Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.386
Filtrar
1.
Adv Exp Med Biol ; 1286: 77-85, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33725346

RESUMO

Fibromyalgia is a common chronic pain condition of unknown aetiology, although mitochondrial dysfunction, oxidative stress, and inflammation have been implicated in the pathophysiology of this disorder. Treatment generally involves physiotherapy, anticonvulsants, and antidepressant therapy; however, the symptomatic relief conferred by these treatments can be very variable, and there is a need for additional therapeutic strategies. One such treatment which is gaining a lot of interest is the use of coenzyme Q10 (CoQ10) supplementation. The therapeutic efficacy associated with CoQ10 supplementation is thought to arise from the ability of supplementation to restore an underlying deficit in CoQ10 status which has been associated with fibromyalgia together with the ability of CoQ10 to improve mitochondrial activity, restore cellular antioxidant capacity, and ameliorate inflammation. This chapter outlines the evidence supporting the therapeutic utility of CoQ10 in the treatment of fibromyalgia.


Assuntos
Fibromialgia , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Fibromialgia/tratamento farmacológico , Fibromialgia/metabolismo , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo , Ubiquinona/análogos & derivados
2.
Phytochemistry ; 184: 112677, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33556840

RESUMO

Antroquinonol (AQ) as one of the most potent bioactive components in Antrodia cinnamomea (Fomitopsidaceae) shows a broad spectrum of anticancer effects. The lower yield of AQ has hampered its possible clinical application. AQ production may potentially be improved by genetic engineering. In this study, the protoplast-polyethylene glycol method combined with hygromycin as a selection marker was used in the genetic engineering of A. cinnamomea S-29. The optimization of several crucial parameters revealed that the optimal condition for generating maximal viable protoplasts was digestion of 4-day-old germlings with a mixture of enzymes (lysing enzyme, snailase, and cellulase) and 1.0 M MgSO4 for 4 h. The ubiA and CoQ2 genes, which are involved in the synthesis of 4-hydroxybenzoate polyprenyltransferase, were cloned and overexpressed in A. cinnamomea. The results showed that ubiA and CoQ2 overexpression significantly increased AQ production in submerged fermentation. The overexpressing strain produced maximum AQ concentrations of 14.75 ± 0.41 mg/L and 19.25 ± 0.29 mg/L in pCT74-gpd-ubiA and pCT74-gpd-CoQ2 transformants, respectively. These concentrations were 2.00 and 2.61 times greater than those produced by the control, respectively. This research exemplifies how the production of metabolites may be increased by genetic manipulation, and will be invaluable to guide the genetic engineering of other mushrooms that produce medically useful compounds.


Assuntos
Antrodia , Alquil e Aril Transferases , Polyporales , Ubiquinona/análogos & derivados
3.
Artigo em Inglês | MEDLINE | ID: mdl-33406032

RESUMO

A Gram-stain-negative, aerobic, mesophilic, non-motile bacterium, designated M0104T, was isolated from a gorgonian coral collected from Xieyang island, Guangxi Province, PR China. Colonies of the strain were non-motile cocci and pink. The strain grew at 15-34 °C (optimum, 28 °C), pH 4.5-8.0 (optimum, pH 7.0) and with 0-4% (w/v) NaCl (optimum, 0-2 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain M0104T was closely related to Roseomonas deserti JCM 31275T (96.2 %), Roseomonas vastitatis KCTC 62043T (96.0 %), Roseomonas aerofrigidensis JCM 31878T (95.9 %) and Roseomonas oryzae KCTC 42542T (95.7 %). The strain had an assembly size of 5.0 Mb and a G+C content of 71.0mol%. Genes involved in copper, cadmium, lead, arsenic and zinc resistance were identified in the genome of strain M0104T. The digital DNA-DNA hybridization and average nucleotide identity values between the genome sequence of strain M0104T and those of closely related type strains were 19.4-24.9 % and 74.3-81.8 %, respectively. Strain M0104T contained C18:1 ω7c, C18:3 ω3c, anteiso C11:0 and C16:0 as the major fatty acids (>7 %) and ubiquinone Q-10 as the sole isoprenoid quinone. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine were its major polar lipids. Based on its phenotypic, phylogenetic and chemotaxonomic properties, strain M0104T is proposed to represent a novel species within the genus Roseomonas, for which the name Roseomonas coralli sp. nov. is proposed. The type strain is M0104T (=KCTC 62359T=MCCC 1K03632T).


Assuntos
Antozoários/microbiologia , Metais Pesados , Methylobacteriaceae/classificação , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Methylobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-33411666

RESUMO

Two yellow-pigmented, non-motile, Gram-stain-negative, and rod-shaped bacteria, designated TW-4T and TNP-2 were obtained from oil-contaminated soil. Both strains degrade diesel oil, hydrolyse aesculin, DNA, Tween 40 and Tween 60. A phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain TW-4T formed a lineage within the family Erythrobacteraceae and clustered as members of the genus Novosphingobium. The closest members of strain TW-4T were Novosphingobium subterraneum DSM 12447T (97.9 %, sequence similarity), Novosphingobium lubricantis KSS165-70T (97.8 %), Novosphingobium taihuense T3-B9T (97.8 %), Novosphingobium aromaticivorans DSM 12444T (97.7 %), Novosphingobium flavum UCT-28T (97.7 %), and Novosphingobium bradum STM-24T (97.6 %). The sequence similarity for other members was ≤97.6 %. The genome of strain TW-4T was 4 683 467 bp long with 44 scaffolds and 4280 protein-coding genes. The sole respiratory quinone was Q-10. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C14 : 0 2-OH. The major polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylcholine (PC), phosphatidyl-n-methylethanolamine (PME) and sphingoglycolipid (SGL). The DNA G+C content of the type strain was 65.0 %. The average nucleotide identity (ANIu) and in silico DNA-DNA hybridization (dDDH) relatedness values between strain TW-4T and closest members were below the threshold value for species delineation. Based on polyphasic taxonomic analyses, strain TW-4T represents novel species in the genus Novosphingobium, for which the name Novosphingobium olei sp. nov. is proposed. The type strain is TW-4T (=KACC 21628T=NBRC 114364T) and strain TNP-2 (=KACC 21629=NBRC 114365) represents an additional strain. Based on new data obtained in this study, it is also proposed to reclassify Novosphingobium stygium as a later heterotypic synonym of Novosphingobium aromaticivorans.


Assuntos
Poluição por Petróleo , Filogenia , Microbiologia do Solo , Sphingomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo , Sphingomonadaceae/isolamento & purificação , Ubiquinona/análogos & derivados , Ubiquinona/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-33439113

RESUMO

As part of a study investigating the microbiome of bee hives and honey, two novel strains (TMW 2.1880T and TMW 2.1889T) of acetic acid bacteria were isolated and subsequently taxonomically characterized by a polyphasic approach, which revealed that they cannot be assigned to known species. The isolates are Gram-stain-negative, aerobic, pellicle-forming, catalase-positive and oxidase-negative. Cells of TMW 2.1880T are non-motile, thin/short rods, and cells of TMW 2.1889T are motile and occur as rods and long filaments. Morphological, physiological and phylogenetic analyses revealed a distinct lineage within the genus Bombella. Strain TMW 2.1880T is most closely related to the type strain of Bombella intestini with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 94.16 and 56.3 %, respectively. The genome of TMW 2.1880T has a size of 1.98 Mb and a G+C content of 55.3 mol%. Strain TMW 2.1889T is most closely related to the type strain of Bombella apis with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and in silico DDH values of 85.12 and 29.5 %, respectively. The genome of TMW 2.1889T has a size of 2.07 Mb and a G+C content of 60.4 mol%. Ubiquinone analysis revealed that both strains contained Q-10 as the main respiratory quinone. Major fatty acids for both strains were C16 : 0, C19 : 0 cyclo ω8c and summed feature 8, respectively, and additionally C14 : 0 2-OH only for TMW 2.1880T and C14 : 0 only for TMW 2.1889T. Based on polyphasic evidence, the two isolates from honeycombs of Apis mellifera represent two novel species of the genus Bombella, for which the names Bombella favorum sp. nov and Bombella mellum sp. nov. are proposed. The designated respective type strains are TMW 2.1880T (=LMG 31882T=CECT 30114T) and TMW 2.1889T (=LMG 31883T=CECT 30113T).


Assuntos
Acetobacteraceae/classificação , Abelhas/microbiologia , Mel/microbiologia , Filogenia , Acetobacteraceae/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Alemanha , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-33492207

RESUMO

A bisphenol A-degrading bacterium, designated as strain H4T, was isolated from surface seawater, which was sampled from the Jiulong River estuary in southeast PR China. Strain H4T is Gram-stain-negative, aerobic, short rod-shaped, lacking bacteriochlorophyll a, motile with multifibrillar stalklike fascicle structures and capable of degrading bisphenol A. Growth of strain H4T was observed at 24-45 °C (optimum, 32 °C), at pH 5.5-9 (optimum, pH 7.0) and in 0-7 % NaCl (optimum, 2 %; w/v) . The 16S rRNA gene sequence of strain H4T showed highest similarity to Croceicoccus pelagius Ery9T (98.7 %), Croceicoccus sediminis (98.3 %), Croceicoccus naphthovorans PQ-2T (98.1 %) and Croceicoccus ponticola GM-16T (97.6 %), followed by Croceicoccus marinus E4A9T (96.7 %) and Croceicoccus mobilis Ery22T (96.0 %). Phylogenetic analysis revealed that strain H4T fell within a clade comprising the type strains of Croceicoccus species and formed a phyletic line with them that was distinct from other members of the family Erythrobacteraceae. The sole respiratory quinone was quinone 10 (Q-10). The predominant fatty acids (>5 % of the total fatty acids) of strain H4T were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c), summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), C17 : 1 ω6c and C14 : 02-OH. The genomic DNA G+C content was 62.8 mol%. In the polar lipid profile, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids, two sphingoglycolipids and three unknown lipids were the major compounds. Based on the genotypic and phenotypic data, strain H4T represents a novel species of the genus Croceicoccus, for which the name Croceicoccus bisphenolivorans sp. nov. is proposed. The type strain is H4T (=DSM 102182T=MCCC1 K02301T).


Assuntos
Alphaproteobacteria/classificação , Compostos Benzidrílicos/metabolismo , Fenóis/metabolismo , Filogenia , Água do Mar/microbiologia , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Estuários , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-33502295

RESUMO

A facultatively anaerobic bacterium, strain S0837T, was isolated from the marine sediment of Jingzi Wharf, Weihai, China. Cells of the novel strain were Gram-stain-negative, non-flagellated, non-gliding, non-pigmented and rod-shaped. Cells were around 0.3-0.5×1.0-1.4 µm in size and often appeared singly. Optimum growth occurred at 33 °C, with 2 % (w/v) NaCl and at pH 7.0-7.5. On the basis of the results of 16S rRNA gene sequences, stain S0837T had the closest relative with Sulfitobacter delicatus KCTC 32183T (98.0 %). Genome sequencing revealed a genome size of 3 785 026 bp, a G+C content of 59.8 mol% and several genes related with sulphur oxidation. The strain shared 98.0 % 16S rRNA sequence similarities with closely related type species and shared ANI value below 95-96 %, dDDH value of showed relatedness of 27.4, 25.2 and 25.2 % respectively with the closely related type species. Strain S0837T had ubiquinone-10 as the sole respiratory quinone, and possessed summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c) as the major fatty acid. The major polar lipids were phosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic properties and genome analysis, strain S0837T should represent a novel species of the genus Sulfitobacter, for which the name Sulfitobacter maritimus sp. nov. is proposed. The type strain is S0837T (=MCCC 1K04635T=KCTC 72860T).


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Rhodobacteraceae/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
8.
Gene ; 776: 145407, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33450351

RESUMO

Electron transfer flavoprotein (ETF) is an enzyme with orthologs from bacteria to humans. Human ETF is nuclear encoded by two separate genes, ETFA and ETFB, respectively. After translation, the two subunits are imported to the mitochondrial matrix space and assemble into a heterodimer containing one FAD and one AMP as cofactors. ETF functions as a hub taking up electrons from at least 14 flavoenzymes, feeding them into the respiratory chain. This represents a major source of reducing power for the electron transport chain from fatty acid oxidation and amino acid degradation. Transfer of electrons from the donor enzymes to ETF occurs by direct transfer between the enzyme bound flavins, a process that is tightly regulated by the polypeptide chain and by protein:protein interactions. ETF, in turn relays electrons to the iron sulfur cluster of the inner membrane protein ETF:QO, from where they travel via the FAD in ETF:QO to ubiquinone, entering the respiratory chain at the level of complex III. ETF recognizes its dehydrogenase partners via a recognition loop that anchors the protein on its partner followed by dynamic movements of the ETF flavin domain that bring redox cofactors in close proximity, thus promoting electron transfer. Genetic mutations in the ETFA or ETFB genes cause the Mendelian disorder multiple acyl-CoA dehydrogenase deficiency (MADD; OMIM #231680). We here review the knowledge on human ETF and investigations of the effects of disease-associated missense mutations in this protein that have promoted the understanding of the essential role that ETF plays in cellular metabolism and human disease.


Assuntos
Flavoproteínas Transferidoras de Elétrons/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Monofosfato de Adenosina , Transporte de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/genética , Flavina-Adenina Dinucleotídeo , Humanos , Proteínas com Ferro-Enxofre , Mitocôndrias/fisiologia , Modelos Moleculares , Mutação , Oxirredução , Ubiquinona/análogos & derivados
9.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498409

RESUMO

Diabetic retinopathy (DR), one of the leading causes of blindness, is mainly diagnosed based on the vascular pathology of the disease. Current treatment options largely focus on this aspect with mostly insufficient therapeutic long-term efficacy. Mounting evidence implicates mitochondrial dysfunction and oxidative stress in the central etiology of DR. Consequently, drug candidates that aim at normalizing mitochondrial function could be an attractive therapeutic approach. This study compared the mitoprotective compounds, idebenone and elamipretide, side-by-side against two novel short-chain quinones (SCQs) in a rat model of DR. The model effectively mimicked type 2 diabetes over 21 weeks. During this period, visual acuity was monitored by measuring optokinetic response (OKR). Vision loss occurred 5-8 weeks after the onset of hyperglycemia. After 10 weeks of hyperglycemia, visual function was reduced by 65%. From this point, the right eyes of the animals were topically treated once daily with the test compounds. The left, untreated eye served as an internal control. Only three weeks of topical treatment significantly restored vision from 35% to 58-80%, while visual acuity of the non-treated eyes continued to deteriorate. Interestingly, the two novel SCQs restored visual acuity better than idebenone or elamipretide. This was also reflected by protection of retinal pathology against oxidative damage, retinal ganglion cell loss, reactive gliosis, vascular leakage, and retinal thinning. Overall, mitoprotective and, in particular, SCQ-based compounds have the potential to be developed into effective and fast-acting drug candidates against DR.


Assuntos
Antioxidantes/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Ubiquinona/análogos & derivados , Animais , Antioxidantes/farmacologia , Masculino , Mitocôndrias/efeitos dos fármacos , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Ratos , Ratos Long-Evans , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Visão Ocular
10.
Inflamm Res ; 70(2): 159-170, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33346851

RESUMO

BACKGROUND: The mitochondrial cofactors α-lipoic acid (ALA), coenzyme Q10 (CoQ10) and carnitine (CARN) play distinct and complementary roles in mitochondrial functioning, along with strong antioxidant actions. Also termed mitochondrial nutrients (MNs), these cofactors have demonstrated specific protective actions in a number of chronic disorders, as assessed in a well-established body of literature. METHODS: Using PubMed, the authors searched for articles containing information on the utilization of MNs in inflammatory disorders as assessed from in vitro and animal studies, and in clinical trials, in terms of exerting anti-inflammatory actions. RESULTS: The retrieved literature provided evidence relating acute pathologic conditions, such as sepsis and pneumonia, with a number of redox endpoints of biological and clinical relevance. Among these findings, both ALA and CARN were effective in counteracting inflammation-associated redox biomarkers, while CoQ10 showed decreased levels in proinflammatory conditions. MN-associated antioxidant actions were applied in a number of acute disorders, mostly using one MN. The body of literature assessing the safety and the complementary roles of MNs taken together suggests an adjuvant role of MN combinations in counteracting oxidative stress in sepsis and other acute disorders, including COVID-19-associated pneumonia. CONCLUSIONS: The present state of art in the use of individual MNs in acute disorders suggests planning adjuvant therapy trials utilizing MN combinations aimed at counteracting proinflammatory conditions, as in the case of pneumonia and the COVID-19 pandemic.


Assuntos
Anti-Inflamatórios/uso terapêutico , Carnitina/uso terapêutico , Sepse/tratamento farmacológico , Ácido Tióctico/uso terapêutico , Ubiquinona/análogos & derivados , Doença Aguda , Animais , Quimioterapia Adjuvante , Humanos , Mitocôndrias/metabolismo , Ubiquinona/uso terapêutico
11.
Artigo em Inglês | MEDLINE | ID: mdl-33332260

RESUMO

A Gram-negative, aerobic, rod-shaped, non-motile bacterium, designated strain HQ09T, was isolated from a marine sponge off the coast of Fields Peninsula, West Antarctica. Strain HQ09T grew at 4-35 °C (optimum, 25 °C), pH 5-9 (optimum, pH 7.0), and with 1-10% NaCl (optimum, 2 %). Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain HQ09T was affiliated with the genus Pseudopuniceibacterium in the family Rhodobacteraceae, sharing 99.64 % identity with the type strain of Pseudopuniceibacterium sediminis, the only known species in the genus. However, the low digital DNA-DNA hybridization (dDDH) (27.2 %) and average nucleotide identity (ANI) (83.63 %) values between strain HQ09T and the type strain of Pseudopuniceibacterium sediminis indicated that they did not belong to the same species. Strain HQ09T could also be differentiated from Pseudopuniceibacterium sediminis by many phenotypic characteristics. The major fatty acids (>5 %) of strain HQ09T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), 11-methyl C18 : 1 ω7c, C16 : 0 and C19 : 0 cyclo ω8c. The polar lipids included phosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids and one unidentified phospholipid. The predominant respiratory quinone was ubiquinone 10 (Q-10). The genomic DNA G+C content was 62.63 mol%. Four secondary metabolite biosynthetic gene clusters were detected in the genome, potentially producing ectoine and three types of unknown compounds. On the basis of the polyphasic evidences obtained in this study, strain HQ09T represents a novel species of the genus Pseudopuniceibacterium, for which the name Pseudopuniceibacterium antarcticum sp. nov. is proposed, with the type strain being HQ09T (=KCTC 52229T=CGMCC 1.15538T).


Assuntos
Filogenia , Poríferos/microbiologia , Rhodobacteraceae/classificação , Animais , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-33351741

RESUMO

A prosthecate bacterial strain, designated G-192T, was isolated from decaying biomass of a haloalkaliphilic cyanobacterium Geitlerinema sp. Z-T0701. The cells were aerobic, Gram-negative, non-endospore-forming and dimorphic, occurring either as sessile bacteria with a characteristic stalk or as motile flagellated cells. The strain utilized a limited range of substrates, mostly peptonaceous, but was able to degrade whole proteins. Growth occurred at 5-46 °C (optimum, 35-40 °C), pH 7.3-10.3 (optimum, pH 8.0-9.0), 0-14 % NaCl (v/w; optimum, 2.0-6.0 %, v/w). The G+C content of the genomic DNA of strain G-192T was 66.8%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain G-192T formed a distinct evolutionary lineage within the family Hyphomonadaceae. Strain G-192T showed the highest 16S rRNA sequence similarity to Glycocaulis profundi ZYF765T (95.2%), Oceanicaulis stylophorae GISW-4T (94.2%) and Marinicauda salina WD6-1T (95.5%). The major cellular fatty acids (>5% of the total) were C18:1 ω9c, C18:0 and 11-methyl-C18:1 ω7c. The major polar lipids were glycolipids and phospholipids. The only respiratory quinone was ubiquinone-10 (Q-10). Based on polyphasic results including phylogenomic data, the novel strain could be distinguished from other genera, which suggests that strain G-192T represents a novel species of a new genus, for which the name Alkalicaulis satelles gen. nov., sp. nov. is proposed. The type strain is G-192T (=VKM B-3306T=KCTC 72746T). The strain is the first representative of the stalked bacteria associated with a haloalkaliphilic cyanobacterium. Based on phylogenomic indices and phenotypic data, it is proposed to evolve two novel families Maricaulaceae fam. nov. and Robiginitomaculaceae fam. nov. out of the current family Hyphomonadaceae. In addition, it is proposed to place the first two families in the novel order Maricaulales ord. nov. and novel order Hyphomonadales ord. nov. is proposed to accommodate the family Hyphomonadaceae.


Assuntos
Alphaproteobacteria/classificação , Filogenia , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Cianobactérias , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Laboratórios , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
13.
Bratisl Lek Listy ; 121(11): 775-778, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33164536

RESUMO

COVID-19 ‒ a coronavirus disease, affected almost all countries in the world. It is a new virus disease, nobody has prior immunity to it, human population is prone to infections. In March 11 2020, WHO declared the pandemic status. The main symptoms include: fever, dry cough and fatigue. Virus proteins need mitochondrial energy for their own survival and replication. Upon viral infections, mitochondrial dynamics and metabolism can be modulated, which can influence the energy production in the host cells. Coenzyme Q10 is an integral component of mitochondrial respiratory chain and the key component of mitochondrial ATP production. The exact pathobiochemical mechanism of the disease is unknown. Modulated mitochondrial dynamics and metabolism with lower CoQ10 levels in viral infections leads us to the hypothesis that one of the main pathobiochemical effects of SARS-Cov-2 virus could be mitochondrial bioenergetics dysfunction with CoQ10 deficit leading to the reduction of its endogenous biosynthesis. The mechanism might be virus induced oxidative stress causing a mutation of one or more of the nine COQ genes, resulting in primary CoQ10 deficiency. New perspective for patients with COVID-19 may be supportive targeting therapy with coenzyme Q10 to increase the energy production, immunity and decrease oxidative stress (Fig. 1, Ref. 51). Keywords: COVID-19, virus, mitochondrial bioenergetics, coenzyme Q10, oxidative stress.


Assuntos
Infecções por Coronavirus/enzimologia , Metabolismo Energético , Mitocôndrias/enzimologia , Pneumonia Viral/enzimologia , Ubiquinona/análogos & derivados , Betacoronavirus , Humanos , Pandemias , Ubiquinona/genética
14.
Medicine (Baltimore) ; 99(46): e23130, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33181684

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the common gynecological endocrine system diseases. It is characterized by excessive androgen, rare or anovulation, and polycystic ovary morphology. Coenzyme Q10 (CoQ10) is a fat-soluble natural vitamin, which has a continuous oxidation-reduction cycle and is an effective antioxidant that can protect ovaries from oxidative damage. This study aims to systematically summarize and analyze the scientific literatures on glucose metabolism index, lipid profiles, inflammatory factor, and sex hormone level of PCOS patients treated with CoQ10 to provide a reference basis for clinical treatment. METHODS: We will retrieve the following electronic databases from the built-in until March 2021: Cochrane Library, PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM), Clinical Trials. gov, Chinese Scientific Journal Database (VIP), and Wang-fang database. Two reviewers will independently scan the articles searched, de-duplication, filtering, quality assessment. Differences will be resolved by discussion between the 2 reviewers or by a third reviewers. All analyses were systematic to evaluate interventions based on the Cochrane handbook. Meta-analysis and/or subgroup analysis will be performed on the basis of the included studies. DISCUSSION: This review will be to investigate the efficacy of CoQ10 supplementation on glucose metabolism, lipid profiles, and biomarkers of inflammation in women with PCOS and provide a high-quality synthesis to assess whether CoQ10 is an effective and safe intervention for PCOS. The results of the analysis will be published in a scientific journal after peer-review. SYSTEMATIC REVIEW REGISTRATION: INPLASY 2020100013.


Assuntos
Glicemia/metabolismo , Inflamação/sangue , Lipídeos , Síndrome do Ovário Policístico , Ubiquinona/análogos & derivados , Biomarcadores/sangue , Feminino , Humanos , Lipídeos/sangue , Lipídeos/classificação , Metanálise como Assunto , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Projetos de Pesquisa , Revisões Sistemáticas como Assunto , Resultado do Tratamento , Ubiquinona/farmacologia , Vitaminas/farmacologia
15.
J Oleo Sci ; 69(10): 1241-1255, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32908095

RESUMO

Measurements of aroxyl (ArO · )-radical-scavenging rate constants (ksAOH) of antioxidants (AOHs) (i.e., α-, ß-, γ-, δ-Tocopherol (TocH) and ubiquinol-10 (UQ10H2)) were performed in ethanol/chloroform/H2O (50/50/1, v/v) solution, using stopped-flow spectrophotometry. ksAOH values were measured not only for each AOH, but also for the mixtures of two AOHs (i.e., TocH and UQ10H2). ksTocH values for α-, ß-, γ-, δ-TocH increased 1.21, 1.28, 1.55, and 1.19 times, respectively, under the coexistence of constant concentrations of UQ10H2. Similar measurements were performed for eight vegetable oils 1 - 8, containing different concentrations of α-, ß-, γ-, δ-tocopherol (TocH) and -tocotrienol (Toc-3H). ksOil values of all eight vegetable oils 1 - 8 also increased 1.24 - 1.54 times under the coexistence of constant concentrations of UQ10H2. A new mechanism to explain the notable increase of ksAOH values under the coexistence of two kinds of phenolic AOHs was proposed. UV-vis absorption of α-, ß-, γ-Toc · radicals, produced by reaction of α-, ß-, γ-TocHs (or vegetable oils 1 - 8) with ArO · , disappeared under the coexistence of TocHs (or oils) and UQ10H2, suggesting that the prooxidant reaction resulting from the presence of Toc · radicals is suppressed in the presence of UQ10H2.


Assuntos
Antioxidantes/química , Depuradores de Radicais Livres/química , Óleos Vegetais , Ubiquinona/análogos & derivados , Vitamina E/química , Clorofórmio , Etanol , Oxirredução , Óleos Vegetais/química , Soluções , Espectrofotometria/métodos , Ubiquinona/química , Água
16.
Int J Syst Evol Microbiol ; 70(10): 5243-5254, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32886598

RESUMO

A bacterial strain, designated FSY-8T, was isolated from a freshwater mesocosm in Taiwan and characterized using the polyphasic taxonomy approach. Cells of strain FSY-8T were aerobic, Gram-stain-negative, rod-shaped, non-motile and formed yellow coloured colonies on Reasoner's 2A agar. Growth occurred at 20-40 °C (optimum, 30-37 °C) and pH 5-7 (optimum, pH 6) and in the presence of 0-0.5 % NaCl (optimum, 0 %, w/v). The major fatty acids (>10 %) of strain FSY-8T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, sphingoglycolipid, diphosphatidylglycerol, an uncharacterized aminophospholipid, an uncharacterized glycolipid and an uncharacterized lipid. The major polyamine was spermidine. The major isoprenoid quinone was Q-10. The DNA G+C content was 64.8 mol %. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain FSY-8T formed a phylogenetic lineage in the genus Novosphingobium. Strain FSY-8T showed 71.6-77.2 % average nucleotide identity and 19.9-22.8 % digital DNA-DNA hybridization identity with the strains of other Novosphingobium species. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain FSY-8T should be classified in a novel species of the genus Novosphingobium, for which the name Novosphingobium ovatum sp. nov. is proposed. The type strain is FSY-8T (=BCRC 81051T=LMG 30053T=KCTC 52812T).


Assuntos
Água Doce/microbiologia , Filogenia , Sphingomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/química , Sphingomonadaceae/isolamento & purificação , Taiwan , Ubiquinona/análogos & derivados , Ubiquinona/química
17.
Int J Syst Evol Microbiol ; 70(10): 5330-5336, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32897847

RESUMO

A Gram-stain-negative, aerobic, non-motile and ovoid- to rod-shaped bacterial strain, designated GH877T, was isolated from a water sample of Gahai saline lake in Qaidam Basin,PR China. The isolate grew at 5-45 °C, pH 6.0-9.0 (optima, 37 °C and pH 7.5) and with 0.5-20 % (w/v) NaCl (optimum, 2.0 %). The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain GH877T belonged to the genus Roseovarius, and had highest 16S rRNA gene sequence similarity of 97.7 % to Roseovarius pacificus 81-2T, followed by Roseovarius halotolerans HJ50T (97.5 %) and Roseovarius litoreus GSW-M15T (96.8 %). Genome sequencing revealed a genome size of 3 378 519 bp and a G+C content of 59.8 mol %. Up-to-date bacterial core gene set analysis indicated that strain GH877T represents one independent lineage with R. pacificus DSM29589T. The average nucleotide identity values of GH877T with R. pacificus 81-2T and R. halotolerans HJ50T are 80.7 and 77.3 %, respectively. In silico DNA-DNA hybridization values between strain GH877T and R. pacificus 81-2T and R. halotolerans HJ50T are 23.2 and 20.0 %, respectively. Q-10 was the predominant respiratory quinone and summed feature 8 (C18  :  1 ω7c and/or C18  :  1 ω6c) and C16  :  0 were the major cellular fatty acids. The polar lipids of strain GH877T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and two unidentified phosphoglycolipids. Based on polyphasic taxonomic analysis, strain GH877T is proposed to represent a novel species of the genus Roseovarius, for which the name Roseovarius gahaiensis sp. nov. is proposed. (type strain GH877T=CGMCC 1.13971T=KCTC 72576T).


Assuntos
Lagos/microbiologia , Filogenia , Rhodobacteraceae/classificação , Águas Salinas , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
18.
Int J Syst Evol Microbiol ; 70(10): 5561-5566, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32924915

RESUMO

A Gram-stain-negative, facultatively anaerobic, yellow-pigmented, non-motile, rod-shaped bacterium, designated zrk23T, was isolated from a deep-sea cold seep. The strain was characterized by a polyphasic approach to clarify its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequences placed zrk23T within the genus Sphingosinithalassobacter and showed the highest similarity to Sphingosinithalassobacter portus FM6T (97.93 %). Growth occurs at temperatures from 16 to 45 °C (optimum, 30 °C), at pH values between pH 6.0 and 8.5 (optimum, pH 7.0) and in 0-5.0 % (w/v) NaCl (optimum, 1.5 %). The major fatty acids were C16 : 0, C14 : 0 2-OH and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The major isoprenoid quinone was ubiquinone-10. Predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, one unidentified phosphoglycolipid, three unidentified glycolipids and three unidentified phospholipids. The G+C content of the genomic DNA was 64.69 %. The average nucleotide identity values between zrk23T and the most closely related available genome, of Sphingosinithalassobacter portus FM6T, was 82.21 %, indicating that zrk23T was clearly distinguished from S. portus. The analysis of genome sequence of zrk23T revealed that there were many genes associated with degradation of aromatic compounds existing in the genome of zrk23T. As a result of the combination of the results of phylogenetic analysis and phenotypic and chemotaxonomic data, zrk23T was considered to represent a novel species of the genus Sphingosinithalassobacter, for which the name Sphingosinithalassobacter tenebrarum sp. nov. is proposed. The type strain is zrk23T (=KCTC 72896T=MCCC 1K04416T).


Assuntos
Filogenia , Água do Mar/microbiologia , Sphingomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , Temperatura Baixa , DNA Bacteriano/genética , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , Glicolipídeos/química , Oceano Pacífico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonadaceae/isolamento & purificação , Ubiquinona/análogos & derivados , Ubiquinona/química
19.
Int J Syst Evol Microbiol ; 70(9): 5019-5025, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32783806

RESUMO

A novel Gram-stain-negative, aerobic, rod-shaped and indole acetic acid-producing strain, designated 7209-2T, was isolated from rhizosphere of rape (Brassica napus L.) grown in the Yakeshi City, Inner Mongolia, PR China. The 16S rRNA gene sequence analysis indicated that strain 7209-2T belongs to the genus Rhizobium and is closely related to Rhizobium rosettiformans W3T, Rhizobium ipomoeae shin9-1T and Rhizobium wuzhouense W44T with sequence similarities of 98.2, 98.1 and 97.9 %, respectively. Phylogenetic analysis based on concatenated housekeeping recA and atpD gene sequences showed that strain 7209-2T formed a group together with R. wuzhouense W44T and R. rosettiformans W3T, with sequences similarities of 92.6 and 91.1 %, respectively. The genome size of strain 7209-2T was 5.25 Mb, comprising 5027 predicted genes with a DNA G+C content of 61.2 mol%. The average nucleotide identity and digital DNA-DNA hybridization comparisons among 7209-2T and reference strains for the most closely related species showed values below the accepted threshold for species discrimination. The major fatty acids of strain 7209-2T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and summed feature 2 (C12 : 0 aldehyde and/or unknown 10.953) . The major polar lipids were found to consist of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and an unidentified aminophospholipid. The predominant ubiquinone was identified as quinone 10. Based on all the above results, strain 7209-2T represents a novel species of the genus Rhizobium, for which the name Rhizobium rhizophilum sp. nov. is proposed with 7209-2T (=CGMCC 1.15691T=DSM 103161T) as the type strain.


Assuntos
Brassica napus/microbiologia , Ácidos Indolacéticos/metabolismo , Filogenia , Rhizobium/classificação , Rizosfera , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhizobium/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
20.
Int J Syst Evol Microbiol ; 70(9): 5141-5148, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32812857

RESUMO

Bacterial strain CCP-6T, isolated from a freshwater pond in Taiwan, was characterized using a polyphasic taxonomy approach. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set (92 protein clusters) indicated that strain CCP-6T is affiliated with species in the genus Rhodovarius. Strain CCP-6T was most closely related to Rhodovarius lipocyclicus CCUG 44693T with a 98.9% 16S rRNA gene sequence similarity. Cells were Gram-stain-negative, aerobic, non-motile, rod-shaped and formed light pink-coloured colonies. Optimal growth occurred at 30 °C, pH 6 and in the absence of NaCl. The major fatty acids of strain CCP-6T were C18 : 1 ω7c, C16 : 0 and C19 : 0 cyclo ω8c. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, phosphatidylmethylethanolamine, diphosphatidylglycerol, three unidentified aminophospholipids and an unidentified phospholipid. The predominant polyamine was spermidine. The major isoprenoid quinone was Q-10. The DNA G+C content of the genomic DNA was 69.3 mol%. Strain CCP-6T showed 85.8% average nucleotide identity and 14.5% digital DNA-DNA hybridization identity with Rhodovarius lipocyclicus CCUG 44693T. On the basis of the genotypic, chemotaxonomic and phenotypic data, strain CCP-6T represents a novel species in the genus Rhodovarius, for which the name Rhodovarius crocodyli sp. nov. is proposed. The type strain is CCP-6T (=BCRC 81095T=LMG 30310T=KCTC 62188T).


Assuntos
Acetobacteraceae/classificação , Filogenia , Tanques/microbiologia , Acetobacteraceae/isolamento & purificação , Jacarés e Crocodilos , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/química , Taiwan , Ubiquinona/análogos & derivados , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...