Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.539
Filtrar
1.
Adv Exp Med Biol ; 1287: 69-80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034027

RESUMO

Interactions between liver cells are closely regulated by Notch signaling. Notch signaling has been reported clinically related to bile duct hypogenesis in Alagille syndrome, which is caused by mutations in the Jagged1 gene. Notch activation and hepatocarcinogenesis are closely associated since cancer signaling is affected by the development of liver cells and cancer stem cells. Gene expression and genomic analysis using a microarray revealed that abnormalities in Notch-related genes were associated with the aggressiveness of liver cancer. This pattern was also accompanied with α-fetoprotein- and EpCAM-expressing phenotypes in vitro, in vivo, and in clinical tissues. Hepatitis B or C virus chronic infection or alcohol- or steatosis-related liver fibrosis induces liver cancer. Previous reports demonstrated that HBx, a hepatitis B virus protein, was associated with Jagged1 expression. We found that the Jagged1 and Notch1 signaling pathways were closely associated with the transcription of covalently closed circular hepatitis B virus DNA, which regulated cAMP response element-binding protein, thereby affecting Notch1 regulation by the E3 ubiquitin ligase ITCH. This viral pathogenesis in hepatocytes induces liver cancer. In conclusion, Notch signaling exerts various actions and is a clinical signature associated with hepatocarcinogenesis and liver context-related developmental function.


Assuntos
Neoplasias Hepáticas , Receptores Notch/metabolismo , Transdução de Sinais , Hepatite/metabolismo , Hepatite/virologia , Vírus da Hepatite B/patogenicidade , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Nat Commun ; 11(1): 4931, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004795

RESUMO

Testis-restricted melanoma antigen (MAGE) proteins are frequently hijacked in cancer and play a critical role in tumorigenesis. MAGEs assemble with E3 ubiquitin ligases and function as substrate adaptors that direct the ubiquitination of novel targets, including key tumor suppressors. However, how MAGEs recognize their targets is unknown and has impeded the development of MAGE-directed therapeutics. Here, we report the structural basis for substrate recognition by MAGE ubiquitin ligases. Biochemical analysis of the degron motif recognized by MAGE-A11 and the crystal structure of MAGE-A11 bound to the PCF11 substrate uncovered a conserved substrate binding cleft (SBC) in MAGEs. Mutation of the SBC disrupted substrate recognition by MAGEs and blocked MAGE-A11 oncogenic activity. A chemical screen for inhibitors of MAGE-A11:substrate interaction identified 4-Aminoquinolines as potent inhibitors of MAGE-A11 that show selective cytotoxicity. These findings provide important insights into the large family of MAGE ubiquitin ligases and identify approaches for developing cancer-specific therapeutics.


Assuntos
Antígenos de Neoplasias/ultraestrutura , Proteínas de Neoplasias/ultraestrutura , Neoplasias/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Motivos de Aminoácidos , Aminoquinolinas/farmacologia , Aminoquinolinas/uso terapêutico , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Mutagênese , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Estudo de Prova de Conceito , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Domínios Proteicos/genética , Mapeamento de Interação de Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética
3.
Nat Commun ; 11(1): 4586, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934222

RESUMO

Frequent mutation of the tumour suppressor RNF43 is observed in many cancers, particularly colon malignancies. RNF43, an E3 ubiquitin ligase, negatively regulates Wnt signalling by inducing degradation of the Wnt receptor Frizzled. In this study, we discover that RNF43 activity requires phosphorylation at a triplet of conserved serines. This phospho-regulation of RNF43 is required for zebrafish development and growth of mouse intestinal organoids. Cancer-associated mutations that abrogate RNF43 phosphorylation cooperate with active Ras to promote tumorigenesis by abolishing the inhibitory function of RNF43 in Wnt signalling while maintaining its inhibitory function in p53 signalling. Our data suggest that RNF43 mutations cooperate with KRAS mutations to promote multi-step tumorigenesis via the Wnt-Ras-p53 axis in human colon cancers. Lastly, phosphomimetic substitutions of the serine trio restored the tumour suppressive activity of extracellular oncogenic mutants. Therefore, harnessing phospho-regulation of RNF43 might be a potential therapeutic strategy for tumours with RNF43 mutations.


Assuntos
Carcinogênese/metabolismo , Receptores Wnt/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carcinogênese/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Fosforilação , Proteólise , Receptores Wnt/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Via de Sinalização Wnt
4.
PLoS Pathog ; 16(9): e1008844, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886716

RESUMO

The genomes of RNA and small DNA viruses of vertebrates display significant suppression of CpG dinucleotide frequencies. Artificially increasing dinucleotide frequencies results in substantial attenuation of virus replication, suggesting that these compositional changes may facilitate recognition of non-self RNA sequences. Recently, the interferon inducible protein ZAP, was identified as the host factor responsible for sensing CpG in viral RNA, through direct binding and possibly downstream targeting for degradation. Using an arrayed interferon stimulated gene expression library screen, we identified ZAPS, and its associated factor TRIM25, as inhibitors of human cytomegalovirus (HCMV) replication. Exogenous expression of ZAPS and TRIM25 significantly reduced virus replication while knockdown resulted in increased virus replication. HCMV displays a strikingly heterogeneous pattern of CpG representation with specific suppression of CpG motifs within the IE1 major immediate early transcript which is absent in subsequently expressed genes. We demonstrated that suppression of CpG dinucleotides in the IE1 gene allows evasion of inhibitory effects of ZAP. We show that acute virus replication is mutually exclusive with high levels of cellular ZAP, potentially explaining the higher levels of CpG in viral genes expressed subsequent to IE1 due to the loss of pressure from ZAP in infected cells. Finally, we show that TRIM25 regulates alternative splicing between the ZAP short and long isoforms during HCMV infection and interferon induction, with knockdown of TRIM25 resulting in decreased ZAPS and corresponding increased ZAPL expression. These results demonstrate for the first time that ZAP is a potent host restriction factor against large DNA viruses and that HCMV evades ZAP detection through suppression of CpG dinucleotides within the major immediate early 1 transcript. Furthermore, TRIM25 is required for efficient upregulation of the interferon inducible short isoform of ZAP through regulation of alternative splicing.


Assuntos
Processamento Alternativo , Ilhas de CpG , Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Regulação Viral da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Replicação Viral , Linhagem Celular , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Humanos , Proteínas Imediatamente Precoces , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
PLoS Comput Biol ; 16(9): e1007740, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32881861

RESUMO

The circadian clock is a complex system that plays many important roles in most organisms. Previously, many mathematical models have been used to sharpen our understanding of the Arabidopsis clock, which brought to light the roles of each transcriptional and post-translational regulations. However, the presence of both regulations, instead of either transcription or post-translation, raised curiosity of whether the combination of these two regulations is important for the clock's system. In this study, we built a series of simplified oscillators with different regulations to study the importance of post-translational regulation (specifically, 26S proteasome degradation) in the clock system. We found that a simple transcriptional-based oscillator can already generate sustained oscillation, but the oscillation can be easily destroyed in the presence of transcriptional leakage. Coupling post-translational control with transcriptional-based oscillator in a feed-forward loop will greatly improve the robustness of the oscillator in the presence of basal leakage. Using these general models, we were able to replicate the increased variability observed in the E3 ligase mutant for both plant and mammalian clocks. With this insight, we also predict a plausible regulator of several E3 ligase genes in the plant's clock. Thus, our results provide insights into and the plausible importance in coupling transcription and post-translation controls in the clock system.


Assuntos
Relógios Circadianos/genética , Modelos Biológicos , Processamento de Proteína Pós-Traducional/genética , Transcrição Genética/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biologia Computacional , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Medicine (Baltimore) ; 99(38): e22295, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32957387

RESUMO

RATIONALE: Central precocious puberty (CPP) is caused by the premature activation of the hypothalamic-pituitary-gonadal axis. Recently, the makorin ring finger protein 3 (MKRN3) mutations represent the most common genetic defects associated with CPP. However, the MKRN3 mutation is relatively rare in Asian countries. Here, we identified a novel heterozygous MKRN3 nonsense mutation (p. Gln363) causing CPP in a Chinese girl. PATIENT CONCERNS: The index case is a 7-year-old Chinese girl who presented rapidly progressive precocious puberty with the onset of menstrual period 2 months after breast development, the advanced bone age (11 years), and the accelerated growth velocity (10 cm/year). Her basal luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, as well as the peak LH/FSH values after the gonadotropin-releasing hormone (GnRH) stimulation test were significantly elevated.Pelvic B ultrasound showed the presence of ovarian follicles with diameters ≥0.4 cm. Uterine length also indicated the onset of puberty. Contrast-enhanced magnetic resonance imaging (MRI) did not disclose any abnormality in the pituitary. Additionally, our present case was obese companies with impaired glucose tolerance (IGT) at the baseline assessment. Genetic analysis revealed a novel heterozygous nonsense mutation (c1087C>T; p. Gln363) in the maternally imprinted MKRN3, which inherited from the girl's father. DIAGNOSIS: Combined with the symptoms, hormonal data, and the results of the pelvic B ultrasound, the girl was diagnosed as CPP. INTERVENTIONS: The girl has been treated with a GnRH analog (3.75 mg every 4 wks) for 1 year and 5 months. OUTCOMES: The puberty signs have since not progressed during the follow-up period, which indicates that the GnRH analogs treatment is effective. LESSONS: This case was obese companied with IGT at the baseline assessment and exhibited stronger LH/FSH response to GnRH stimulation test. Therefore, clinicians should highlight the importance of weight management and the long-term follow-up to monitor the adverse health outcomes, especially for the polycystic ovary syndrome in later life.


Assuntos
Puberdade Precoce/genética , Ubiquitina-Proteína Ligases/metabolismo , Criança , Feminino , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Mutação , Puberdade Precoce/diagnóstico , Puberdade Precoce/tratamento farmacológico
7.
Nat Commun ; 11(1): 4205, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826891

RESUMO

Triple negative breast cancer (TNBC) is a deadly form of breast cancer due to the development of resistance to chemotherapy affecting over 30% of patients. New therapeutics and companion biomarkers are urgently needed. Recognizing the elevated expression of glucose transporter 1 (GLUT1, encoded by SLC2A1) and associated metabolic dependencies in TNBC, we investigated the vulnerability of TNBC cell lines and patient-derived samples to GLUT1 inhibition. We report that genetic or pharmacological inhibition of GLUT1 with BAY-876 impairs the growth of a subset of TNBC cells displaying high glycolytic and lower oxidative phosphorylation (OXPHOS) rates. Pathway enrichment analysis of gene expression data suggests that the functionality of the E2F pathway may reflect to some extent OXPHOS activity. Furthermore, the protein levels of retinoblastoma tumor suppressor (RB1) strongly correlate with the degree of sensitivity to GLUT1 inhibition in TNBC, where RB1-negative cells are insensitive to GLUT1 inhibition. Collectively, our results highlight a strong and targetable RB1-GLUT1 metabolic axis in TNBC and warrant clinical evaluation of GLUT1 inhibition in TNBC patients stratified according to RB1 protein expression levels.


Assuntos
Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Humanos , Camundongos , Fosforilação Oxidativa , Proteômica , Pirazóis/farmacologia , Piridinas/farmacologia , Quinolinas , RNA Mensageiro/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Ubiquitina-Proteína Ligases/genética
8.
Nat Commun ; 11(1): 4268, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848159

RESUMO

Current efforts in the proteolysis targeting chimera (PROTAC) field mostly focus on choosing an appropriate E3 ligase for the target protein, improving the binding affinities towards the target protein and the E3 ligase, and optimizing the PROTAC linker. However, due to the large molecular weights of PROTACs, their cellular uptake remains an issue. Through comparing how different warhead chemistry, reversible noncovalent (RNC), reversible covalent (RC), and irreversible covalent (IRC) binders, affects the degradation of Bruton's Tyrosine Kinase (BTK), we serendipitously discover that cyano-acrylamide-based reversible covalent chemistry can significantly enhance the intracellular accumulation and target engagement of PROTACs and develop RC-1 as a reversible covalent BTK PROTAC with a high target occupancy as its corresponding kinase inhibitor and effectiveness as a dual functional inhibitor and degrader, a different mechanism-of-action for PROTACs. Importantly, this reversible covalent strategy is generalizable to improve other PROTACs, opening a path to enhance PROTAC efficacy.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acrilamidas/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tirosina Quinase da Agamaglobulinemia/genética , Linhagem Celular , Sobrevivência Celular , Corantes Fluorescentes , Meia-Vida , Humanos , Espaço Intracelular/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Mutação , Fenômenos de Química Orgânica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise
9.
Mol Cell ; 79(5): 768-781.e7, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32738194

RESUMO

Misfolded proteins in the endoplasmic reticulum (ER) are degraded by ER-associated degradation (ERAD). Although ERAD components involved in degradation of luminal substrates are well characterized, much less is known about quality control of membrane proteins. Here, we analyzed the degradation pathways of two short-lived ER membrane model proteins in mammalian cells. Using a CRISPR-Cas9 genome-wide library screen, we identified an ERAD branch required for quality control of a subset of membrane proteins. Using biochemical and mass spectrometry approaches, we showed that this ERAD branch is defined by an ER membrane complex consisting of the ubiquitin ligase RNF185, the ubiquitin-like domain containing proteins TMUB1/2 and TMEM259/Membralin, a poorly characterized protein. This complex cooperates with cytosolic ubiquitin ligase UBE3C and p97 ATPase in degrading their membrane substrates. Our data reveal that ERAD branches have remarkable specificity for their membrane substrates, suggesting that multiple, perhaps combinatorial, determinants are involved in substrate selection.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Células HEK293 , Células HeLa , Humanos , Domínios Proteicos , Dobramento de Proteína , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Esterol 14-Desmetilase/metabolismo
10.
Nat Commun ; 11(1): 3807, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733036

RESUMO

The human genome contains an estimated 600 ubiquitin E3 ligases, many of which are single-subunit E3s (ssE3s) that can bind to both substrate and ubiquitin-loaded E2 (E2~Ub). Within ssE3s structural disorder tends to be located in substrate binding and domain linking regions. RNF4 is a ssE3 ligase with a C-terminal RING domain and disordered N-terminal region containing SUMO Interactions Motifs (SIMs) required to bind SUMO modified substrates. Here we show that, although the N-terminal region of RNF4 bears no secondary structure, it maintains a compact global architecture primed for SUMO interaction. Segregated charged regions within the RNF4 N-terminus promote compaction, juxtaposing RING domain and SIMs to facilitate substrate ubiquitination. Mutations that induce a more extended shape reduce ubiquitination activity. Our result offer insight into a key step in substrate ubiquitination by a member of the largest ubiquitin ligase subtype and reveal how a defined architecture within a disordered region contributes to E3 ligase function.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
11.
Sci Adv ; 6(33): eabb7238, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32851183

RESUMO

Cigarette smoking, the leading cause of chronic obstructive pulmonary disease (COPD), has been implicated as a risk factor for severe disease in patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we show that mice with lung epithelial cell-specific loss of function of Miz1, which we identified as a negative regulator of nuclear factor κB (NF-κB) signaling, spontaneously develop progressive age-related changes resembling COPD. Furthermore, loss of Miz1 up-regulates the expression of Ace2, the receptor for SARS-CoV-2. Concomitant partial loss of NF-κB/RelA prevented the development of COPD-like phenotype in Miz1-deficient mice. Miz1 protein levels are reduced in the lungs from patients with COPD, and in the lungs of mice exposed to chronic cigarette smoke. Our data suggest that Miz1 down-regulation-induced sustained activation of NF-κB-dependent inflammation in the lung epithelium is sufficient to induce progressive lung and airway destruction that recapitulates features of COPD, with implications for COVID-19.


Assuntos
Células Epiteliais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão/metabolismo , Peptidil Dipeptidase A/metabolismo , Fenótipo , Proteínas Inibidoras de STAT Ativados/genética , Doença Pulmonar Obstrutiva Crônica/genética , Ubiquitina-Proteína Ligases/genética , Regulação para Cima/genética , Animais , Betacoronavirus , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Proteínas Inibidoras de STAT Ativados/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais/genética , Fumar/efeitos adversos , Fator de Transcrição RelA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
PLoS One ; 15(7): e0235925, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32639967

RESUMO

Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by speech impairment, intellectual disability, ataxia, and epilepsy. AS is caused by mutations in the maternal copy of UBE3A located on chromosome 15q11-13. UBE3A codes for E6AP (E6 Associated Protein), a prominent member of the HECT (Homologous to E6AP C-Terminus) E3 ubiquitin ligase family. E6AP catalyzes the posttranslational attachment of ubiquitin via its HECT domain onto various intracellular target proteins to regulate DNA repair and cell cycle progression. The HECT domain consists of an N-lobe, required for E2~ubiquitin recruitment, while the C-lobe contains the conserved catalytic cysteine required for ubiquitin transfer. Previous genetic studies of AS patients have identified point mutations in UBE3A that result in amino acid substitutions or premature termination during translation. An AS transversion mutation (codon change from ATA to AAA) within the region of the gene that codes for the catalytic HECT domain of E6AP has been annotated (I827K), but the molecular basis for this loss of function substitution remained elusive. Here, we demonstrate that the I827K substitution destabilizes the 3D fold causing protein aggregation of the C-terminal lobe of E6AP using a combination of spectropolarimetry and nuclear magnetic resonance (NMR) spectroscopy. Our fluorescent ubiquitin activity assays with E6AP-I827K show decreased ubiquitin thiolester formation and ubiquitin discharge. Using 3D models in combination with our biochemical and biophysical results, we rationalize why the I827K disrupts E6AP-dependent ubiquitylation. This work provides new insight into the E6AP mechanism and how its malfunction can be linked to the AS phenotype.


Assuntos
Síndrome de Angelman/genética , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Angelman/patologia , Biocatálise , Dicroísmo Circular , Humanos , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
13.
Neuron ; 107(1): 3-5, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32645307

RESUMO

Loss-of-function variants in the PYRC2 gene cause hypomyelinating leukodystrophy 10 (HLD10), but the associated pathogenic mechanisms are unknown. In this issue of Neuron, Escande-Beillard et al. (2020) reveal that PYRC2 is a key enzyme for proper brain development and a regulator of glycine homeostasis, uncovering hyperglycinemia as a driver of HLD10 pathogenesis.


Assuntos
Encefalopatias/metabolismo , Glicina , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Pirrolina Carboxilato Redutases
14.
Prostate ; 80(12): 1012-1023, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649013

RESUMO

BACKGROUND: Small cell neuroendocrine (NE) carcinomas of the prostate classically lose androgen receptor (AR) expression, may harbor loss of the RB1, TP53, and PTEN tumor suppressor genes, and are associated with a poor prognosis. However usual-type adenocarcinomas may also contain areas of NE differentiation, and in this context the molecular features and biological significance are less certain. METHODS: We examined the molecular phenotype and oncologic outcomes of primary prostate adenocarcinomas with ≥5% NE differentiation (≥5% chromogranin A-positive NE cells in any given tumor spot on tissue microarray) using three independent study sets: a set of tumors with paneth cell-like NE differentiation (n = 26), a retrospective case-cohort of intermediate- and high-risk patients enriched for adverse outcomes (n = 267), and primary tumors from a retrospective series of men with eventual castration-resistant metastatic prostate cancer (CRPC) treated with abiraterone or enzalutamide (n = 55). RESULTS: Benign NE cells expressed significantly lower quantified AR levels compared with paired benign luminal cells (P < .001). Similarly, paneth-like NE carcinoma cells or carcinoma cells expressing chromogranin A expressed significantly lower quantified AR levels than paired non-NE carcinoma cells (P < .001). Quantified ERG protein expression, was also lower in chromogranin A-labeled adenocarcinoma cells compared with unlabeled cells (P < .001) and tumors with NE differentiation showed lower gene expression scores for AR activity compared with those without. Despite evidence of lower AR signaling, adenocarcinomas with NE differentiation did not differ by prevalence of TP53 missense mutations, or PTEN or RB1 loss, compared with those without NE differentiation. Finally, NE differentiation was not associated with time to metastasis in intermediate- and high-risk patients (P = .6 on multivariate analysis), nor with progression-free survival in patients with CRPC treated with abiraterone or enzalutamide (P = .9). CONCLUSION: NE differentiation in usual-type primary prostate adenocarcinoma is a molecularly and clinically distinct form of lineage plasticity from that occurring in small cell NE carcinoma.


Assuntos
Células Neuroendócrinas/patologia , Tumores Neuroendócrinos/patologia , Neoplasias da Próstata/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/metabolismo , Carcinoma de Células Pequenas/patologia , Diferenciação Celular/fisiologia , Estudos de Coortes , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Células Neuroendócrinas/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/biossíntese , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Estudos Retrospectivos , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Nucleic Acids Res ; 48(14): 7728-7747, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32609811

RESUMO

UHRF1 is an important epigenetic regulator associated with apoptosis and tumour development. It is a multidomain protein that integrates readout of different histone modification states and DNA methylation with enzymatic histone ubiquitylation activity. Emerging evidence indicates that the chromatin-binding and enzymatic modules of UHRF1 do not act in isolation but interplay in a coordinated and regulated manner. Here, we compared two splicing variants (V1, V2) of murine UHRF1 (mUHRF1) with human UHRF1 (hUHRF1). We show that insertion of nine amino acids in a linker region connecting the different TTD and PHD histone modification-binding domains causes distinct H3K9me3-binding behaviour of mUHRF1 V1. Structural analysis suggests that in mUHRF1 V1, in contrast to V2 and hUHRF1, the linker is anchored in a surface groove of the TTD domain, resulting in creation of a coupled TTD-PHD module. This establishes multivalent, synergistic H3-tail binding causing distinct cellular localization and enhanced H3K9me3-nucleosome ubiquitylation activity. In contrast to hUHRF1, H3K9me3-binding of the murine proteins is not allosterically regulated by phosphatidylinositol 5-phosphate that interacts with a separate less-conserved polybasic linker region of the protein. Our results highlight the importance of flexible linkers in regulating multidomain chromatin binding proteins and point to divergent evolution of their regulation.


Assuntos
Processamento Alternativo , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Histonas/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Regulação Alostérica , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Código das Histonas , Humanos , Camundongos , Ligação Proteica , Domínio Tudor , Ubiquitina-Proteína Ligases/genética
16.
Mol Cell ; 79(4): 588-602.e6, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32615089

RESUMO

The ribosome-associated protein quality control (RQC) system that resolves stalled translation events is activated when ribosomes collide and form disome, trisome, or higher-order complexes. However, it is unclear whether this system distinguishes collision complexes formed on defective mRNAs from those with functional roles on endogenous transcripts. Here, we performed disome and trisome footprint profiling in yeast and found collisions were enriched on diverse sequence motifs known to slow translation. When 60S recycling was inhibited, disomes accumulated at stop codons and could move into the 3' UTR to reinitiate translation. The ubiquitin ligase and RQC factor Hel2/ZNF598 generally recognized collisions but did not induce degradation of endogenous transcripts. However, loss of Hel2 triggered the integrated stress response, via phosphorylation of eIF2α, thus linking these pathways. Our results suggest that Hel2 has a role in sensing ribosome collisions on endogenous mRNAs, and such events may be important for cellular homeostasis.


Assuntos
Pegada de DNA/métodos , Genoma Fúngico , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/metabolismo , Regiões 3' não Traduzidas , Anisomicina/farmacologia , Códon de Terminação , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Mutação , Fosforilação , Estabilidade de RNA , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética
17.
Proc Natl Acad Sci U S A ; 117(32): 19190-19200, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723828

RESUMO

The 26S proteasome, a self-compartmentalized protease complex, plays a crucial role in protein quality control. Multiple levels of regulatory systems modulate proteasomal activity for substrate hydrolysis. However, the destruction mechanism of mammalian proteasomes is poorly understood. We found that inhibited proteasomes are sequestered into the insoluble aggresome via HDAC6- and dynein-mediated transport. These proteasomes colocalized with the autophagic receptor SQSTM1 and cleared through selective macroautophagy, linking aggresomal segregation to autophagic degradation. This proteaphagic pathway was counterbalanced with the recovery of proteasomal activity and was critical for reducing cellular proteasomal stress. Changes in associated proteins and polyubiquitylation on inhibited 26S proteasomes participated in the targeting mechanism to the aggresome and autophagosome. The STUB1 E3 Ub ligase specifically ubiquitylated purified human proteasomes in vitro, mainly via Lys63-linked chains. Genetic and chemical inhibition of STUB1 activity significantly impaired proteasome processing and reduced resistance to proteasomal stress. These data demonstrate that aggresomal sequestration is the crucial upstream event for proteasome quality control and overall protein homeostasis in mammals.


Assuntos
Macroautofagia , Organelas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células A549 , Humanos , Organelas/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
18.
Mol Cell ; 79(2): 320-331.e9, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32645369

RESUMO

Valosin-containing protein (VCP)/p97 is an AAA-ATPase that extracts polyubiquitinated substrates from multimeric macromolecular complexes and biological membranes for proteasomal degradation. During p97-mediated extraction, the substrate is largely deubiquitinated as it is threaded through the p97 central pore. How p97-extracted substrates are targeted to the proteasome with few or no ubiquitins is unknown. Here, we report that p97-extracted membrane proteins undergo a second round of ubiquitination catalyzed by the cytosolic ubiquitin ligase RNF126. RNF126 interacts with transmembrane-domain-specific chaperone BAG6, which captures p97-liberated substrates. RNF126 depletion in cells diminishes the ubiquitination of extracted membrane proteins, slows down their turnover, and dramatically stabilizes otherwise transient intermediates in the cytosol. We reconstitute the reubiquitination of a p97-extracted, misfolded multispanning membrane protein with purified factors. Our results demonstrate that p97-extracted substrates need to rapidly engage ubiquitin ligase-chaperone pairs that rebuild the ubiquitin signal for proteasome targeting to prevent harmful accumulation of unfolded intermediates.


Assuntos
Proteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina/metabolismo , Catálise , Citosol/metabolismo , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteólise , Solubilidade , Ubiquitinação
19.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 49(1): 1-19, 2020 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-32621419

RESUMO

Cullin-RING E3 ligases (CRLs) are the major components of ubiquitin-proteasome system, responsible for ubiquitylation and subsequent degradation of thousands of cellular proteins. CRLs play vital roles in the regulation of multiple cellular processes, including cell cycle, cell apoptosis, DNA replication, signalling transduction among the others, and are frequently dysregulated in many human cancers. The discovery of specific neddylation inhibitors, represented by MLN4924, has validated CRLs as promising targets for anti-cancer therapies with a growing market. Recent studies have focused on the discovery of the CRLs inhibitors by a variety of approaches, including high through-put screen, virtual screen or structure-based drug design. The field is, however, still facing the major challenging, since CRLs are a large multi-unit protein family without typical active pockets to facilitate the drug design, and enzymatic activity is mainly dependent on undruggable protein-protein interactions and dynamic conformation changes. Up to now, most reported CRLs inhibitors are aiming at targeting the F-box family proteins (e.g., SKP2, ß-TrCP and FBXW7), the substrate recognition subunit of SCF E3 ligases. Other studies reported few small molecule inhibitors targeting the UBE2M-DCN1 interaction, which specifically inhibits CRL3/CRL1 by blocking the cullin neddylation. On the other hand, several CRL activators have been reported, such as plant auxin and immunomodulatory imide drugs, thalidomide. Finally, proteolysis-targeting chimeras (PROTACs) has emerged as a new technology in the field of drug discovery, specifically targeting the undruggable protein-protein interaction. The technique connects the small molecule that selectively binds to a target protein to a CRL E3 via a chemical linker to trigger the degradation of target protein. The PROTAC has become a hotspot in the field of E3-ligase-based anti-cancer drug discovery.


Assuntos
Antineoplásicos , Descoberta de Drogas , Ubiquitina-Proteína Ligases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Neoplasias/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
20.
Nat Commun ; 11(1): 3532, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669539

RESUMO

Asexual proliferation of the Plasmodium parasites that cause malaria follows a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. By phosphoproteomic and chemical-genetic analysis, we isolate two functional targets of PfPP1 for egress: a HECT E3 protein-ubiquitin ligase; and GCα, a fusion protein composed of a guanylyl cyclase and a phospholipid transporter domain. We hypothesize that PfPP1 regulates lipid sensing by GCα and find that phosphatidylcholine stimulates PfPP1-dependent egress. PfPP1 acts as a key regulator that integrates multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.


Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum/enzimologia , Proteína Fosfatase 1/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Proliferação de Células , GMP Cíclico/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Knockout , Fosfatidilcolinas/química , Domínios Proteicos , Proteoma , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA