RESUMO
INTRODUCTION: Trophoblast cells play an important role in embryo recognition and localization, as well as placental development during embryo implantation. Dysfunction of trophoblastic cells causes pathological changes that lead to insufficient recognition, positioning, and adhesion during embryo implantation, ultimately leading to embryo development has stopped. METHODS: High-throughput sequencing was used to identify differentially expressed the mRNA and lncRNA in the villi tissue of pregnant women diagnosed with embryo cessation. In vitro implantation cell models, characteristic analysis, and bio information analysis confirmed that CLRN1-AS1 affected the adhesion function of trophoblast cells by influencing the chemokines CXCL10/CXCL11. RESULTS: High throughput sequencing technology was used to identify 438 differentially expressed mRNAs and 41 lncRNAs. The three lncRNAs, namely CLRN1-AS1, USP27X-AS1, and AC104809.4, were screened by the mRNA-lncRNA network. In vitro implantation model suggested that all three lncRNAs could affect the adhesion between trophoblast cells, among which CLRN1-AS1 had the most significant effect. Characteristic analysis and correlation analysis showed that CLRN1-AS1 was closely related to the expression of six adhesion-related genes, LAMA1, FGL2, ITGB2, FBN1, EMP2, and PODN. Cell experiments and re-sequencing confirmed that CLRN1-AS1 could affect the adhesion ability of trophoblast cells to the extracellular matrix, and its process was related to the chemokine CXCL10/CXCL11. DISCUSSION: These results constructed the network of mRNA-lncRNA and enrichment when embryonic development has stopped and found CLRN1-AS1 highly correlated to failure of embryo implantation, and revealed that CLRN1-AS1 modulates the adhesion ability of trophoblast cells to the extracellular matrix via the chemokines CXCL10/CXCL11 during the early stage of embryo implantation.
Assuntos
RNA Longo não Codificante , Trofoblastos , Humanos , Gravidez , Feminino , Trofoblastos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Placenta/metabolismo , Implantação do Embrião/genética , RNA Mensageiro/metabolismo , Proteínas de Membrana/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Glicoproteínas de Membrana/metabolismo , Fibrinogênio/metabolismoRESUMO
BACKGROUND: Mucins are a family of proteins that protect the epithelium. A particular type of mucin, MUC15 is highly expressed in the placenta. This study aimed to characterise MUC15 in preeclampsia and investigate its role in placental stem cell biology. METHODS: MUC15 mRNA and protein were measured in placentas from patients with early onset (<34 weeks' gestation) preeclampsia. Circulating serum MUC15 was measured via ELISA. MUC15 was localised in the placenta using in situ hybridisation. MUC15 mRNA expression was measured across differentiation of human trophoblast stem cells (hTSCs) to syncytiotrophoblast and extravillous trophoblasts. MUC15 was measured after syncytialised hTSCs were cultured in hypoxic (1% O2) and proinflammatory (TNF α, IL-6) conditions. MUC15 secretion was assessed when syncytialised hTSCs were treated with brefeldin A (impairs protein trafficking) and batimastat (inhibits matrix metalloproteinases). RESULTS: MUC15 protein was significantly increased in the placenta (P = 0.0003, n = 32 vs n = 20 controls) and serum (P = 0.016, n = 32 vs n = 22 controls) of patients with preeclampsia, whilst MUC15 mRNA remained unchanged (n = 61 vs n = 18 controls). MUC15 mRNA (P = 0.005) and protein secretion (P = 0.006) increased following differentiation to syncytiotrophoblast cells. In situ hybridisation confirmed MUC15 localised to the syncytiotrophoblast cell within the placenta. Neither hypoxic or inflammatory conditions changed MUC15 mRNA expression or secretion. Brefeldin A treated hTSCs did not alter MUC15 secretion, whilst batimastat reduced MUC15 secretion (P = 0.044). CONCLUSIONS: MUC15 is increased in early onset preeclampsia and is cleaved by matrix metalloproteinases. Increased MUC15 may reflect a protective mechanism associated with placental dysfunction. Further research will aid in confirming this.
Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Placenta/metabolismo , Mucinas/metabolismo , Pré-Eclâmpsia/metabolismo , Brefeldina A/metabolismo , Trofoblastos/metabolismo , RNA Mensageiro/metabolismo , Metaloproteinases da Matriz/metabolismoRESUMO
The extravillous trophoblast cell lineage is a key feature of placentation and successful pregnancy. Knowledge of transcriptional regulation driving extravillous trophoblast cell development is limited. Here, we map the transcriptome and epigenome landscape as well as chromatin interactions of human trophoblast stem cells and their transition into extravillous trophoblast cells. We show that integrating chromatin accessibility, long-range chromatin interactions, transcriptomic, and transcription factor binding motif enrichment enables identification of transcription factors and regulatory mechanisms critical for extravillous trophoblast cell development. We elucidate functional roles for TFAP2C, SNAI1, and EPAS1 in the regulation of extravillous trophoblast cell development. EPAS1 is identified as an upstream regulator of key extravillous trophoblast cell transcription factors, including ASCL2 and SNAI1 and together with its target genes, is linked to pregnancy loss and birth weight. Collectively, we reveal activation of a dynamic regulatory network and provide a framework for understanding extravillous trophoblast cell specification in trophoblast cell lineage development and human placentation.
Assuntos
Cromatina , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Placentação/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem da Célula/genética , Placenta/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismoRESUMO
The invasion of human extravillous trophoblast (EVT) cells is a critical event required for a successful pregnancy. Amphiregulin, a ligand of the epidermal growth factor receptor (EGFR), has been shown to stimulate cell invasion in an immortalized human EVT cell line, HTR-8/SVneo. The with-no-lysine kinase 1 (WNK1) is involved in regulating cell invasion. It is known that WNK1 is expressed in the human placenta, but its role in human EVT cells remains unknown. In the present study, we show that AREG treatment phosphorylated WNK1 at Thr60 in both HTR-8/SVneo and primary human EVT cells. The stimulatory effect of AREG on WNK1 phosphorylation was mediated by the activation of PI3K/AKT, but not the ERK1/2 signaling pathway. AREG upregulated matrix metalloproteinase 9 (MMP9) but not MMP2. In addition, cell invasiveness was increased in response to the treatment of AREG. Using the siRNA-mediated knockdown approach, our results showed that the knockdown of WNK1 attenuated the AREG-induced upregulation of MMP9 expression and cell invasion. Moreover, the expression of WNK1 was downregulated in the placentas with preeclampsia, a disease resulting from insufficiency of EVT cell invasion during pregnancy. This study discovers the physiological function of WNK1 in human EVT cells and provides important insights into the regulation of MMP9 and cell invasion in human EVT cells.
Assuntos
Metaloproteinase 9 da Matriz , Trofoblastos , Proteína Quinase 1 Deficiente de Lisina WNK , Feminino , Humanos , Gravidez , Anfirregulina/genética , Anfirregulina/metabolismo , Movimento Celular , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Primeiro Trimestre da Gravidez/metabolismo , Trofoblastos/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismoRESUMO
Preeclampsia (PE) and gestational diabetes mellitus (GDM) are pregnancy-specific complications, which affect maternal health and fetal outcomes. Currently, clinical and pathological studies have shown that placenta homeostasis is affected by these two maternal diseases. In this study, we aimed to gain insight into the heterogeneous changes in cell types in placental tissue-isolated from cesarean section by single-cell sequencing, including those patients diagnosed with PE (n = 5), GDM (n = 5) and healthy control (n = 5). A total of 96,048 cells (PE: 31,672; GDM: 25,294; control: 39,082) were identified in six cell types, dominated by trophoblast cells and immune cells. In addition, trophoblast cells were divided into four subtypes, including cytotrophoblast cells (CTBs), villous cytotrophoblasts (VCTs), syncytiotrophoblast (STB), and extravillous trophoblasts (EVTs). Immune cells are divided into lymphocytes and macrophages, of which macrophages have 3 subtypes (decidual macrophages, Hofbauer cells and macrophages), and lymphocytes have 4 subtypes (BloodNK, T cells, plasma cells, and decidual natural killer cells). Meanwhile, we also proved the orderly differentiation sequence of CTB into VCT, then STB and EVT. By pair-wise analysis of the expression and enrichment of differentially expressed genes in trophoblast cells between PE, GDM and control, it was found that these cells were involved in immune, nutrient transfer, hormone and oxidative stress pathways. In addition, T cells and macrophages play an immune defense role in both PE and GDM. The proportion of CTB and EVT cells in placental tissue was confirmed by flow cytometry. Taken together, our results suggested that the human placenta is a dynamic heterogenous organ dominated by trophoblast and immune cells, which perform their respective roles and interact with other cells in the environment to maintain normal placental function.
Assuntos
Diabetes Gestacional , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Placenta/metabolismo , Diabetes Gestacional/metabolismo , Pré-Eclâmpsia/metabolismo , Cesárea , Trofoblastos/metabolismo , Células Matadoras NaturaisRESUMO
Synchronized crosstalk between the embryo and endometrium during the periconception period is integral to pregnancy establishment. Increasing evidence suggests that the exchange of extracellular vesicles (EVs) of both embryonic and endometrial origin is a critical component of embryo-maternal communication during peri-implantation. Here, we investigated whether embryonic signals in the form of EVs can modulate the endometrial epithelial cell secretome. Receptive endometrial analog RL95-2 cells were supplemented with trophoblast analog JAr cell-derived EVs, and the secretory protein changes occurring in the RL95-2 cells were analyzed using mass spectrometry. EVs of non-trophoblastic origin (HEK 293 cells) were used as the control EV source to supplement endometrial cells. Trophoblast cell-derived EVs enriched endometrial epithelial cell secretions with proteins that support embryo development, attachment, or implantation, whereas control EVs were unable to induce the same effect. The present study suggests that embryonic signals in the form of EVs may prime receptive endometrial epithelial cells to enrich their secretory proteome with critical proteomic molecules with functional importance for periconception milieu formation.
Assuntos
Vesículas Extracelulares , Trofoblastos , Humanos , Gravidez , Feminino , Trofoblastos/metabolismo , Células HEK293 , Proteômica/métodos , Implantação do Embrião/fisiologia , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Endométrio/metabolismoRESUMO
In a previous study, we investigated the effects of high-temperature requirement factor A4 (HtrA4) deficiency on trophoblasts using the BeWo KO cell line. However, the effects of this deficiency on angiogenesis remain unclear. To explore the role of HtrA4 in angiogenesis, HUVECs were co-cultured with wild-type BeWo cells (BeWo WT), BeWo KO, and HtrA4-rescued BeWo KO (BeWo KO-HtrA4 rescue) cells. Dil staining and dextran analysis revealed that HUVECs co-cultured with BeWo KO formed tubes, but they were often disjointed compared to those co-cultured with BeWo WT, BeWo KO-HtrA4 rescue, and HUVECs controls. RT-PCR, ELISA, and western blot analysis were performed to assess angiogenesis-related factors at the mRNA and protein levels. HtrA4 deficiency inhibited IL-6 expression in trophoblasts, and the reduced secretion of IL-6 decreases VEGFA expression in HUVECs by modulating the JAK2/STAT3 signaling pathway to prevent tube formation. Moreover, rescuing HtrA4 expression restored the HUVEC tube formation ability. Interestingly, IL-6 expression was lower in supernatants with only cultured HUVECs than in co-cultured HUVECs with BeWo WT cells, but the HUVEC tube formation ability was similar. These findings suggest that the promoting angiogenesis-related signaling pathway differs between only HUVECs and co-cultured HUVECs, and that the deficiency of HtrA4 weakens the activation of the IL-6/JAK/STAT3/VEGFA signaling pathway, reducing the ability of tube formation in HUVECs. HtrA4 deficiency in trophoblasts hinders angiogenesis and may contribute to placental dysfunction.
Assuntos
Interleucina-6 , Placenta , Gravidez , Feminino , Humanos , Placenta/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais/fisiologia , Trofoblastos/metabolismo , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana , Fator de Transcrição STAT3/metabolismo , Serina Proteases/metabolismoRESUMO
Trichloroethylene (TCE) is a known human carcinogen with toxicity attributed to its metabolism. S-(1,2-Dichlorovinyl)-L-cysteine (DCVC) is a metabolite of TCE formed downstream in TCE glutathione (GSH) conjugation and is upstream of several toxic metabolites. Despite knowledge that DCVC stimulates reactive oxygen species (ROS) generation and apoptosis in placental cells, the extent to which these outcomes are attributable to DCVC metabolism is unknown. The current study used N-acetyl-L-cysteine (NAC) at 5 mM and aminooxyacetic acid (AOAA) at 1 mM as pharmacological modifiers of DCVC metabolism to investigate DCVC toxicity at concentrations of 5-50 µM in the human placental trophoblast BeWo cell model capable of forskolin-stimulated syncytialization. Exposures of unsyncytialized BeWo cells, BeWo cells undergoing syncytialization, and syncytialized BeWo cells were studied. NAC pre/co-treatment with DCVC either failed to inhibit or exacerbated DCVC-induced H2O2 abundance, PRDX2 mRNA expression, and BCL2 mRNA expression. Although NAC increased mRNA expression of CYP3A4, which would be consistent with increased generation of the toxic metabolite N-acetyl-DCVC sulfoxide (NAcDCVCS), a CYP3A4 inhibitor ketoconazole did not significantly alter BeWo cell responses. Moreover, AOAA failed to inhibit cysteine conjugate ß-lyase (CCBL), which bioactivates DCVC, and did not affect the percentage of nuclei condensed or fragmented, a measure of apoptosis, in all BeWo cell models. However, syncytialized cells had higher CCBL activity compared to unsyncytialized cells, suggesting that the former may be more sensitive to DCVC toxicity. Together, although neither NAC nor AOAA mitigated DCVC toxicity, differences in CCBL activity and potentially CYP3A4 expression dictated the differential toxicity derived from DCVC.
Assuntos
Acetilcisteína , Tricloroetileno , Humanos , Feminino , Gravidez , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Cisteína , Tricloroetileno/toxicidade , Tricloroetileno/metabolismo , Placenta/metabolismo , Ácido Amino-Oxiacético/metabolismo , Ácido Amino-Oxiacético/farmacologia , Trofoblastos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Peróxido de Hidrogênio/metabolismo , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Bone morphogenetic protein 9 (BMP9) has been shown to regulate processes such as angiogenesis, endothelial dysfunction, and tumorigenesis. However, the role of BMP9 in preeclampsia (PE) is unclear. The purpose of this study was to investigate the role and mechanism of BMP9 in PE. METHODS: The effects of BMP9 on the viability, migration and invasion of HTR-8/Svneo cells were investigated by CCK-8 assay, wound healing assay and Transwell invasion assay. The effect of BMP9 on apoptosis of HTR-8/Svneo cells was detected by flow cytometry. Plasma levels of BMP9, SDF1 and CXCR4 were detected by ELISA kit. qRT-PCR and Western blot were used to detect the expression levels of each gene in the cells. RESULTS: Overexpression of BMP9 promoted the proliferation and migration of trophoblast cells and inhibited apoptosis. Knockdown of BMP9 had the opposite effect. The levels of BMP9, SDF1 and CXCR4 in the plasma of PE patients were down-regulated, and BMP9 was positively correlated with the levels of SDF1 and CXCR4. BMP9 also significantly upregulated the mRNA and protein levels of SDF1 and CXCR4 in HTR-8/SVneo cells. Further mechanistic studies found that BMP9 promoted the migration and invasion of HTR-8/SVneo cells and inhibited apoptosis by activating the SDF1/CXCR4 pathway. CONCLUSION: We demonstrate for the first time that BMP9 promoted the migration and invasion of HTR-8/SVneo cells and inhibits apoptosis by activating the SDF1/CXCR4 pathway. This suggests that BMP9 may be a biomarker molecule for PE.
Assuntos
Fator 2 de Diferenciação de Crescimento , Trofoblastos , Linhagem Celular , Movimento Celular/genética , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Fator 2 de Diferenciação de Crescimento/farmacologia , Fenótipo , Trofoblastos/metabolismo , HumanosRESUMO
Dysregulated biological behaviors of trophoblast cells can result in recurrent spontaneous abortion (RSA)-whose underlying etiology still remains insufficient. Autophagy, a conserved intracellular physiological process, is precisely monitored throughout whole pregnancy. Although the exact mechanism or role remains elusive, epigenetic modification has emerged as an important process. Herein, we found that a proportion of RSA patients exhibited higher levels of autophagy in villus tissues compared to controls, accompanied with impaired histone deacetylase (HDAC) expression. The purpose of this study is to explore the connection between HDACs and autophagy in the pathological course of RSA. Mechanistically, using human trophoblast cell models, treatment with HDAC inhibitor (HDACI)-trichostatin A (TSA) can induce autophagy by promoting nuclear translocation and transcriptional activity of the central autophagic regulator transcription factor EB (TFEB). Specifically, overactivated autophagy is involved in the TSA-driven growth inhibition of trophoblast, which can be partially reversed by the autophagy inhibitor chloroquine (CQ) or RNA interference of TFEB. In summary, our results reveal that abnormal acetylation and autophagy levels during early gestation may be associated with RSA and suggest the potential novel molecular target TFEB for RSA treatment.
Assuntos
Histona Desacetilases , Trofoblastos , Humanos , Feminino , Gravidez , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Trofoblastos/metabolismo , Placentação , Placenta/metabolismo , Autofagia/genética , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismoRESUMO
INTRODUCTION: To investigate the role of claudin-1 (CLDN1) in trophoblast invasion and endovascular trophoblast (enEVT) differentiation in early-onset preeclampsia (EOPE). METHODS: The expression and localization of CLDN1 in normal (n = 18) and EOPE (n = 20) placental tissues were detected by immunohistochemical (IHC) staining, quantitative real-time polymerase chain reaction (qRTâPCR) and Western blotting. Next, invasion, migration and tube formation assays were performed to explore the involvement of CLDN1 in trophoblast invasion and enEVT differentiation in trophoblast cell lines (HTR8/SVneo). Then, invasion and enEVT markers were analyzed via Western blotting and qRTâPCR, respectively. Finally, we established an EOPE mouse model to detect the Cldn1 protein level. RESULTS: CLDN1 expression was significantly decreased in EOPE placental tissues. Knockdown of CLDN1 suppressed HTR8/SVneo cell invasion, migration and the ability to penetrate the endothelial tube. Conversely, overexpression of CLDN1 promoted trophoblast invasion and the ability to invade the endothelial tube. Inhibition of CLDN1 decreased the protein expression of VIM and SNAIL along with downregulating IL1B and PECAM1 mRNA levels, while overexpression of CLDN1 gave the opposite results. In the EOPE mouse model, we found a decrease in Cldn1 expression in EOPE mouse placentas. DISCUSSION: These results suggest that the downregulation of CLDN1 in trophoblast cells is involved in the pathogenesis of early-onset preeclampsia by affecting trophoblast invasion and enEVT differentiation.
Assuntos
Pré-Eclâmpsia , Trofoblastos , Humanos , Animais , Camundongos , Gravidez , Feminino , Trofoblastos/metabolismo , Placenta/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Regulação para Baixo , Pré-Eclâmpsia/metabolismo , Movimento Celular , Diferenciação CelularRESUMO
Dysregulation of noncoding RNAs has been reported to have a close correlation with preeclampsia(PE)development. TCL6 was upregulated in patients with PE. In this study, we examined the impacts of TCL6 on modulating HTR-8/SVneo cells induced by LPS. LPS (100 and 200 ng/ml) was applied to induce inflammation in trophoblast cells HTR-8/SVneo. Cell viability, apoptosis, and transwell experiments were conducted. The ELISA methods were used for pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. MDA, GSH, and GPX kits were employed. Transfection was performed for expression regulation of TCL6, miR-485-5p, and TFRC in cells. Bioinformatic online tools were used to predict the targeting sites. Luciferase and RNA immunoprecipitation-qPCR were done to verify the interactions of TCL6, miR-485-5p, and TFRC. RNA expression levels were measured using RT-qPCR, and protein expression of TFRC and GPX4 was detected using a western blot. The free Fe (II) contents were measured. LPS decreased viability, invasion, and migration but enhanced apoptosis, ferroptosis, and inflammation. TCL6 expression was enhanced by LPS induction. The knockdown of TCL6 increased HTR-8/SVneo cell viability and invasion but inhibited cell apoptosis, inflammation, and ferroptosis while inhibition of miR-485-5p could reverse this through TFRC regulation. Moreover, miR-485-5p was sponged by TCL6 and bound to TFRC. TCL6 protected trophoblast cells from LPS-induced injury through the TFRC pathway.
Assuntos
Ferroptose , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Gravidez , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Ferroptose/genética , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Trofoblastos/metabolismoRESUMO
The interaction between trophoblasts, stroma cells, and immune cells at the maternal-fetal interface constitutes the functional units of the placenta, which is crucial for successful pregnancy outcomes. However, the investigation of this intricate interplay is restricted due to the absence of efficient experimental models. To address this challenge, a robust, reliable methodology for generating placenta villi organoids (PVOs) from early, late, or diseased pregnancies using air-liquid surface culture is developed. PVOs contain cytotrophoblasts that can self-renew and differentiate directly, along with stromal elements that retain native immune cells. Analysis of scRNA sequencing and WES data reveals that PVOs faithfully recapitulate the cellular components and genetic alterations of the corresponding source tissue. Additionally, PVOs derived from patients with preeclampsia exhibit specific pathological features such as inflammation, antiangiogenic imbalance, and decreased syncytin expression. The PVO-based propagation of primary placenta villi should enable a deeper investigation of placenta development and exploration of the underlying pathogenesis and therapeutics of placenta-originated diseases.
Assuntos
Vilosidades Coriônicas , Placenta , Gravidez , Feminino , Humanos , Placenta/metabolismo , Vilosidades Coriônicas/metabolismo , Vilosidades Coriônicas/patologia , Placentação , Trofoblastos/metabolismo , Organoides/metabolismoRESUMO
The proper invasion of trophoblasts is crucial for embryo implantation and placental development, which is helpful to establish a correct maternal-fetal relationship. Trophoblasts can produce a large amount of lactate through aerobic glycolysis during early pregnancy. Lactate creates a low pH microenvironment around the embryo to help uterine tissue decompose and promote the invasion of trophoblasts. The purpose of this study is to reveal the the potential mechanism of aerobic glycolysis regulating the invasiveness of trophoblasts by investigating the effect of 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, on the biological function of HTR-8/SVneo trophoblast cells, the expressions of epithelial mesenchymal transformation (EMT) markers and invasion-related factors. 2-DG could inhibit the aerobic glycolysis of trophoblasts and decrease the activity of trophoblasts in a dose-dependent manner. Moreover, 2-DG inhibited the EMT of HTR-8/SVneo cells, down-regulated the expression of invasion-related factors matrix metalloproteinase 2/9 (MMP2/9) and up-regulated the expression of tissue inhibitor of matrix metalloproteinases 1/2 (TIMP1/2), thus inhibiting cell migration and invasion. This paper provides a foundation in the significance of aerobic glycolysis of trophoblasts in the process of invasion, and also provides ideas and insights for the promotion of embryo implantation.
Assuntos
Placenta , Trofoblastos , Humanos , Gravidez , Feminino , Trofoblastos/metabolismo , Placenta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Transdução de Sinais , Linhagem Celular , Desoxiglucose/farmacologia , Desoxiglucose/metabolismo , Lactatos/metabolismo , Lactatos/farmacologia , Movimento CelularRESUMO
BACKGROUND: Preeclampsia is a severe complication of pregnancy which is attributed to placental dysfunction. The retrotransposon, Paternal Expressed Gene 10 (PEG10) harbours critical placental functions pertaining to placental trophoblast cells. Limited evidence exists on whether PEG10 is involved in preeclampsia pathogenesis. This study characterised the expression and regulation of PEG10 in placentas from patients with early-onset preeclampsia compared to gestation-matched controls. METHODS: PEG10 expression was measured in plasma and placentas collected from patients with early-onset preeclampsia (< 34 weeks') and gestation-matched controls using ELISA (protein) and RT-qPCR (mRNA). First-trimester human trophoblast stem cells (hTSCs) were used for in vitro studies. PEG10 expression was measured during hTSC differentiation and hTSC exposure to hypoxia (1% O2) and inflammatory cytokines (IL-6 and TNFα) using RT-qPCR. Functional studies used PEG10 siRNA to measure the effect of reduced PEG10 on canonical TGF-[Formula: see text] signalling and proliferation using luciferase and xCELLigence assays, respectively. RESULTS: PEG10 mRNA expression was significantly reduced in placentas from patients with early-onset preeclampsia (< 34 weeks' gestation) relative to controls (p = 0.04, n = 78 vs n = 18 controls). PEG10 protein expression was also reduced in preeclamptic placentas (p = 0.03, n = 5 vs n = 5 controls, blinded assessment of immunohistochemical staining), but neither PEG10 mRNA nor protein could be detected in maternal circulation. PEG10 was most highly expressed in hTSCs, and its expression was reduced as hTSCs differentiated into syncytiotrophoblasts (p < 0.0001) and extravillous trophoblasts (p < 0.001). Trophoblast differentiation was not altered when hTSCs were treated with PEG10 siRNA (n = 5 vs n = 5 controls). PEG10 was significantly reduced in hTSCs exposed to hypoxia (p < 0.01). PEG10 was also reduced in hTSCs treated with the inflammatory cytokine TNF [Formula: see text] (p < 0.01), but not IL-6. PEG10 knocked down (siRNA) in hTSCs showed reduced activation of the canonical TGF-ß signalling effector, the SMAD binding element (p < 0.05) relative to controls. PEG10 knockdown in hTSCs however was not associated with any significant alterations in proliferation. CONCLUSIONS: Placental PEG10 is reduced in patients with early-onset preeclampsia. In vitro studies suggest that hypoxia and inflammation may contribute to PEG10 downregulation. Reduced PEG10 alters canonical TGF-[Formula: see text] signalling, and thus may be involved in trophoblast dysfunction associated with this pathway.
Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Placenta/metabolismo , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética , Trofoblastos/metabolismo , Citocinas/genética , Citocinas/metabolismo , RNA Interferente Pequeno , RNA Mensageiro/metabolismo , Hipóxia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Reguladoras de Apoptose/metabolismoRESUMO
Preeclampsia (PE) is a serious complication of pregnancy with a pathogenesis that is not fully understood, though it involves the impaired invasion of extravillous trophoblasts (EVTs) into the decidual layer during implantation. Because the risk of PE is actually decreased by cigarette smoking, we considered the possibility that nicotine, a critical component of tobacco smoke, might protect against PE by modifying the content of exosomes from EVTs. We investigated the effects of nicotine on our PE model mouse and evaluated blood pressure. Next, exosomes were extracted from nicotine-treated extravillous trophoblasts (HTR-8/SVneo), and the peptide samples were evaluated by DIA (Data Independent Acquisition) proteomic analysis following nano LC-MS/MS. Hub proteins were identified using bioinformatic analysis. We found that nicotine significantly reduced blood pressure in a PE mouse model. Furthermore, we identified many proteins whose abundance in exosomes was modified by nicotine treatment of EVTs, and we used bioinformatic annotation and network analysis to select five key hub proteins with potential roles in the pathogenesis or prevention of PE. EVT-derived exosomes might influence the pathogenesis of PE because the cargo delivered by exosomes can signal to and modify the receiving cells and their environment.
Assuntos
Exossomos , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Animais , Camundongos , Trofoblastos/metabolismo , Pré-Eclâmpsia/metabolismo , Nicotina/farmacologia , Nicotina/metabolismo , Exossomos/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Movimento CelularRESUMO
INTRODUCTION: Expression of nutrient transporters in the placenta affects fetal growth. This study reports the protein expression of nutrient transporters in the syncytial membranes [microvillous membrane (MVM) and basal membrane (BM)] of normotensive control and preeclampsia placentae. METHODS: Placentae were collected from fourteen normotensive control women and fourteen women with preeclampsia. The syncytiotrophoblast MVM and BM membranes were isolated. The protein expression of glucose transporter (GLUT1), vitamin B12 transporter (CD320) and fatty acid transporters (FATP2, FATP4) was assessed in both the membranes. RESULTS: Comparison between membranes demonstrates similar CD320 protein expression in normotensive group whereas, in preeclampsia placentae it was higher in the BM as compared to MVM (p < 0.05). FATP2&4 protein expression was higher in the BM as compared to their respective MVM fraction in both the groups (p < 0.01 for both). Comparison between groups demonstrates higher GLUT1 expression in the MVM (p < 0.05) and BM (p < 0.05) whereas lower CD320 expression in the MVM (p < 0.05) of preeclampsia placentae as compared to their respective membranes in normotensive control. Furthermore, GLUT1 protein expression was positively associated and CD320 protein expression was negatively associated with maternal body mass index (BMI) (p < 0.05 for both). No difference was observed in the FATP2&4 protein expression. However, FATP4 protein expression was negatively associated with maternal blood pressure (p < 0.05 for MVM; p = 0.060 for BM) and birth weight (p < 0.05 for both membranes). DISCUSSION: The current study for the first time demonstrates differential expression of various transporters in the syncytiotrophoblast membranes of the preeclampsia placentae which may influence fetal growth.
Assuntos
Pré-Eclâmpsia , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Pré-Eclâmpsia/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Placenta/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , NutrientesRESUMO
Maternal diabetes mellitus in early pregnancy leads to hyperlipidemia in reproductive tract organs and an altered embryonic environment. To investigate the consequences on embryonic metabolism, the effect of high environmental-lipid levels was studied in rabbit blastocysts cultured with a lipid mixture in vitro and in blastocysts from diabetic, hyperlipidemic rabbits in vivo. The gene and protein expression of marker molecules involved in lipid metabolism and stress response were analyzed. In diabetic rabbits, the expression of embryoblast genes encoding carnitine palmityl transferase 1 and peroxisome proliferator-activated receptors α and γ increased, whereas trophoblast genes encoding for proteins associated with fatty acid synthesis and ß-oxidation decreased. Markers for endoplasmic (activating transcription factor 4) and oxidative stress (nuclear factor erythroid 2-related factor 2) were increased in embryoblasts, while markers for cellular redox status (superoxide dismutase 2) and stress (heat shock protein 70) were increased in trophoblasts from diabetic rabbits. The observed regulation pattern in vivo was consistent with an adaptation response to the hyperlipidemic environment, suggesting that maternal lipids have an impact on the intracellular metabolism of the preimplantation embryo in diabetic pregnancy and that embryoblasts are particularly vulnerable to metabolic stress.
Assuntos
Diabetes Mellitus Experimental , Mães , Gravidez , Feminino , Humanos , Animais , Coelhos , Diabetes Mellitus Experimental/metabolismo , Blastocisto/metabolismo , Trofoblastos/metabolismo , LipídeosRESUMO
Introduction: Placental trophoblasts contribute to regulatory T (Treg) function via the programmed cell death-1 (PD-1)/PD-1 ligand 1 (PD-L1) pathway during normal pregnancy. Decreased expression of PD-L1 in trophoblasts was closely associated with Treg deficiency in the development of pregnancy failure. Thus, targeting PD-L1 might be a novel therapy to prevent pregnancy loss. However, the mechanisms for modulating the expression of PD-L1 in trophoblasts are an enigma. Methods: The proportion of decidual Treg cells, and the profile of decidual macrophages (DMs) sampled from women with normal pregnancy (NP) and recurrent miscarriage (RM) were evaluated by flow cytometry. The expression of Yin and Yang 1 protein (YY1) and PD-L1 in human villous were measured by Immunohistochemistry (IHC), qRT-PCR and western blot. The determination of soluble PD-L1 (sPD-L1) in serum from NP and RM, and trophoblast conditioned media (TCM) was performed by the PD-L1 SimpleStep ELISA kit. Knockdown of YY1 was processed in the human trophoblast derived cell lines, HTR-8 and Bewo, with siYY1 transfection. Peripheral naïve CD4+ T cells were isolated from women with NP for the in vitro culture. The percentages of Treg cells differentiated from peripheral naïve CD4+ T cells were measured by flow cytometry. The interaction between YY1 and CD274 was proved by CHIP. The expression of inducible nitric oxide synthase (iNOS) in decidua was evaluated by IHC. The level of NO in serum from women with NP and RM was determined by the Griess reagent system. The effects of NO on YY1 were determined by the in vitro culture of HTR-8 cells with the NO donor, SNAP. The in vivo model comprising twelve pregnant mice and underwent different treatment. The percentages of Treg cells in murine uterus were measured by flow cytometry. Similarly, Western blot and IHC were performed to determine the expression of YY1 and PD-L1 in murine placenta. Results: Decreased expression of YY1 and PD-L1 in trophoblasts and lower proportion of decidual Treg cells were observed in patients with RM. Knockdown of YY1 contributes to a lower expression of YY1 and PD-L1. Soluble PD-L1 in the supernatant from HTR-8 cells was also decreased with siYY1 administration. Lower Treg differentiation was observed in the presence of supernatant from HTR-8 cells treated with siYY1. CHIP analysis revealed that endogenous YY1 directly occupied the promoter region of the CD274 (PD-L1) gene. Accompanied with increased M1 DMs, higher NO was observed in serum sampled from patients with RM. In the presence of Reduced expression of YY1 and PD-L1 was observed in HTR-8 cells with the treatment of SNAP. Furthermore, less Treg differentiation was observed with SNAP treated TCM. Moreover, our in vivo data found that YY1 deficiency was associated with decreased PD-L1, which further resulting in less Treg differentiation and Treg deficiency at the maternal-fetal interface and increased embryo loss. Discussion: Our work found the modulatory capacity of YY1 on PD-L1 in trophoblasts during early pregnancy. Furthermore, reduced YY1 was supposed resulting from higher levels of NO produced from the M1 DMs in RM.
Assuntos
Aborto Habitual , Trofoblastos , Animais , Feminino , Humanos , Camundongos , Gravidez , Aborto Habitual/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Macrófagos/metabolismo , Placenta/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/metabolismo , Trofoblastos/metabolismoRESUMO
The syncytiotrophoblast is a human epithelial cell that is bathed in maternal blood on the maternal-facing surface of the human placenta. It therefore acts as a barrier and exchange interface between the mother and fetus. Syncytiotrophoblast dysfunction is a feature of pregnancy pathologies, like preeclampsia. Dysfunctional syncytiotrophoblasts display a loss of microvilli, which is a marker of aberrant apical-basal polarization, but little data exist about the regulation of syncytiotrophoblast polarity. Atypical PKC isoforms are conserved polarity regulators. Thus, we hypothesized that aPKC isoforms regulate syncytiotrophoblast polarity. Using human placental explant culture and primary trophoblasts, we found that loss of aPKC activity or expression induces syncytiotrophoblast gasdermin-E-dependent pyroptosis, a form of programmed necrosis. We also establish that TNF-α induces an isoform-specific decrease in aPKC expression and gasdermin-E-dependent pyroptosis. Therefore, aPKCs are homeostatic regulators of the syncytiotrophoblast function and a pathogenically relevant pro-inflammatory cytokine leads to the induction of programmed necrosis at the maternal-fetal interface. Hence, our results have important implications for the pathobiology of placental disorders like preeclampsia.