIRS) is a noninvasive bedside tool for monitoring regional cerebral oxygen saturation (rSO2). The sinus conversion of atrial fibrillation (AF) was shown to be responsible for increasing rSO2. However, the reason for this improvement has not yet been clearly explained. PATIENT CONCERNS: We report the case of a 73-year-old woman who underwent cardioversion during an off-pump coronary artery bypass under NIRS and live hemodynamic monitoring. INTERVENTIONS: Unlike previous studies that failed to control and compare all conditions during procedures, this case showed real-time fluctuating hemodynamic and hematological values, such as hemoglobin (Hgb), central venous pressure (CVP), mean arterial pressure (MAP), cardiac index (CI), left ventricular end-diastolic pressure (LVEDP), and SVO2. OUTCOMES: The rSO2 increased immediately after cardioversion and decreased during the obtuse marginal (OM) graft and after AF was obtained. However, no other hemodynamic data showed the same or opposite directional changes in the rSO2. LESSONS: Significant instantaneous changes were observed in rSO2 using NIRS after sinus conversion, without obvious hemodynamic alterations in the systemic circulation or other monitoring values.


Assuntos
Fibrilação Atrial , Ponte de Artéria Coronária sem Circulação Extracorpórea , Feminino , Humanos , Idoso , Ponte de Artéria Coronária sem Circulação Extracorpórea/métodos , Oximetria/métodos , Saturação de Oxigênio , Troca Gasosa Pulmonar , Pressão Arterial , Oxigênio
7.
Scand J Med Sci Sports ; 33(9): 1648-1660, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37300247

RESUMO

This study aimed to compare the Cosmed K5 portable indirect calorimeter, using the mixing chamber mode and face mask, with a stationary metabolic cart when measuring the resting metabolic rate (RMR) and to derive fitting equations if discrepancies are observed. Forty-three adults (18-84 years) were assessed for their RMR for two 30-min consecutive and counterbalanced periods using a Cosmed K5 and an Oxycon Pro. Differences among devices were tested using paired sample Student's t-tests, and correlation and agreement were assessed using Pearson's correlation coefficients, intraclass correlation coefficient and Bland-Altman plots. Forward stepwise multiple linear regression models were performed to develop fitting equations for estimating differences among devices when assessing oxygen uptake (VO2 diff , mL·min-1 ) and carbon dioxide production (VCO2 diff , mL·min-1 ). Furthermore, the Oxycon Pro was tested before being confirmed as a reference device. Significant differences between devices were found in most metabolic and ventilatory parameters, including the primary outcomes of VO2 and VCO2 . These differences showed an overestimation of the Cosmed K5 in all metabolic outcomes, except for Fat, when compared to the Oxycon Pro. When derived fitting equations were applied (VO2 diff - 139.210 + 0.786 [weight, kg] + 1.761 [height, cm] - 0.941 [Cosmed K5 VO2 , mL·min-1 ]; VCO2 diff - 86.569 + 0.548 [weight, kg] + 0.915 [height, cm] - 0.728 [Cosmed K5 VCO2 , mL·min-1 ]), differences were minimized, and agreement was maximized. This study provides fitting equations which allow the use of the Cosmed K5 for reasonably optimal RMR determinations.


Assuntos
Metabolismo Basal , Dióxido de Carbono , Adulto , Humanos , Dióxido de Carbono/metabolismo , Consumo de Oxigênio , Metabolismo Energético , Troca Gasosa Pulmonar , Reprodutibilidade dos Testes , Calorimetria Indireta
8.
Adv Physiol Educ ; 47(3): 604-614, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382502

RESUMO

In exercise physiology, laboratory components help students connect theoretical concepts to their own exercise experiences and introduce them to data collection, analysis, and interpretation using classic techniques. Most courses include a lab protocol that involves exhaustive incremental exercise during which expired gas volumes and concentrations of oxygen and carbon dioxide are measured. During these protocols, there are characteristic alterations in gas exchange and ventilatory profiles that give rise to two exercise thresholds: the gas exchange threshold (GET) and the respiratory compensation point (RCP). The ability to explain why these thresholds occur and how they are identified is fundamental to learning in exercise physiology and requisite to the understanding of core concepts including exercise intensity, prescription, and performance. Proper identification of GET and RCP requires the assembly of eight data plots. In the past, the burden of time and expertise required to process and prepare data for interpretation has been a source of frustration. In addition, students often express a desire for more opportunities to practice/refine their skills. The objective of this article is to share a blended laboratory model that features the "Exercise Thresholds App," a free online resource that eliminates postprocessing of data and provides a bank of profiles on which end-users can practice threshold identification skills with immediate feedback. In addition to including prelaboratory and postlaboratory recommendations, we present student accounts of understanding, engagement, and satisfaction following completion of the laboratory experience and introduce a new quiz feature of the app to assist instructors with evaluating student learning.NEW & NOTEWORTHY We present a laboratory to study exercise thresholds from gas exchange and ventilatory measures that features the "Exercise Thresholds App," a free online resource that eliminates postprocessing of data and provides a bank of profiles on which end-users can practice threshold identification skills. In addition to including prelaboratory and postlaboratory recommendations, we present student accounts of understanding, engagement, and satisfaction and introduce a new quiz feature of the app to assist instructors with evaluating learning.


Assuntos
Exercício Físico , Troca Gasosa Pulmonar , Humanos , Troca Gasosa Pulmonar/fisiologia , Exercício Físico/fisiologia , Estudantes , Dióxido de Carbono , Aprendizagem , Teste de Esforço , Consumo de Oxigênio/fisiologia
9.
J Appl Physiol (1985) ; 135(2): 334-342, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345856

RESUMO

The conditions of temperature, pressure, and saturation in which respiratory gas volumes are expressed [standard temperature and pressure, dry (STPD), ambient temperature and pressure, saturated (ATPS), or body temperature and pressure, saturated (BTPS)] are physiologically relevant, but often ignored or unknown in clinical practice. In this study, we aimed to investigate whether and at which extent the gas volume corrections, either in natural or artificial lung, may alter key respiratory and metabolic variables and the possible clinical consequences. We primarily referred to the effects of gas volume corrections on three physiological variables: physiological dead space, venous admixture, and total CO2 production (V̇co2) during extracorporeal support. We used three physiological models in which calculations of these variables have been performed with and without correction of gas volumes, both in a theoretical model and in 448 patients. The lack of gas volume correction leads to an error in the computation of physiological dead space fraction between 0.05 and 0.15, both in the theoretical model and in the patient population. The venous admixture was minimally affected by the absence of correction (0.01-0.04 error). During extracorporeal support, if the V̇co2 of natural and membrane lung is expressed in different conditions, potentially large errors (0%-18.4%) may occur in the computation of total V̇co2 (V̇co2tot = V̇co2ML + V̇co2NL). This may lead to inappropriate settings of mechanical ventilation with higher plateau pressure. As the dead space and the CO2 sharing between natural and artificial lung are relevant both as prognostic index and as a guide for appropriate mechanical ventilation, their inappropriate computation may lead to erroneous categorization of the patients and inappropriate mechanical treatment.NEW & NOTEWORTHY Gas volume conditions are often ignored or unknown in the clinical practice. However, they could have relevance for the calculation of some key variables in ICU setting. This study shows that gas volume corrections are mostly relevant when assessing CO2 clearance, both in mechanical ventilation and during extracorporeal support, whereas irrelevant for oxygenation assessment of patients. Knowing when the appropriate corrections are needed allows to better understand patients' clinical conditions and to tailor the treatment.


Assuntos
Dióxido de Carbono , Respiração Artificial , Humanos , Dióxido de Carbono/metabolismo , Pulmão/metabolismo , Ventiladores Mecânicos , Unidades de Terapia Intensiva , Volume de Ventilação Pulmonar , Troca Gasosa Pulmonar
10.
Nitric Oxide ; 136-137: 1-7, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172929

RESUMO

BACKGROUND: Impairment of ventilation and perfusion (V/Q) matching is a common mechanism leading to hypoxemia in patients with acute respiratory failure requiring intensive care unit (ICU) admission. While ventilation has been thoroughly investigated, little progress has been made to monitor pulmonary perfusion at the bedside and treat impaired blood distribution. The study aimed to assess real-time changes in regional pulmonary perfusion in response to a therapeutic intervention. METHODS: Single-center prospective study that enrolled adult patients with ARDS caused by SARS-Cov-2 who were sedated, paralyzed, and mechanically ventilated. The distribution of pulmonary perfusion was assessed through electrical impedance tomography (EIT) after the injection of a 10-ml bolus of hypertonic saline. The therapeutic intervention consisted in the administration of inhaled nitric oxide (iNO), as rescue therapy for refractory hypoxemia. Each patient underwent two 15-min steps at 0 and 20 ppm iNO, respectively. At each step, respiratory, gas exchange, and hemodynamic parameters were recorded, and V/Q distribution was measured, with unchanged ventilatory settings. RESULTS: Ten 65 [56-75] years old patients with moderate (40%) and severe (60%) ARDS were studied 10 [4-20] days after intubation. Gas exchange improved at 20 ppm iNO (PaO2/FiO2 from 86 ± 16 to 110 ± 30 mmHg, p = 0.001; venous admixture from 51 ± 8 to 45 ± 7%, p = 0.0045; dead space from 29 ± 8 to 25 ± 6%, p = 0.008). The respiratory system's elastic properties and ventilation distribution were unaltered by iNO. Hemodynamics did not change after gas initiation (cardiac output 7.6 ± 1.9 vs. 7.7 ± 1.9 L/min, p = 0.66). The EIT pixel perfusion maps showed a variety of patterns of changes in pulmonary blood flow, whose increase positively correlated with PaO2/FiO2 increase (R2 = 0.50, p = 0.049). CONCLUSIONS: The assessment of lung perfusion is feasible at the bedside and blood distribution can be modulated with effects that are visualized in vivo. These findings might lay the foundations for testing new therapies aimed at optimizing the regional perfusion in the lungs.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Circulação Pulmonar , Estudos Prospectivos , Troca Gasosa Pulmonar , COVID-19/complicações , SARS-CoV-2 , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Óxido Nítrico , Hipóxia , Insuficiência Respiratória/tratamento farmacológico , Administração por Inalação
13.
Magn Reson Med ; 90(4): 1555-1568, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246900

RESUMO

PURPOSE: 129 Xe MRI and MRS signals from airspaces, membrane tissues (M), and red blood cells (RBCs) provide measurements of pulmonary gas exchange. However, 129 Xe MRI/MRS studies have yet to account for hemoglobin concentration (Hb), which is expected to affect the uptake of 129 Xe in the membrane and RBC compartments. We propose a framework to adjust the membrane and RBC signals for Hb and use this to assess sex-specific differences in RBC/M and establish a Hb-adjusted healthy reference range for the RBC/M ratio. METHODS: We combined the 1D model of xenon gas exchange (MOXE) with the principle of TR-flip angle equivalence to establish scaling factors that normalize the dissolved-phase signals with respect to a standard H b 0 $$ H{b}^0 $$ (14 g/dL). 129 Xe MRI/MRS data from a healthy, young cohort (n = 18, age = 25.0 ± $$ \pm $$ 3.4 years) were used to validate this model and assess the impact of Hb adjustment on M/gas and RBC/gas images and RBC/M. RESULTS: Adjusting for Hb caused RBC/M to change by up to 20% in healthy individuals with normal Hb and had marked impacts on M/gas and RBC/gas distributions in 3D gas-exchange maps. RBC/M was higher in males than females both before and after Hb adjustment (p < 0.001). After Hb adjustment, the healthy reference value for RBC/M for a consortium-recommended acquisition of TR = 15 ms and flip = 20° was 0.589 ± $$ \pm $$ 0.083 (mean ± $$ \pm $$ SD). CONCLUSION: MOXE provides a useful framework for evaluating the Hb dependence of the membrane and RBC signals. This work indicates that adjusting for Hb is essential for accurately assessing 129 Xe gas-exchange MRI/MRS metrics.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Xenônio , Masculino , Feminino , Humanos , Adulto , Imageamento por Ressonância Magnética/métodos , Hemoglobinas , Xenônio , Eritrócitos , Troca Gasosa Pulmonar , Gases , Pulmão
14.
J Clin Monit Comput ; 37(5): 1303-1311, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37004663

RESUMO

We investigated whether machine learning (ML) analysis of ICU monitoring data incorporating volumetric capnography measurements of mean alveolar PCO2 can partition venous admixture (VenAd) into its shunt and low V/Q components without manipulating the inspired oxygen fraction (FiO2). From a 21-compartment ventilation / perfusion (V/Q) model of pulmonary blood flow we generated blood gas and mean alveolar PCO2 data in simulated scenarios with shunt values from 7.3% to 36.5% and a range of FiO2 settings, indirect calorimetry and cardiac output measurements and acid- base and hemoglobin oxygen affinity conditions. A 'deep learning' ML application, trained and validated solely on single FiO2 bedside monitoring data from 14,736 scenarios, then recovered shunt values in 500 test scenarios with true shunt values 'held back'. ML shunt estimates versus true values (n = 500) produced a linear regression model with slope = 0.987, intercept = -0.001 and R2 = 0.999. Kernel density estimate and error plots confirmed close agreement. With corresponding VenAd values calculated from the same bedside data, low V/Q flow can be reported as VenAd-shunt. ML analysis of blood gas, indirect calorimetry, volumetric capnography and cardiac output measurements can quantify pulmonary oxygenation deficits as percentage shunt flow (V/Q = 0) versus percentage low V/Q flow (V/Q > 0). High fidelity reports are possible from analysis of data collected solely at the operating FiO2.


Assuntos
Capnografia , Pulmão , Humanos , Relação Ventilação-Perfusão/fisiologia , Simulação por Computador , Oxigênio , Troca Gasosa Pulmonar/fisiologia
15.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L825-L835, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014821

RESUMO

Band 3 protein is a Cl-/[Formula: see text] transporter on the red blood cell (RBC) surface with an important role in CO2 excretion. Greater band 3 expression by roughly 20% is found in people with the GP.Mur blood type. Intriguingly, a disproportional percentage of those with GP.Mur excel in field-and-track sports. Could higher band 3 activity benefit an individual's physical performance? This study explored the impact of GP.Mur/higher band 3 expression on ventilation and gas exchange during exhaustive exercise. We recruited 36 nonsmoking, elite male athletes (36.1% GP.Mur) from top sports universities to perform incremental exhaustive treadmill cardiopulmonary exercise testing (CPET). We analyzed CPET data with respect to absolute running time and to individual's %running time and %maximal O2 uptake. We found persistently higher respiratory frequencies and slightly lower tidal volume in GP.Mur athletes, resulting in a slightly larger increase of ventilation as the workload intensified. The expiratory duty cycle (Te/Ttot) was persistently longer and inspiratory duty cycle (Ti/Ttot) was persistently shorter for GP.Mur subjects throughout the run. Consequently, end-tidal pressure of carbon dioxide ([Formula: see text], a surrogate marker for alveolar and arterial CO2 tension-[Formula: see text] and [Formula: see text]) was lower in the GP.Mur athletes during the early stages of exercise. In conclusion, athletes with GP.Mur and higher band 3 expression hyperventilate more during exercise in a pattern that uses a greater fraction of time for expiration than inspiration to increase the rate of CO2 excretion than increased tidal volume. This greater ventilation response reduced Pco2 and may help to extend exercise capacity in high-level sports.NEW & NOTEWORTHY Higher expression of the Cl-/[Formula: see text] transporter band 3 anion exchanger-1 (AE1) on the red blood cell membrane, as in people with the GP.Mur blood type, increases the rate of CO2 excretion during exercise.


Assuntos
Dióxido de Carbono , Troca Gasosa Pulmonar , Humanos , Masculino , Dióxido de Carbono/metabolismo , Troca Gasosa Pulmonar/fisiologia , Respiração , Pulmão/metabolismo , Expiração
16.
Sensors (Basel) ; 23(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904679

RESUMO

There are several methods available to assess energy expenditure, all associated with inherent pros and cons that must be adequately considered for use in specific environments and populations. A requirement of all methods is that they must be valid and reliable in their capability to accurately measure oxygen consumption (VO2) and carbon dioxide production (VCO2). The purpose of this study was to evaluate the reliability and validity of the mobile CO2/O2 Breath and Respiration Analyzer (COBRA) relative to a criterion system (Parvomedics TrueOne 2400®, PARVO) with additional measurements to compare the COBRA to a portable system (Vyaire Medical, Oxycon Mobile®, OXY). Fourteen volunteers with a mean of 24 years old, body weight of 76 kg, and a VO2peak of 3.8 L∙min-1 performed four repeated trials of progressive exercises. Simultaneous steady-state measurements of VO2, VCO2, and minute ventilation (VE) by the COBRA/PARVO and OXY systems were conducted at rest, while walking (23-36% VO2peak), jogging (49-67% VO2peak), and running (60-76% VO2peak). Data collection was randomized by the order of system tested (COBRA/PARVO and OXY) and was standardized to maintain work intensity (rest to run) progression across study trials and days (two trials/day over two days). Systematic bias was examined to assess the accuracy of the COBRA to PARVO and OXY to PARVO across work intensities. Intra- and inter-unit variability were assessed with interclass correlation coefficients (ICC) and a 95% limit of agreement intervals. The COBRA and PARVO produced similar measures for VO2 (Bias ± SD, 0.01 ± 0.13 L·min-1; 95% LoA, (-0.24, 0.27 L·min-1); R2 = 0.982), VCO2 (0.06 ± 0.13 L·min-1; (-0.19, 0.31 L·min-1); R2 = 0.982), VE (2.07 ± 2.76 L·min-1; (-3.35, 7.49 L·min-1); R2 = 0.991) across work intensities. There was a linear bias across both the COBRA and OXY with increased work intensity. The coefficient of variation for the COBRA ranged from 7 to 9% across measures for VO2, VCO2, and VE. COBRA was reliable across measurements for VO2 (ICC = 0.825; 0.951), VCO2 (ICC = 0.785; 0.876), and VE (ICC = 0.857; 0.945) for intra-unit reliability, respectively. The COBRA is an accurate and reliable mobile system for measuring gas exchange at rest and across a range of work intensities.


Assuntos
Consumo de Oxigênio , Troca Gasosa Pulmonar , Humanos , Adulto Jovem , Adulto , Reprodutibilidade dos Testes , Testes de Função Respiratória/métodos , Metabolismo Energético , Dióxido de Carbono
17.
PeerJ ; 11: e15042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935930

RESUMO

Background: Physical exercise is a source of stress to the human body, triggering different ventilatory responses through different regulatory mechanisms and the aquatic environment imposes several restrictions to the swimmer, particularly regarding the restricted ventilation. Thus, we aimed to assess the acute ventilatory responses and to characterize the adopted breathing patterns when swimming front crawl at increasing intensity domains. Methods: Eighteen well-trained swimmers performed 7 × 200 m front crawl (0.05 m∙s-1 velocity increments) and a maximal 100 m (30 s rest intervals). Pulmonary gas exchange and ventilation were continuously measured (breath-by-breath) and capillary blood samples for lactate concentration ([La-]) analysis were collected at rest, during intervals and at the end of the protocol, allowing the identification of the low, moderate, heavy, severe and extreme intensity domains. Results: With the swimming velocity rise, respiratory frequency (f R), [La-] and stroke rate (SR) increased ([29.1-49.7] breaths∙min-1, [2.7-11.4] mmol∙L-1, [26.23-40.85] cycles; respectively) and stroke length (SL) decreased ([2.43-2.04] m∙min-1; respectively). Oxygen uptake (VO2), minute ventilation (VE), carbon dioxide production (VCO2) and heart rate (HR) increased until severe ([37.5-53.5] mL∙kg-1∙min-1, [55.8-96.3] L∙min-1, [32.2-51.5] mL∙kg-1∙min-1 and [152-182] bpm; respectively) and stabilized from severe to extreme (53.1 ± 8.4, mL∙kg-1∙min-1, 99.5 ± 19.1 L∙min-1, 49.7 ± 8.3 mL∙kg-1∙min-1 and 186 ± 11 bpm; respectively) while tidal volume (VT) was similar from low to severe ([2.02-2.18] L) and decreased at extreme intensities (2.08 ± 0.56 L). Lastly, the f R/SR ratio increased from low to heavy and decreased from severe to the extreme intensity domains (1.12 ± 0.24, 1.19 ± 0.25, 1.26 ± 0.26, 1.32 ± 0.26 and 1.23 ± 0.26). Conclusions: Our findings confirm a different ventilatory response pattern at extreme intensities when compared to the usually evaluated exertions. This novel insight helps to understand and characterize the maximal efforts in swimming and reinforces the importance to include extreme efforts in future swimming evaluations.


Assuntos
Consumo de Oxigênio , Natação , Humanos , Natação/fisiologia , Consumo de Oxigênio/fisiologia , Respiração , Troca Gasosa Pulmonar/fisiologia , Ácido Láctico
18.
Pediatr Pulmonol ; 58(5): 1514-1519, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36785523

RESUMO

BACKGROUND: When ventilating extremely low birth weight infants, clinicians face the problem of instrumental dead space, which is often larger than tidal volume. Hence, aggressive ventilation is necessary to achieve CO2 removal. Continuous tracheal gas insufflation can wash out CO2 from dead space and might also have an impact on O2 and water vapor transport. The objective of this bench study is to test the impact of instrumental dead space on the transport of CO2 , O2 , and water vapor and the ability of continuous tracheal gas insufflation to remedy this problem during small tidal volume ventilation. METHODS: A test-lung located in an incubator at 37°C was ventilated with pressure levels needed to reach different tidal volumes from 1.5 to 5 mL. End-tidal CO2 at the test-lung exit, O2 concentration, and relative humidity in the test-lung were measured for each tidal volume with and without a 0.2 L/min continuous tracheal gas insufflation flow. RESULTS: CO2 clearance was improved by continuous tracheal gas insufflation allowing a 28%-44% of tidal volume reduction. With continuous tracheal gas insufflation, time to reach desired O2 concentration was reduced from 20% to 80% and relative humidity was restored. These results are inversely related to tidal volume and are particularly critical below 3 mL. CONCLUSION: For the smallest tidal volumes, reduction of instrumental dead space seems mandatory for CO2 , O2 , and water vapor transfer. Continuous tracheal gas insufflation improved CO2 clearance, time to reach desired O2 concentration and humidification of airways and, thus, may be an option to protect lung development.


Assuntos
Insuflação , Espaço Morto Respiratório , Recém-Nascido , Humanos , Dióxido de Carbono , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Vapor , Respiração Artificial/métodos , Troca Gasosa Pulmonar , Recém-Nascido Prematuro , Pulmão , Volume de Ventilação Pulmonar , Insuflação/métodos
19.
J Clin Monit Comput ; 37(3): 847-856, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36786963

RESUMO

PURPOSE: This study intended to determine, and non-invasively evaluate, sternal intraosseous oxygen saturation (SsO2) and study its variation during provoked hypoxia or hypovolaemia. Furthermore, the relation between SsO2 and arterial (SaO2) or mixed venous oxygen saturation (SvO2) was investigated. METHODS: Sixteen anaesthetised male pigs underwent exsanguination to a mean arterial pressure of 50 mmHg. After resuscitation and stabilisation, hypoxia was induced with hypoxic gas mixtures (air/N2). Repeated blood samples from sternal intraosseous cannulation were compared to arterial and pulmonary artery blood samples. Reflection spectrophotometry measurements by a non-invasive sternal probe were performed continuously. RESULTS: At baseline SaO2 was 97.0% (IQR 0.2), SsO2 73.2% (IQR 19.6) and SvO2 52.3% (IQR 12.4). During hypovolaemia, SsO2 and SvO2 decreased to 58.9% (IQR 16.9) and 38.1% (IQR 12.5), respectively, p < 0.05 for both, whereas SaO2 remained unaltered (p = 0.44). During hypoxia all saturations decreased; SaO2 71.5% (IQR 5.2), SsO2 39.0% (IQR 6.9) and SvO2 22.6% (IQR 11.4) (p < 0.01), respectively. For hypovolaemia, the sternal probe red/infrared absorption ratio (SQV) increased significantly from baseline (indicating a reduction in oxygen saturation) + 5.1% (IQR 7.4), p < 0.001 and for hypoxia + 19.9% (IQR 14.8), p = 0.001, respectively. CONCLUSION: Sternal blood has an oxygen saturation suggesting a mixture of venous and arterial blood. Changes in SsO2 relate well with changes in SvO2 during hypovolaemia or hypoxia. Further studies on the feasibility of using non-invasive measurement of changes in SsO2 to estimate changes in SvO2 are warranted.


Assuntos
Hipovolemia , Hipóxia , Saturação de Oxigênio , Animais , Masculino , Oximetria , Oxigênio , Troca Gasosa Pulmonar , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...