Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34559624

RESUMO

A yellow bacterial strain, designated LRZ-2T, was isolated from High Arctic tundra near the settlement Ny-Ålesund in the Svalbard Archipelago, Norway. The cells were Gram-stain-positive, aerobic and non-sporulating. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain LRZ-2T represented a novel member of the suborder Micrococcineae. Its nearest phylogenetic neighbours were the members of the genus Luteimicrobium, with 16S rRNA gene sequence similarity of 95.3-96.9 %. The average nucleotide identity and digital DNA-DNA hybridization values between the genomes of strain LRZ-2T and its closely related strains were 77.4-74.3 % and 21.4-19.6 %, respectively. The DNA G+C content was 72.4 mol%. The peptidoglycan type of the isolate was A4ß with an interpeptide bridge comprising l-ornithine and d-glutamic acid. The predominant menaquinone was MK-9 (H4) and the major fatty acids were anteiso-C15 : 0, C16 : 0, anteiso-C15 : 1 A, anteiso-C17 : 0 and iso-C15 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, phosphatidylinositol dimannoside, unidentified phosphoglycolipid, four unidentified phospholipids and two unidentified polar lipids. Strain LRZ-2T showed a 16S rRNA gene signature pattern consisting of nucleotides at positions 120 (A), 131-231 (C-G), 196 (C), 342-347 (C-G), 444-490 (A-U), 580-761 (C-G), 602-636 (C-G), 670-736 (A-U), 822-878 (G-C), 823-877 (G-C), 826-874 (C-G), 827 (U), 843 (C), 950-1231 (U-A), 1047-1210 (G-C), 1109 (C), 1145 (G), 1309-1328 (G-C), 1361 (G) and 1383 (C), which clearly distinguished it from all genera previously reported in the suborder Micrococcineae. On the basis of the phylogenetic, phenotypic and chemotaxonomic data, strain LRZ-2T is considered to represent a novel species of a new genus, for which the name Pengzhenrongella sicca gen. nov., sp. nov. is proposed. The type strain of Pengzhenrongella sicca is LRZ-2T (=CCTCC AB 2012163T=DSM 100332T).


Assuntos
Ácidos Graxos , Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tundra , Vitamina K 2
3.
Artigo em Inglês | MEDLINE | ID: mdl-34207171

RESUMO

Reindeer husbandry is essential for the livelihood and culture of indigenous people in the Arctic. Parts of the herding areas are also used as pastures for farm animals, facilitating potential transmission of viruses between species. Following the Covid-19 pandemic, viruses circulating in the wild are receiving increased attention, since they might pose a potential threat to human health. Climate change will influence the prevalence of infectious diseases of both humans and animals. The aim of this study was to detect known and previously unknown viruses in Eurasian tundra reindeer. In total, 623 nasal and 477 rectal swab samples were collected from reindeer herds in Fennoscandia, Iceland, and Eastern Russia during 2016-2019. Next-generation sequencing analysis and BLAST-homology searches indicated the presence of viruses of domesticated and wild animals, such as bovine viral diarrhea virus, bovine papillomavirus, alcephaline herpesvirus 1 and 2, deer mastadenovirus B, bovine rotavirus, and roe deer picobirnavirus. Several viral species previously found in reindeer and some novel species were detected, although the clinical relevance of these viruses in reindeer is largely unknown. These results indicate that it should be possible to find emerging viruses of relevance for both human and animal health using reindeer as a sentinel species.


Assuntos
COVID-19 , Cervos , Rena , Animais , Regiões Árticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Islândia , Pandemias , Federação Russa , SARS-CoV-2 , Tundra
4.
Sci Total Environ ; 795: 148847, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246149

RESUMO

The frequency and severity of fire is increasing in Arctic tundra regions with climate change. Here we investigated effects of experimental low-intensity fire and shrub cutting, in combination with warming, on soil biogeochemical cycles and post-fire greenhouse gas (GHG) emissions in a dry heath tundra, West Greenland. We performed in vitro incubation experiments based on soil samples collected for up to two years after the fire. We observed tendency for increased soil nitrate (14-fold) and significant increases in soil ammonium and phosphate (four-fold and five-fold, respectively) two years after the fire, but no effects of shrub cutting on these compounds. Thus, changes appear to be largely due to fire effects rather than indirect effects by vegetation destruction. Two years after fire, nitrous oxide (N2O) and carbon dioxide (CO2) production was significantly increased (three-fold and 32% higher, respectively), in burned than unburned soils, while methane (CH4) uptake remained unchanged. This stimulated N2O and CO2 production by the fire, however, was only apparent under conditions when soil was at maximum water holding capacity, suggesting that fire effects can be masked under dry conditions in this tundra ecosystem. There were positive effects by modest 2.5 °C warming on CO2 production in control but not in burned soils, suggesting that fire may decrease the temperature response in soil respiration. Methane uptake was neither altered by the modest warming in shrub-cut nor in burned soils after two years, suggesting that the removal of vegetation may play a key role in controlling future temperature response of CH4 oxidation. Altogether, our results show that post-fire tundra soils have the potential to enhance soil GHG emissions (e.g. N2O and CO2) especially during episodes with wet soil conditions. On the other hand, the lack of warming responses in post-fire soil respiration may weaken this positive feedback to climate change.


Assuntos
Gases de Efeito Estufa , Regiões Árticas , Dióxido de Carbono/análise , Ecossistema , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Solo , Tundra
5.
Sci Total Environ ; 795: 148676, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34247067

RESUMO

Mosses can be responsible for up to 100% of net primary production in arctic and subarctic tundra, and their associations with diazotrophic cyanobacteria have an important role in increasing nitrogen (N) availability in these pristine ecosystems. Predictions about the consequences of climate change in subarctic environments point to increased N mineralization in soil and higher litter deposition due to warming. It is not clear yet how these indirect climate change effects impact moss-cyanobacteria associations and N2 fixation. This work aimed to evaluate the effects of increased N and litter input on biological N2 fixation rates associated with the feathermoss Hylocomium splendens from a tundra heath. H. splendens samples were collected near Abisko, northern Sweden, from a field experiment with annual additions of ammonium chloride and dried birch litter and the combination of both for three years. Samples were analyzed for N2 fixation, cyanobacterial colonization, C and N content and pH. Despite the high N additions, no significant differences in moss N content were found. However, differences between treatments were observed in N2 fixation rates, cyanobacterial colonization and pH, with the combined ammonium+litter treatment causing a significant reduction in the number of branch-colonizing cyanobacteria and N2 fixation, and ammonium additions significantly lowering moss pH. A significant, positive relationship was found between N2 fixation rates, moss colonization by cyanobacteria and pH levels, showing a clear drop in N2 fixation rates at lower pH levels even if larger cyanobacterial populations were present. These results suggest that increased N availability and litter deposition resulting from climate change not only interferes with N2 fixation directly, but also acidifies moss microhabitats and reduces the abundance of associated cyanobacteria, which could eventually impact the N cycle in the Subarctic.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Mudança Climática , Ecossistema , Tundra
6.
New Phytol ; 232(2): 788-801, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270800

RESUMO

Composition and functioning of arctic soil fungal communities may alter rapidly due to the ongoing trends of warmer temperatures, shifts in nutrient availability, and shrub encroachment. In addition, the communities may also be intrinsically shaped by heavy grazing, which may locally induce an ecosystem change that couples with increased soil temperature and nutrients and where shrub encroachment is less likely to occur than in lightly grazed conditions. We tested how 4 yr of experimental warming and fertilization affected organic soil fungal communities in sites with decadal history of either heavy or light reindeer grazing using high-throughput sequencing of the internal transcribed spacer 2 ribosomal DNA region. Grazing history largely overrode the impacts of short-term warming and fertilization in determining the composition of fungal communities. The less diverse fungal communities under light grazing showed more pronounced responses to experimental treatments when compared with the communities under heavy grazing. Yet, ordination approaches revealed distinct treatment responses under both grazing intensities. If grazing shifts the fungal communities in Arctic ecosystems to a different and more diverse state, this shift may dictate ecosystem responses to further abiotic changes. This indicates that the intensity of grazing cannot be left out when predicting future changes in fungi-driven processes in the tundra.


Assuntos
Micobioma , Rena , Animais , Regiões Árticas , Ecossistema , Fertilização , Solo , Microbiologia do Solo , Tundra
7.
Nat Commun ; 12(1): 3700, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140471

RESUMO

The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent.


Assuntos
Biota , Ecossistema , Rios , Animais , Biodiversidade , Biomassa , Tamanho Corporal , Chironomidae/fisiologia , Clima , Ephemeroptera/fisiologia , Insetos/fisiologia , Folhas de Planta/química , Floresta Úmida , Rios/química , Rios/microbiologia , Rios/parasitologia , Rios/virologia , Clima Tropical , Tundra
9.
Sci Total Environ ; 793: 148516, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174616

RESUMO

Climate change is altering high-latitude ecosystems in multiple facets, including increased insect herbivory pressure and enhanced emissions of volatile organic compounds (VOC) from vegetation. Yet, joint impacts of climatic drivers and insect herbivory on VOC emissions from the Arctic remain largely unknown. We examined how one-month warming by open-top plastic tents, yielding a 3-4 °C air temperature increase, and the natural presence of gall-forming eriophyoid mites, Aculus tetanothrix, individually and in combination, affect VOC emissions from whortle leaved willow, Salix myrsinites, at two elevations in an Arctic heath tundra of Abisko, Northern Sweden. We measured VOC emissions three times in the peak growing season (July) from intact and gall-infested branches using an enclosure technique and gas chromatography-mass spectrometry, and leaf chemical composition using near-infrared reflectance spectroscopy (NIRS). Isoprene accounted for 91% of the VOCs emitted by S. myrsinites. Isoprene emission rates tended to be higher at the high than low elevation during the measurement periods (42 µg g-1 DW h-1 vs. 23 µg g-1 DW h-1) even when temperature differences were accounted for. Experimental warming increased isoprene emissions by approximately 54%, but decreased emissions of some minor compound groups, such as green leaf volatiles (GLV) and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). In contrast, gall-infestation did not affect isoprene emissions but stimulated emissions of DMNT, sesquiterpenes and GLVs, particularly under ambient conditions at the low elevation. The NIRS-based chemical composition of the leaves varied between the two elevations and was affected by warming and gall-infestation. Our study suggests that under elevated temperatures, S. myrsinites increases emissions of isoprene, a highly effective compound for protection against oxidative stress, while an infestation by A. tetanothrix mites induces emissions of herbivore enemy attractants like DMNT, sesquiterpenes and GLVs. Under both conditions, warming effects on isoprene remain but mite effects on DMNT, sesquiterpenes and GLVs diminish.


Assuntos
Salix , Compostos Orgânicos Voláteis , Regiões Árticas , Ecossistema , Herbivoria , Folhas de Planta , Tundra
10.
Nat Commun ; 12(1): 3442, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117253

RESUMO

Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.


Assuntos
Fenômenos Fisiológicos Vegetais , Plantas , Reprodução/fisiologia , Tundra , Regiões Árticas , Clima , Ecossistema , Flores , Modelos Biológicos , Fenótipo , Plantas/genética , Estações do Ano , Análise Espaço-Temporal , Temperatura
11.
Glob Chang Biol ; 27(14): 3324-3335, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33960082

RESUMO

Recent unprecedented fires in the Arctic during the past two decades have indicated a pressing need to understand the long-term ecological impacts of fire in this biome. Anecdotal evidence suggests that tundra fires can induce regime shifts that change tussock tundra to more shrub-dominated ecosystems. However, the ecological mechanisms regulating these shifts are poorly understood, but are hypothesized to involve changes to nutrient availability in this nutrient limited system. Here we conducted a 4-year two-factorial (control: C, nitrogen along: N+ , phosphorus alone: P+ , nitrogen and phosphorus combined: NP+ ) fertilization experiment in both unburned and burned tundra to test this hypothesis after a decade of post-fire recovery. A decade after fire, the burned site exhibited an increase in soil nitrogen and phosphorus availability and a transition toward taller, more productive, and more deciduous vegetation. This shift in vegetation structure, composition, and function was induced at the unburned site through the addition of both NP+ and the alleviation of their co-limitation. Both burned and unburned tundra responded similarly to fertilizer treatments by increasing leaf area index, greenness, and canopy height in NP+ treatments, and exhibited no significant response in individual N+ or P+ treatments. These results point to a greater need to understand coupled carbon, nitrogen, and phosphorus cycles in this system, and suggest that post-fire regime shifts are regulated by the alleviation of nitrogen and phosphorus co-limitation in Arctic tundra.


Assuntos
Ecossistema , Incêndios , Regiões Árticas , Nutrientes , Solo , Tundra
12.
Glob Chang Biol ; 27(18): 4254-4268, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34028938

RESUMO

The climate-driven encroachment of shrubs into the Arctic is accompanied by shifts in soil fungal communities that could contribute to a net release of carbon from tundra soils. At the same time, arctic grazers are known to prevent the establishment of deciduous shrubs and, under certain conditions, promote the dominance of evergreen shrubs. As these different vegetation types associate with contrasting fungal communities, the belowground consequences of climate change could vary among grazing regimes. Yet, at present, the impact of grazing on soil fungal communities and their links to soil carbon have remained speculative. Here we tested how soil fungal community composition, diversity and function depend on tree vicinity and long-term reindeer grazing regime and assessed how the fungal communities relate to organic soil carbon stocks in an alpine treeline ecotone in Northern Scandinavia. We determined soil carbon stocks and characterized soil fungal communities directly underneath and >3 m away from mountain birches (Betula pubescens ssp. czerepanovii) in two adjacent 55-year-old grazing regimes with or without summer grazing by reindeer (Rangifer tarandus). We show that the area exposed to year-round grazing dominated by evergreen dwarf shrubs had higher soil C:N ratio, higher fungal abundance and lower fungal diversity compared with the area with only winter grazing and higher abundance of mountain birch. Although soil carbon stocks did not differ between the grazing regimes, stocks were positively associated with root-associated ascomycetes, typical to the year-round grazing regime, and negatively associated with free-living saprotrophs, typical to the winter grazing regime. These findings suggest that when grazers promote dominance of evergreen dwarf shrubs, they induce shifts in soil fungal communities that increase soil carbon sequestration in the long term. Thus, to predict climate-driven changes in soil carbon, grazer-induced shifts in vegetation and soil fungal communities need to be accounted for.


Assuntos
Micobioma , Rena , Animais , Carbono , Solo , Tundra
13.
Sci Rep ; 11(1): 9849, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972582

RESUMO

Several studies have examined the transmission dynamics of the novel COVID-19 disease in different parts of the world. Some have reported relationships with various environmental variables, suggesting that spread of the disease is enhanced in colder and drier climates. However, evidence is still scarce and mostly limited to a few countries, particularly from Asia. We examined the potential role of multiple environmental variables in COVID-19 infection rate [measured as mean relative infection rate = (number of infected inhabitants per week / total population) × 100.000) from February 23 to August 16, 2020 across 360 cities of Chile. Chile has a large climatic gradient (≈ 40º of latitude, ≈ 4000 m of altitude and 5 climatic zones, from desert to tundra), but all cities share their social behaviour patterns and regulations. Our results indicated that COVID-19 transmission in Chile was mostly related to three main climatic factors (minimum temperature, atmospheric pressure and relative humidity). Transmission was greater in colder and drier cities and when atmospheric pressure was lower. The results of this study support some previous findings about the main climatic determinants of COVID-19 transmission, which may be useful for decision-making and management of the disease.


Assuntos
COVID-19/transmissão , Meio Ambiente , SARS-CoV-2/isolamento & purificação , Estações do Ano , Altitude , Pressão Atmosférica , COVID-19/epidemiologia , COVID-19/virologia , Chile/epidemiologia , Humanos , Umidade , Pandemias , SARS-CoV-2/fisiologia , Temperatura , Tundra
14.
Ann Parasitol ; 67(1): 1-10, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33980006

RESUMO

Over the past years, the nematode species from the Onchocercidae family, Setaria tundra, has expanded its range by thousands of kilometres from subpolar to subtropical climate zone. Its presence has been confirmed in seven new countries. The appearance of this parasite in many other European countries, especially central and southern ones, is highly probable. In recent years, its mass appearance has led to the numerous fall of reindeer in Fennoscandia, thus causing significant economic damage. There is also a growing risk of its gradation in Central Europe, which threatens overpopulated wild deer species and possibly farm animals, however there is no information if other than mosquitoes blood-sucking arthropods act as its vector. This paper covers the range of occurrence of S. tundra in Europe, all of the reported intermediate and definitive hosts, phylogeny, biology, morphology, health effects, and treatment methods.


Assuntos
Cervos , Setaria (Nematoide) , Animais , Europa (Continente) , Mosquitos Vetores , Tundra
15.
Microbiome ; 9(1): 108, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990222

RESUMO

BACKGROUND: Soil is an important reservoir of antibiotic resistance genes (ARGs), but their potential risk in different ecosystems as well as response to anthropogenic land use change is unknown. We used a metagenomic approach and datasets with well-characterized metadata to investigate ARG types and amounts in soil DNA of three native ecosystems: Alaskan tundra, US Midwestern prairie, and Amazon rainforest, as well as the effect of conversion of the latter two to agriculture and pasture, respectively. RESULTS: High diversity (242 ARG subtypes) and abundance (0.184-0.242 ARG copies per 16S rRNA gene copy) were observed irrespective of ecosystem, with multidrug resistance and efflux pump the dominant class and mechanism. Ten regulatory genes were identified and they accounted for 13-35% of resistome abundances in soils, among them arlR, cpxR, ompR, vanR, and vanS were dominant and observed in all studied soils. We identified 55 non-regulatory ARGs shared by all 26 soil metagenomes of the three ecosystems, which accounted for more than 81% of non-regulatory resistome abundance. Proteobacteria, Firmicutes, and Actinobacteria were primary ARG hosts, 7 of 10 most abundant ARGs were found in all of them. No significant differences in both ARG diversity and abundance were observed between native prairie soil and adjacent long-term cultivated agriculture soil. We chose 12 clinically important ARGs to evaluate at the sequence level and found them to be distinct from those in human pathogens, and when assembled they were even more dissimilar. Significant correlation was found between bacterial community structure and resistome profile, suggesting that variance in resistome profile was mainly driven by the bacterial community composition. CONCLUSIONS: Our results identify candidate background ARGs (shared in all 26 soils), classify ARG hosts, quantify resistance classes, and provide quantitative and sequence information suggestive of very low risk but also revealing resistance gene variants that might emerge in the future. Video abstract.


Assuntos
Metagenoma , Microbiologia do Solo , Antibacterianos , Ecossistema , Genes Bacterianos , Pradaria , Humanos , RNA Ribossômico 16S/genética , Solo , Clima Tropical , Tundra
16.
Glob Chang Biol ; 27(17): 4040-4059, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33913236

RESUMO

The regional variability in tundra and boreal carbon dioxide (CO2 ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2 ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m-2  yr-1 , respectively) compared to tundra (average annual NEE +10 and -2 g C m-2  yr-1 ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.


Assuntos
Dióxido de Carbono , Ecossistema , Carbono , Dióxido de Carbono/análise , Reprodutibilidade dos Testes , Estações do Ano , Solo , Tundra , Incerteza
17.
Glob Chang Biol ; 27(12): 2928-2944, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33709612

RESUMO

Traditionally, biogenic volatile organic compound (BVOC) emissions are often considered a unidirectional flux, from the ecosystem to the atmosphere, but recent studies clearly show the potential for bidirectional exchange. Here we aimed to investigate how warming and leaf litter addition affect the bidirectional exchange (flux) of BVOCs in a long-term field experiment in the Subarctic. We also assessed changes in net BVOC fluxes in relation to the time of day and the influence of different plant phenological stages. The study was conducted in a full factorial experiment with open top chamber warming and annual litter addition treatments in a tundra heath in Abisko, Northern Sweden. After 18 years of treatments, ecosystem-level net BVOC fluxes were measured in the experimental plots using proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). The warming treatment increased monoterpene and isoprene emissions by ≈50%. Increasing temperature, due to diurnal variations, can both increase BVOC emission and simultaneously, increase ecosystem uptake. For any given treatment, monoterpene, isoprene, and acetone emissions also increased with increasing ambient air temperatures caused by diurnal variability. Acetaldehyde, methanol, and sesquiterpenes decreased likely due to a deposition flux. For litter addition, only a significant indirect effect on isoprene and monoterpene fluxes (decrease by ~50%-75%) was observed. Litter addition may change soil moisture conditions, leading to changes in plant species composition and biomass, which could subsequently result in changes to BVOC emission compositions. Phenological stages significantly affected fluxes of methanol, isoprene and monoterpenes. We suggest that plant phenological stages differ in impacts on BVOC net emissions, but ambient air temperature and photosynthetically active radiation (PAR) also interact and influence BVOC net emissions differently. Our results may also suggest that BVOC fluxes are not only a response to changes in temperature and light intensity, as the circadian clock also affects emission rates.


Assuntos
Mudança Climática , Compostos Orgânicos Voláteis , Ecossistema , Suécia , Tundra
18.
New Phytol ; 231(6): 2162-2173, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33662154

RESUMO

Organic nitrogen (N) is abundant in soils, but early conceptual frameworks considered it nonessential for plant growth. It is now well recognised that plants have the potential to take up organic N. However, it is still unclear whether plants supplement their N requirements by taking up organic N in situ: at what rate is organic N diffusing towards roots and are plants taking it up? We combined microdialysis with live-root uptake experiments to measure amino acid speciation and diffusion rates towards roots of Eriophorum vaginatum. Amino acid diffusion rates (321 ng N cm-2  h-1 ) were c. 3× higher than those for inorganic N. Positively charged amino acids made up 68% of the N diffusing through soils compared with neutral and negatively charged amino acids. Live-root uptake experiments confirmed that amino acids are taken up by plants (up to 1 µg N g-1  min-1 potential net uptake). Amino acids must be considered when forecasting plant-available N, especially when they dominate the N supply, and when acidity favours proteolysis over net N mineralisation. Determining amino acid production pathways and supply rates will become increasingly important in projecting the extent and consequences of shrub expansion, especially considering the higher C : N ratio of plants relative to soil.


Assuntos
Cyperaceae , Solo , Aminoácidos , Nitrogênio/análise , Tundra
19.
Ann Bot ; 128(4): 407-418, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-33714989

RESUMO

BACKGROUND AND AIMS: In tundra systems, soil-borne lichens are often the dominant groundcover organisms, and act to buffer microclimate extremes within or at the surface of the soil. However, shrubs are currently expanding across tundra systems, potentially causing major shifts in the microclimate landscape. METHODS: Here, we compared soil temperature and moisture underneath the dwarf birch Betula nana and seven abundant lichen species in sub-alpine Norway. We also examined mixtures of lichens and dwarf birch - an intermediate phase of shrubification - and measured several functional traits relating to microclimate. KEY RESULTS: We found that all lichen species strongly buffered the daily temperature range, on average reducing maximum temperatures by 6.9 °C (± 0.7 s.d.) and increasing minimum temperatures by 1.0 °C (± 0.2 s.d.) during summer. The dwarf birch had a much weaker effect (maximum reduced by 2.4 ±â€…5.0 °C and minimum raised by 0.2 ± 0.9 °C). In species mixtures, the lichen effect predominated, affecting temperature extremes by more than would be expected from their abundance. Lichens also tended to reduce soil moisture, which could be explained by their ability to intercept rainfall. Our trait measurements under laboratory conditions suggest that, on average, lichens can completely absorb a 4.09 mm (± 1.81 s.d.) rainfall event, which might be an underappreciated part of lichen-vascular plant competition in areas where summer rainfall events are small. CONCLUSIONS: In the context of shrubification across tundra systems, our findings suggest that lichens will continue to have a large effect on microclimate until they are fully excluded, at which point microclimate extremes will increase greatly.


Assuntos
Betula , Líquens , Microclima , Solo , Tundra
20.
New Phytol ; 231(1): 94-107, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33774820

RESUMO

Climate warming is driving tundra shrub expansion with implications for ecosystem function and regional climate. Understanding associations between shrub ecophysiological function, distribution and environment is necessary for predicting consequences of expansion. We evaluated the role of topographic gradients on upland shrub productivity to understand potential constraints on shrub expansion. At a low arctic tundra site near Inuvik, Northwest Territories, Canada, we measured sap flow, stem water potential and productivity-related functional traits in green alder, and environmental predictors (water and nutrient availability and seasonal thaw depth) across a toposequence in alder patches. Seasonal thaw reduced stem sap flow whereas topographic position predicted stem water potential and productivity-related functional traits. Upslope shrubs were more water-limited than those downslope. Shrubs in drainage channels had traits associated with greater productivity than those on the tops of slopes. The effect of thaw depth on sap flow has implications for seasonal water-use patterns and warming impacts on tundra ecohydrology. Topographic variation in functional traits corresponds with observed spatial patterns of tundra shrub expansion along floodplains and concave hillslopes rather than in upland areas. Green alder is expanding rapidly across the low arctic tundra in northwestern North America; thus, anticipating the implications of its expansion is essential for predicting tundra function.


Assuntos
Ecossistema , Água , Regiões Árticas , Canadá , Estações do Ano , Tundra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...