Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.776
Filtrar
1.
Biol Res ; 56(1): 21, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147738

RESUMO

BACKGROUND: Satellite cells are tissue-specific stem cells primarily responsible for the regenerative capacity of skeletal muscle. Satellite cell function and maintenance are regulated by extrinsic and intrinsic mechanisms, including the ubiquitin-proteasome system, which is key for maintaining protein homeostasis. In this context, it has been shown that ubiquitin-ligase NEDD4-1 targets the transcription factor PAX7 for proteasome-dependent degradation, promoting muscle differentiation in vitro. Nonetheless, whether NEDD4-1 is required for satellite cell function in regenerating muscle remains to be determined. RESULTS: Using conditional gene ablation, we show that NEDD4-1 loss, specifically in the satellite cell population, impairs muscle regeneration resulting in a significant reduction of whole-muscle size. At the cellular level, NEDD4-1-null muscle progenitors exhibit a significant decrease in the ability to proliferate and differentiate, contributing to the formation of myofibers with reduced diameter. CONCLUSIONS: These results indicate that NEDD4-1 expression is critical for proper muscle regeneration in vivo and suggest that it may control satellite cell function at multiple levels.


Assuntos
Músculo Esquelético , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Proliferação de Células/fisiologia , Músculo Esquelético/metabolismo , Células-Tronco , Diferenciação Celular , Ubiquitinas/metabolismo , Desenvolvimento Muscular/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo
2.
J Vis Exp ; (194)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154555

RESUMO

DNA-protein crosslinks (DPCs) are frequent, ubiquitous, and deleterious DNA lesions, which arise from endogenous DNA damage, enzyme (topoisomerases, methyltransferases, etc.) malfunctioning, or exogenous agents such as chemotherapeutics and crosslinking agents. Once DPCs are induced, several types of post-translational modifications (PTMs) are promptly conjugated to them as early response mechanisms. It has been shown that DPCs can be modified by ubiquitin, small ubiquitin-like modifier (SUMO), and poly-ADP-ribose, which prime the substrates to signal their respective designated repair enzymes and, in some cases, coordinate the repair in sequential manners. As PTMs transpire quickly and are highly reversible, it has been challenging to isolate and detect PTM-conjugated DPCs that usually remain at low levels. Presented here is an immunoassay to purify and quantitatively detect ubiquitylated, SUMOylated, and ADP-ribosylated DPCs (drug-induced topoisomerase DPCs and aldehyde-induced non-specific DPCs) in vivo. This assay is derived from the RADAR (rapid approach to DNA adduct recovery) assay that is used for the isolation of genomic DNA containing DPCs by ethanol precipitation. Following normalization and nuclease digestion, PTMs of DPCs, including ubiquitylation, SUMOylation, and ADP-ribosylation, are detected by immunoblotting using their corresponding antibodies. This robust assay can be utilized to identify and characterize novel molecular mechanisms that repair enzymatic and non-enzymatic DPCs and has the potential to discover small molecule inhibitors targeting specific factors that regulate PTMs to repair DPCs.


Assuntos
Dano ao DNA , Proteínas , DNA/metabolismo , Processamento de Proteína Pós-Traducional , Reparo do DNA , Ubiquitinas/metabolismo
3.
Cells ; 12(9)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174688

RESUMO

Immune checkpoint blockade (ICB) therapy can improve the survival of cancer patients with a high tumor mutation burden (TMB-H) or deficiency in DNA mismatch repair (dMMR) in their tumors. However, most cancer patients without TMB-H and dMMR do not benefit from ICB therapy. The inhibition of ATM can increase DNA damage and activate the interferon response, thus modulating the tumor immune microenvironment (TIME) and the efficacy of ICB therapy. In this study, we showed that ATM inhibition activated interferon signaling and induced interferon-stimulated genes (ISGs) in cisplatin-resistant and parent cancer cells. The ISGs induced by ATM inhibition were correlated with survival in cancer patients who received ICB therapy. In oral cancer, high expressions of ISG15, IFI27, and OASL were associated with low expressions of ATM, the activation of inflamed immune pathways, and increased tumor-infiltrating scores of CD8+ T, natural killer, and dendritic cells. The high expressions of ISG15, IFI27, and OASL were also correlated with complete remission in patients with cervical cancer treated with cisplatin. These results suggest that ATM inhibition can induce the interferon response and inflamed TIME, which may benefit ICB therapy.


Assuntos
Cisplatino , Neoplasias , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Cisplatino/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Interferons/metabolismo , Imunoterapia/métodos , Microambiente Tumoral , Ubiquitinas/metabolismo , Citocinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
4.
Nat Commun ; 14(1): 2698, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164963

RESUMO

Infection by many (+)RNA viruses is accompanied by ER-expansion and membrane remodelling to form viral replication organelles, followed by assembly and secretion of viral progenies. We previously identified that virus-triggered lipophagy was critical for flaviviral assembly, and is driven by the lipid droplet associated protein Ancient ubiquitin protein 1 (Aup1). A ubiquitin conjugating protein Ube2g2 that functions as a co-factor for Aup1 was identified as a host dependency factor in our study. Here we characterized its function: Ube2g2-deficient cells displayed a dramatic reduction in virus production, which could be rescued by reconstituting the wild-type but not the catalytically deficient (C89K) mutant of Ube2g2, suggesting that its enzymatic activity is necessary. Ube2g2 deficiency did not affect entry of virus particles but resulted in a profound loss in formation of replication organelles, and production of infectious progenies. This phenomenon resulted from its dual activity in (i) triggering lipophagy in conjunction with Aup1, and (ii) degradation of ER chaperones such as Herpud1, SEL1L, Hrd1, along with Sec62 to restrict ER-phagy upon Xbp1-IRE1 triggered ER expansion. Our results therefore underscore an exquisite fine-tuning of selective autophagy by flaviviruses that drive host membrane reorganization during infection to enable biogenesis of viral replication organelles.


Assuntos
Flavivirus , Proteínas , Proteínas/metabolismo , Flavivirus/metabolismo , Autofagia/genética , Gotículas Lipídicas/metabolismo , Replicação Viral/genética , Ubiquitinas/metabolismo
5.
Nat Commun ; 14(1): 2366, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185902

RESUMO

The Papain-like protease (PLpro) is a domain of a multi-functional, non-structural protein 3 of coronaviruses. PLpro cleaves viral polyproteins and posttranslational conjugates with poly-ubiquitin and protective ISG15, composed of two ubiquitin-like (UBL) domains. Across coronaviruses, PLpro showed divergent selectivity for recognition and cleavage of posttranslational conjugates despite sequence conservation. We show that SARS-CoV-2 PLpro binds human ISG15 and K48-linked di-ubiquitin (K48-Ub2) with nanomolar affinity and detect alternate weaker-binding modes. Crystal structures of untethered PLpro complexes with ISG15 and K48-Ub2 combined with solution NMR and cross-linking mass spectrometry revealed how the two domains of ISG15 or K48-Ub2 are differently utilized in interactions with PLpro. Analysis of protein interface energetics predicted differential binding stabilities of the two UBL/Ub domains that were validated experimentally. We emphasize how substrate recognition can be tuned to cleave specifically ISG15 or K48-Ub2 modifications while retaining capacity to cleave mono-Ub conjugates. These results highlight alternative druggable surfaces that would inhibit PLpro function.


Assuntos
COVID-19 , SARS-CoV-2 , Ubiquitina , Humanos , Citocinas/metabolismo , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
6.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37188463

RESUMO

The interaction of the 19S regulatory particle of the 26S proteasome with ubiquitylated proteins leads to gate opening of the 20S core particle and increases its proteolytic activity by binding of the ubiquitin chain to the inhibitory deubiquitylation enzyme USP14 on the 19S regulatory subunit RPN1. Covalent modification of proteins with the cytokine inducible ubiquitin-like modifier FAT10 is an alternative signal for proteasomal degradation. Here, we report that FAT10 and its interaction partner NUB1L facilitate the gate opening of the 20S proteasome in an ubiquitin- and USP14-independent manner. We also show that FAT10 is capable to activate all peptidolytic activities of the 26S proteasome, however only together with NUB1L, by binding to the UBA domains of NUB1L and thereby interfering with NUB1L dimerization. The binding of FAT10 to NUB1L leads to an increased affinity of NUB1L for the subunit RPN1. In conclusion, the herein described cooperation of FAT10 and NUB1L is a substrate-induced mechanism to activate the 26S proteasome.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitinas , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
7.
Hum Genomics ; 17(1): 44, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208785

RESUMO

BACKGROUND: Ubiquitin-related rare diseases are generally characterized by developmental delays and mental retardation, but the exact incidence or prevalence is not yet fully understood. The clinical application of next-generation sequencing for pediatric seizures and developmental delay of unknown causes has become common in studies aimed at identification of a causal gene in patients with ubiquitin-related rare diseases that cannot be diagnosed using conventional fluorescence in situ hybridization or chromosome microarray tests. Our study aimed to investigate the effects of ubiquitin-proteasome system on ultra-rare neurodevelopmental diseases, through functional identification of candidate genes and variants. METHODS: In our present work, we carried out genome analysis of a patient with clinical phenotypes of developmental delay and intractable convulsion, to identify causal mutations. Further characterization of the candidate gene was performed using zebrafish, through gene knockdown approaches. Transcriptomic analysis using whole embryos of zebrafish knockdown morphants and additional functional studies identified downstream pathways of the candidate gene affecting neurogenesis. RESULTS: Through trio-based whole-genome sequencing analysis, we identified a de novo missense variant of the ubiquitin system-related gene UBE2H (c.449C>T; p.Thr150Met) in the proband. Using zebrafish, we found that Ube2h is required for normal brain development. Differential gene expression analysis revealed activation of the ATM-p53 signaling pathway in the absence of Ube2h. Moreover, depletion of ube2h led to induction of apoptosis, specifically in the differentiated neural cells. Finally, we found that a missense mutation in zebrafish, ube2h (c.449C>T; p.Thr150Met), which mimics a variant identified in a patient with neurodevelopmental defects, causes aberrant Ube2h function in zebrafish embryos. CONCLUSION: A de novo heterozygous variant in the UBE2H c.449C>T (p.Thr150Met) has been identified in a pediatric patient with global developmental delay and UBE2H is essential for normal neurogenesis in the brain.


Assuntos
Doenças Raras , Enzimas de Conjugação de Ubiquitina , Peixe-Zebra , Animais , Humanos , Encéfalo/metabolismo , Deficiências do Desenvolvimento , Hibridização in Situ Fluorescente , Mutação , Mutação de Sentido Incorreto/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
8.
Front Immunol ; 14: 1202633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215134

RESUMO

Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.


Assuntos
Ubiquitina-Proteína Ligases , Neoplasias da Bexiga Urinária , Humanos , Ubiquitina-Proteína Ligases/fisiologia , Neoplasias da Bexiga Urinária/terapia , Ubiquitinas , Imunoterapia , Enzimas Desubiquitinantes
9.
J Transl Med ; 21(1): 341, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217923

RESUMO

BACKGROUND: Immunocheckpoint inhibitors (ICIs) have been widely used in the clinical treatment of lung cancer. Although clinical studies and trials have shown that patients can benefit significantly after PD-1/PD-L1 blocking therapy, less than 20% of patients can benefit from ICIs therapy due to tumor heterogeneity and the complexity of immune microenvironment. Several recent studies have explored the immunosuppression of PD-L1 expression and activity by post-translational regulation. Our published articles demonstrate that ISG15 inhibits lung adenocarcinoma progression. Whether ISG15 can enhance the efficacy of ICIs by modulating PD-L1 remains unknown. METHODS: The relationship between ISG15 and lymphocyte infiltration was identified by IHC. The effects of ISG15 on tumor cells and T lymphocytes were assessed using RT-qPCR and Western Blot and in vivo experiments. The underlying mechanism of PD-L1 post-translational modification by ISG15 was revealed by Western blot, RT-qPCR, flow cytometry, and Co-IP. Finally, we performed validation in C57 mice as well as in lung adenocarcinoma tissues. RESULTS: ISG15 promotes the infiltration of CD4+ T lymphocytes. In vivo and in vitro experiments demonstrated that ISG15 induces CD4+ T cell proliferation and invalidity and immune responses against tumors. Mechanistically, we demonstrated that the ubiquitination-like modifying effect of ISG15 on PD-L1 increased the modification of K48-linked ubiquitin chains thus increasing the degradation rate of glycosylated PD-L1 targeting proteasomal pathway. The expression of ISG15 and PD-L1 was negatively correlated in NSCLC tissues. In addition, reduced accumulation of PD-L1 by ISG15 in mice also increased splenic lymphocyte infiltration as well as promoted cytotoxic T cell infiltration in the tumor microenvironment, thereby enhancing anti-tumor immunity. CONCLUSIONS: The ubiquitination modification of PD-L1 by ISG15 increases K48-linked ubiquitin chain modification, thereby increasing the degradation rate of glycosylated PD-L1-targeted proteasome pathway. More importantly, ISG15 enhanced the sensitivity to immunosuppressive therapy. Our study shows that ISG15, as a post-translational modifier of PD-L1, reduces the stability of PD-L1 and may be a potential therapeutic target for cancer immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ubiquitinas , Microambiente Tumoral , Linhagem Celular Tumoral
10.
Biomolecules ; 13(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37238603

RESUMO

In this review, we present a comprehensive list of the ubiquitin-like modifiers (Ubls) of Saccharomyces cerevisiae, a common model organism used to study fundamental cellular processes that are conserved in complex multicellular organisms, such as humans. Ubls are a family of proteins that share structural relationships with ubiquitin, and which modify target proteins and lipids. These modifiers are processed, activated and conjugated to substrates by cognate enzymatic cascades. The attachment of substrates to Ubls alters the various properties of these substrates, such as function, interaction with the environment or turnover, and accordingly regulate key cellular processes, including DNA damage, cell cycle progression, metabolism, stress response, cellular differentiation, and protein homeostasis. Thus, it is not surprising that Ubls serve as tools to study the underlying mechanism involved in cellular health. We summarize current knowledge on the activity and mechanism of action of the S. cerevisiae Rub1, Smt3, Atg8, Atg12, Urm1 and Hub1 modifiers, all of which are highly conserved in organisms from yeast to humans.


Assuntos
Proteínas de Saccharomyces cerevisiae , Ubiquitinas , Humanos , Ubiquitinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Proteínas/genética , Dano ao DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligases/genética
11.
Molecules ; 28(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241859

RESUMO

Myocardial ischemia/reperfusion injury (MIRI) is related to ferroptosis and apoptosis elicited by reactive oxygen species (ROS). In this research, we investigated the protective effect of salvianolic acid B (SAB) as a natural antioxidant on ferroptosis and apoptosis in the MIRI process, and discussed the protective mechanism inhibiting ubiquitin-proteasome degradation of glutathione peroxidase 4 (GPX4) and the c-Jun N-terminal kinases (JNK) apoptosis signal pathway. We observed that ferroptosis and apoptosis occurred in the MIRI rat model in vivo and the H9c2 cardiomyocyte hypoxia/reoxygenation (H/R) damage model in vitro. SAB can alleviate tissue damage related to ROS, ferroptosis and apoptosis. Ubiquitin-proteasome degradation of GPX4 occurred in H/R models, and SAB reduced the ubiquitin-proteasome degradation of GPX4. SAB downregulates JNK phosphorylation and the expression of BCL2-Associated X (Bax)/B-cell lymphoma-2 (Bcl-2) and Caspase-3 to inhibit apoptosis. The role of GPX4 in the cardioprotection of SAB was further verified by the elimination effect of the GPX4 inhibitor RAS-selective lethal 3 (RSL3). This research shows that SAB may be used as a myocardial protective agent against oxidative stress, ferroptosis and apoptosis, and has potential clinical application prospects.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Apoptose , Ubiquitinas/metabolismo
12.
J Mol Med (Berl) ; 101(5): 543-556, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37081103

RESUMO

Hematopoietic stem cells are a group of heterogeneity cells with the potential to differentiate into various types of mature blood cells. Their basic biological properties include quiescence, self-renewal, multilineage differentiation, and homing ability, with the homing of exogenous hematopoietic stem cells after transplantation becoming a new focus, while the first three properties share some similarity in mechanism due to connectivity. In various complex mechanisms, the role of E3 ubiquitin ligases in hematopoietic homeostasis and malignant transformation is receiving increasing attention. As a unique part, E3 ubiquitin ligases play an important role in physiological regulation mechanism of posttranslational modification. In this review, we focus on the recent progress of the crucial role of E3 ubiquitin ligases that target specific proteins for ubiquitination to regulate biological properties of hematopoietic stem cells. Additionally, this paper deals with E3 ubiquitin ligases that affect the biological properties through aging and summarizes the relevant applications of targeting E3 ligases in hematopoietic malignancies. We present some ideas on the clinical application of E3 ubiquitin ligase to regulate hematopoietic stem cells and also believe that it is meaningful to study the upstream signal of these E3 ubiquitin ligases because hematopoietic stem cell dysfunction is caused by deficiency of some E3 ligases.


Assuntos
Células-Tronco Hematopoéticas , Ubiquitina-Proteína Ligases , Ubiquitinação , Células-Tronco Hematopoéticas/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitinas/metabolismo
13.
Virology ; 582: 114-127, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37058744

RESUMO

Coronavirus infection induces a variety of cellular antiviral responses either dependent on or independent of type I interferons (IFNs). Our previous studies using Affymetrix microarray and transcriptomic analysis revealed the differential induction of three IFN-stimulated genes (ISGs), IRF1, ISG15 and ISG20, by gammacoronavirus infectious bronchitis virus (IBV) infection of IFN-deficient Vero cells and IFN-competent, p53-defcient H1299 cells, respectively. In this report, the induction kinetics and anti-IBV functions of these ISGs as well as mechanisms underlying their differential induction are characterized. The results confirmed that these three ISGs were indeed differentially induced in H1299 and Vero cells infected with IBV, significantly more upregulation of IRF1, ISG15 and ISG20 was elicited in IBV-infected Vero cells than that in H1299 cells. Induction of these ISGs was also detected in cells infected with human coronavirus-OC43 (HCoV-OC43) and porcine epidemic diarrhea virus (PEDV), respectively. Manipulation of their expression by overexpression, knockdown and/or knockout demonstrated that IRF1 played an active role in suppressing IBV replication, mainly through the activation of the IFN pathway. However, a minor, if any, role in inhibiting IBV replication was played by ISG15 and ISG20. Furthermore, p53, but not IRF1, was implicated in regulating the IBV infection-induced upregulation of ISG15 and ISG20. This study provides new information on the mechanisms underlying the induction of these ISGs and their contributions to the host cell antiviral response during IBV infection.


Assuntos
Infecções por Coronavirus , Gammacoronavirus , Vírus da Bronquite Infecciosa , Animais , Humanos , Antivirais/farmacologia , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Citocinas/genética , Exorribonucleases , Vírus da Bronquite Infecciosa/genética , Suínos , Proteína Supressora de Tumor p53 , Ubiquitinas , Células Vero
14.
Elife ; 122023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039476

RESUMO

Mutations in the ubiquitin (Ub) chaperone Ubiquilin 2 (UBQLN2) cause X-linked forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) through unknown mechanisms. Here, we show that aggregation-prone, ALS-associated mutants of UBQLN2 (UBQLN2ALS) trigger heat stress-dependent neurodegeneration in Drosophila. A genetic modifier screen implicated endolysosomal and axon guidance genes, including the netrin receptor, Unc-5, as key modulators of UBQLN2 toxicity. Reduced gene dosage of Unc-5 or its coreceptor Dcc/frazzled diminished neurodegenerative phenotypes, including motor dysfunction, neuromuscular junction defects, and shortened lifespan, in flies expressing UBQLN2ALS alleles. Induced pluripotent stem cells (iPSCs) harboring UBQLN2ALS knockin mutations exhibited lysosomal defects while inducible motor neurons (iMNs) expressing UBQLN2ALS alleles exhibited cytosolic UBQLN2 inclusions, reduced neurite complexity, and growth cone defects that were partially reversed by silencing of UNC5B and DCC. The combined findings suggest that altered growth cone dynamics are a conserved pathomechanism in UBQLN2-associated ALS/FTD.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Esclerose Amiotrófica Lateral/genética , Demência Frontotemporal/genética , Orientação de Axônios , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Mutação , Fatores de Transcrição/genética , Ubiquitinas/metabolismo , Receptores de Netrina/genética
15.
Cells ; 12(7)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048066

RESUMO

We have shown in vivo and in vitro previously that psychosine causes dysfunction of autophagy and the ubiquitin-proteasome system underlying the pathogenesis of globoid cell leukodystrophy (GLD), a devastating lysosomal storage disease complicated by global demyelination. Here, we investigated the therapeutic efficacy of the mTOR inhibitor rapamycin in twitcher mice, a murine model of infantile GLD, in biochemical, histochemical, and clinical aspects. Administration of rapamycin to twitcher mice inhibited mTOR signaling in the brains, and significantly reduced the accumulation of insoluble ubiquitinated protein and the formation of ubiquitin aggregates. The astrocytes and microglia reactivity were attenuated in that reactive astrocytes, ameboid microglia, and globoid cells were reduced in the brains of rapamycin-treated twitcher mice. Furthermore, rapamycin improved the cortical myelination, neurite density, and rescued the network complexity in the cortex of twitcher mice. The therapeutic action of rapamycin on the pathology of the twitcher mice's brains prolonged the longevity of treated twitcher mice. Overall, these findings validate the therapeutic efficacy of rapamycin and highlight enhancing degradation of aggregates as a therapeutic strategy to modulate neuroinflammation, demyelination, and disease progression of GLD and other leukodystrophies associated with intracellular aggregates.


Assuntos
Doenças Desmielinizantes , Leucodistrofia de Células Globoides , Camundongos , Animais , Leucodistrofia de Células Globoides/tratamento farmacológico , Leucodistrofia de Células Globoides/patologia , Galactosilceramidase/metabolismo , Galactosilceramidase/uso terapêutico , Agregados Proteicos , Doenças Neuroinflamatórias , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Doenças Desmielinizantes/tratamento farmacológico , Ubiquitinas , Serina-Treonina Quinases TOR
16.
J Am Soc Mass Spectrom ; 34(5): 931-938, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014729

RESUMO

The diversity of ubiquitin modifications calls for methods to better characterize ubiquitin chain linkage, length, and morphology. Here, we use multiple linear regression analysis coupled with ion mobility mass spectrometry (IM-MS) to quantify the relative abundance of different ubiquitin dimer isomers. We demonstrate the utility and robustness of this approach by quantifying the relative abundance of different ubiquitin dimers in complex mixtures and comparing the results to the standard, bottom-up ubiquitin AQUA method. Our results provide a foundation for using multiple linear regression analysis and IM-MS to characterize more complex ubiquitin chain architectures.


Assuntos
Ubiquitina , Ubiquitinas , Ubiquitina/química , Espectrometria de Massas/métodos
17.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115698

RESUMO

Inflammation promotes adverse ventricular remodeling, a common antecedent of heart failure. Here, we set out to determine how inflammatory cells affect cardiomyocytes in the remodeling heart. Pathogenic cardiac macrophages induced an IFN response in cardiomyocytes, characterized by upregulation of the ubiquitin-like protein IFN-stimulated gene 15 (ISG15), which posttranslationally modifies its targets through a process termed ISGylation. Cardiac ISG15 is controlled by type I IFN signaling, and ISG15 or ISGylation is upregulated in mice with transverse aortic constriction or infused with angiotensin II; rats with uninephrectomy and DOCA-salt, or pulmonary artery banding; cardiomyocytes exposed to IFNs or CD4+ T cell-conditioned medium; and ventricular tissue of humans with nonischemic cardiomyopathy. By nanoscale liquid chromatography-tandem mass spectrometry, we identified the myofibrillar protein filamin-C as an ISGylation target. ISG15 deficiency preserved cardiac function in mice with transverse aortic constriction and led to improved recovery of mouse hearts ex vivo. Metabolomics revealed that ISG15 regulates cardiac amino acid metabolism, whereas ISG15 deficiency prevented misfolded filamin-C accumulation and induced cardiomyocyte autophagy. In sum, ISG15 upregulation is a feature of pathological ventricular remodeling, and protein ISGylation is an inflammation-induced posttranslational modification that may contribute to heart failure development by altering cardiomyocyte protein turnover.


Assuntos
Citocinas , Insuficiência Cardíaca , Humanos , Ratos , Camundongos , Animais , Citocinas/genética , Citocinas/metabolismo , Filaminas , Remodelação Ventricular/genética , Insuficiência Cardíaca/metabolismo , Inflamação , Ubiquitinas/genética
18.
Int J Biochem Cell Biol ; 159: 106420, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116777

RESUMO

Insulin resistance is the leading cause of type 2 diabetes (T2D), and dysfunctional insulin receptor signaling is a major manifestation of this insulin resistance. In T2D, the corresponding insulin receptor levels are aberrantly down-regulated, which is one of the major factors underlying obesity-induced insulin resistance in adipose tissue. However, the precise mechanism of insulin receptor impairment in obese individuals remains unclear. In the current study, we established that immunoglobulin superfamily containing leucine-rich repeat (Islr) is highly expressed in adipocytes of mice fed a high-fat diet. We further demonstrated that Islr mediates the ubiquitin-independent proteasomal degradation of insulin receptor alpha (Insrα) by specifically interacting with proteasome subunit alpha type 4 (Psma4). Islr knockout increased the corresponding Insrα subunit levels and enhanced insulin sensitivity in adipocytes, ultimately improving systemic metabolism. Further, siRNA-mediated down-regulation of Islr expression in the white adipose tissue of obese mice increased insulin sensitivity. Overall, Islr regulates insulin sensitivity by interacting with Psma4 to control the ubiquitin-independent proteasomal degradation of Insrα in obese mice, indicating that Islr may be a potential therapeutic target for ameliorating insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Receptor de Insulina/genética , Ubiquitinas
19.
Phytomedicine ; 114: 154765, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004403

RESUMO

BACKGROUD: Flavonoids have a variety of biological activities, such as anti-inflammation, anti-tumor, anti-thrombosis and so on. Morusinol, as a novel isoprene flavonoid extracted from Morus alba root barks, has the effects of anti-arterial thrombosis and anti-inflammatory in previous studies. However, the anti-cancer mechanism of morusinol remains unclear. PURPOSE: In present study, we mainly studied the anti-tumor effect of morusinol and its mode of action in melanoma. METHODS: The anti-cancer effect of morusinol on melanoma were evaluated by using the MTT, EdU, plate clone formation and soft agar assay. Flow cytometry was used for detecting cell cycle and apoptosis. The É£-H2AX immunofluorescence and the alkaline comet assay were used to detect DNA damage and the Western blotting analysis was used to investigate the expressions of DNA-damage related proteins. Ubiquitination and turnover of CHK1 were also detected by using the immunoprecipitation assay. The cell line-derived xenograft (CDX) mouse models were used in vivo to evaluate the effect of morusinol on tumorigenicity. RESULTS: We demonstrated that morusinol not only had the ability to inhibit cell proliferation, but also induced cell cycle arrest at G0/G1 phase, caspase-dependent apoptosis and DNA damage in human melanoma cells. In addition, morusinol effectively inhibited the growth of melanoma xenografts in vivo. More strikingly, CHK1, which played an important role in maintaining the integrity of cell cycle, genomic stability and cell viability, was down-regulated in a dose- and time-dependent manner after morusinol treatment. Further research showed that CHK1 was degraded by the ubiquitin-proteasome pathway. Whereafter, morusinol-induced cell cycle arrest, apoptosis and DNA damage were partially salvaged by overexpressing CHK1 in melanoma cell lines. Herein, further experiments demonstrated that morusinol increased the sensitivity of dacarbazine (DTIC) to chemotherapy for melanoma in vitro and in vivo. CONCLUSION: Morusinol induces CHK1 degradation through the ubiquitin-proteasome pathway, thereby inducing cell cycle arrest, apoptosis and DNA damage response in melanoma. Our study firstly provided a theoretical basis for morusinol to be a candidate drug for clinical treatment of cancer, such as melanoma, alone or combinated with dacarbazine.


Assuntos
Melanoma , Complexo de Endopeptidases do Proteassoma , Animais , Humanos , Camundongos , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Dacarbazina/farmacologia , Dano ao DNA , Flavonoides/farmacologia , Melanoma/metabolismo , Ubiquitinas/farmacologia
20.
Proc Natl Acad Sci U S A ; 120(16): e2220340120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036982

RESUMO

Ribosomes that stall while translating cytosolic proteins are incapacitated by incomplete nascent chains, termed "arrest peptides" (APs) that are destroyed by the ubiquitin proteasome system (UPS) via a process known as the ribosome-associated quality control (RQC) pathway. By contrast, APs on ribosomes that stall while translocating secretory proteins into the endoplasmic reticulum (ER-APs) are shielded from cytosol by the ER membrane and the tightly sealed ribosome-translocon junction (RTJ). How this junction is breached to enable access of cytosolic UPS machinery and 26S proteasomes to translocon- and ribosome-obstructing ER-APs is not known. Here, we show that UPS and RQC-dependent degradation of ER-APs strictly requires conjugation of the ubiquitin-like (Ubl) protein UFM1 to 60S ribosomal subunits at the RTJ. Therefore, UFMylation of translocon-bound 60S subunits modulates the RTJ to promote access of proteasomes and RQC machinery to ER-APs.


Assuntos
Retículo Endoplasmático , Ribossomos , Ribossomos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Controle de Qualidade , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...