Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.145
Filtrar
1.
PLoS Pathog ; 16(6): e1008610, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603377

RESUMO

Newcastle disease virus (NDV), a member of the Paramyxoviridae family, can activate PKR/eIF2α signaling cascade to shutoff host and facilitate viral mRNA translation during infection, however, the mechanism remains unclear. In this study, we revealed that NDV infection up-regulated host cap-dependent translation machinery by activating PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways. In addition, NDV infection induced p38 MAPK/Mnk1 signaling participated 4E-BP1 hyperphosphorylation for efficient viral protein synthesis when mTOR signaling is inhibited. Furthermore, NDV NP protein was found to be important for selective cap-dependent translation of viral mRNAs through binding to eIF4E during NDV infection. Taken together, NDV infection activated multiple signaling pathways for selective viral protein synthesis in infected cells, via interaction between viral NP protein and host translation machinery. Our results may help to design novel targets for therapeutic intervention against NDV infection and to understand the NDV anti-oncolytic mechanism.


Assuntos
Proteínas Aviárias , Fator de Iniciação 4E em Eucariotos , Sistema de Sinalização das MAP Quinases , Vírus da Doença de Newcastle , Nucleoproteínas , RNA Mensageiro , RNA Viral , Proteínas Virais , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Embrião de Galinha , Galinhas , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Nucleoproteínas/biossíntese , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Virais/biossíntese , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Arch Virol ; 165(9): 1959-1968, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32519007

RESUMO

Newcastle disease (ND), caused by virulent Newcastle disease virus (NDV) strains, has been one of the most problematic diseases affecting the poultry industry worldwide. Conventional vaccines provide effective protection for birds to survive ND outbreaks, but they may not completely suppress NDV shedding. NDV strains circulate on farms for a long time after the initial infection and cause potential risks. A new vaccine with fast clearance ability and low viral shedding is needed. In this study, we used interleukin-12 (IL-12) as an adjuvant and electroporation (EP) as an advanced delivery system to improve a DNA vaccine candidate. The fusion (F) protein gene from an NDV strain of the prevalent genotype VII.1.1 was cloned to prepare the vaccine. Chickens immunized with the F gene DNA vaccine co-delivered with an IL-12-expressing plasmid DNA showed higher neutralizing antibody levels and stronger concanavalin-A-induced lymphocyte proliferation than those treated with the F gene DNA vaccine alone. The co-delivered vaccine provided 100% protection, and less viral shedding and a shorter release time were observed in challenged chickens than when the F gene DNA vaccine was administered alone. The use of F gene DNA combined with IL-12 delivered by electroporation is a promising approach for vaccination against ND.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Interleucina-12/imunologia , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Galinhas , Eletroporação , Interleucina-12/administração & dosagem , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/fisiologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Proteínas Virais de Fusão/administração & dosagem , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Eliminação de Partículas Virais
3.
J Vet Sci ; 21(2): e19, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32233128

RESUMO

Given that the current Newcastle disease virus (NDV) infection in wild birds poses the threat to poultry, surveillance of Newcastle disease in captive wild birds was carried out in Jilin, China in 2018. Here, an NDV strain obtained from toco toucan was firstly characterized. The results showed that the F gene of the NDV isolate Toucan/China/3/2018 is classified as genotype II in class II. Sequence analysis of the F0 cleavage site was 113RQGR/L117, which supports the result of the intracerebral pathogenicity index assay indicating classification of the isolate as low-pathogenicity. Experimental infection demonstrated that Toucan/China/3/2018 can effectively replicate and transmit among chickens. To our knowledge, this is the first report on genetically and pathogenically characterizing NDV strain isolated from toucan, which enriches the epidemiological information of NDV in wild birds.


Assuntos
Aves , Genótipo , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Animais , Animais Selvagens , Galinhas , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/fisiologia , Doenças das Aves Domésticas/virologia , Análise de Sequência de RNA/veterinária
4.
Poult Sci ; 99(3): 1275-1286, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32111305

RESUMO

Newcastle disease virus (NDV) is a major threat to the poultry industry worldwide, with a diversity of genotypes associated with severe economic losses in all poultry sectors. Class II genotype VII NDV are predominant in the Middle East and Asia, despite intensive vaccination programs using conventional live and inactivated NDV vaccines. In Egypt, the disease is continuously spreading, causing severe economical losses in the poultry industry. In this study; the protective efficacy of a commercial, inactivated recombinant genotype VII NDV-matched vaccine (KBNP-C4152R2L strain) against challenge with the velogenic NDV strain (Chicken/USC/Egypt/2015) was evaluated in commercial layers. Two vaccination regimes were used; live NDV genotype II (LaSota) vaccine on days 10, 18, and 120, with either the inactivated NDV genotype II regime or inactivated NDV genotype VII-matched vaccine regime on days 14, 42, and 120. The 2 regimes were challenged at the peak of egg production on week 26. Protection by the 2 regimes was evaluated after experimental infection, based on mortality rate, clinical signs, gross lesions, virus shedding, seroconversion, and egg production schedule. The results show that these 2 vaccination regimes protected commercial layer chickens against mortality, but some birds showed mild clinical signs and reduced egg production temporarily. However, the combination of live NDV genotype II and recombinant inactivated genotype VII vaccines provided better protection against virus shedding (20% and 0% vs. 60% and 40%) as assessed in tracheal swabs and (20% and 0% vs. 20% and 20%) in cloacal swabs collected at 3 and 5 D post challenge (dpc), respectively. In addition, egg production levels in birds receiving the inactivated NDV genotype VII-matched vaccine regime and in those given inactivated genotype II vaccines were 76.6, 79, 82, and 87.4% and 77.7, 72.5, 69, and 82.5% at 7, 14, 21, and 28 dpc, respectively. The results of this study indicate that recombinant genotype-matched inactivated vaccine along with a live attenuated vaccine can reduce virus shedding and improve egg production in commercial layers challenged with a velogenic genotype VII virus under field conditions. This regime may ensure a proper control strategy in layers.


Assuntos
Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinação/tendências , Vacinação/veterinária , Vacinas Virais/administração & dosagem , Animais , Galinhas , Egito , Feminino , Genótipo , Vírus da Doença de Newcastle/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Sintéticas/administração & dosagem
5.
Cancer Immunol Immunother ; 69(6): 1015-1027, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088771

RESUMO

Oncolytic virus (OV) therapy is an emerging approach with the potential to redefine treatment options across a range of cancer indications and in patients who remain resistant to existing standards of care, including immuno-oncology (IO) drugs. MEDI5395, a recombinant Newcastle disease virus (NDV), engineered to express granulocyte-macrophage colony-stimulating factor (GM-CSF), exhibits potent oncolytic activity. It was hypothesized that activation of immune cells by MEDI5395, coupled with its oncolytic activity, would enhance the priming of antitumor immunity. Using MEDI5395 and recombinant NDVs encoding fluorescent reporter genes, we demonstrated preferential virus uptake and non-productive infection in myeloid cells, including monocytes, macrophages, and dendritic cells (DCs). Infection resulted in immune-cell activation, with upregulation of cell surface activation markers (e.g., CD80, PD-L1, HLA-DR) and secretion of proinflammatory cytokines (IFN-α2a, IL-6, IL-8, TNF-α). Interestingly, in vitro M2-polarized macrophages were more permissive to virus infection than were M1-polarized macrophages. In a co-culture system, infected myeloid cells were effective virus vectors and mediated the transfer of infectious NDV particles to tumor cells, resulting in cell death. Furthermore, NDV-infected DCs stimulated greater proliferation of allogeneic T cells than uninfected DCs. Antigens released after NDV-induced tumor cell lysis were cross-presented by DCs and drove activation of tumor antigen-specific autologous T cells. MEDI5395 therefore exhibited potent immunostimulatory activity and an ability to enhance antigen-specific T-cell priming. This, coupled with its tumor-selective oncolytic capacity, underscores the promise of MEDI5395 as a multimodal therapeutic, with potential to both enhance current responding patient populations and elicit de novo responses in resistant patients.


Assuntos
Vírus da Doença de Newcastle/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Linhagem Celular Tumoral , Vetores Genéticos , Humanos , Imunidade Inata
6.
J Gen Virol ; 101(2): 156-167, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31922948

RESUMO

Several pigeon paramyxovirus-1 (PPMV-1) outbreaks in feral pigeons were described recently in Switzerland. The potential of PPMV-1 to induce the notifiable Newcastle disease in chickens is discussed controversially. Therefore, in order to study epidemiologically relevant parameters such as the kinetics of PPMV-1 replication and shedding as well as seroconversion after infection, chickens were infected experimentally with a Swiss PPMV-1 isolate. This generated also defined sample material for the comparison of diagnostic tests. The infectivity of the Swiss PPMV-1 isolate for chickens was demonstrated successfully by virus shedding after experimental inoculation. Our data suggest that long-lasting shedding for up to 60 days can occur in chickens infected with PPMV-1. The isolate used here was of low pathogenicity for chickens. Different quantitative reverse transcription PCR assays were evaluated with a set of Swiss PPMV-1 isolates, and various samples from experimentally infected chickens were analysed with respect to their suitability for viral RNA detection. At 14 days post-infection, virus genome was detected mainly in spleen, caecal tonsils, heart, cloacal swabs, liver, proventriculus, duodenum and kidney tissue samples. Overall, the level of virus replication was low. Not all assays used routinely in diagnostics were capable of detecting viral genome from the isolates tested. Possible explanations are the genetic divergence of PPMV-1 and the low level of viral RNA in the samples. In contrast, two methods that are not used routinely proved more suitable for virus-genome detection. Importantly, the collection of material from various different organs is recommended, in addition to the kidney and brain analysed routinely. In conclusion, this study shows that there is a need to reconsider the type of samples and the protocols used for the detection of PPMV-1 RNA in chickens.


Assuntos
Infecções por Avulavirus/diagnóstico , Avulavirus , Doença de Newcastle/diagnóstico , Animais , Avulavirus/genética , Avulavirus/crescimento & desenvolvimento , Avulavirus/isolamento & purificação , Avulavirus/patogenicidade , Infecções por Avulavirus/patologia , Galinhas , Columbidae/virologia , Genoma Viral , Doença de Newcastle/patologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/crescimento & desenvolvimento , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/patogenicidade , Doenças das Aves Domésticas/virologia , Suíça , Viroses/veterinária , Replicação Viral , Eliminação de Partículas Virais
7.
Transbound Emerg Dis ; 67(1): 159-170, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31432620

RESUMO

Although Newcastle disease virus (NDV) has a worldwide distribution, some NDV genotypes have more regional geographical ranges within continents. In this study, we isolated a subgenotype XIIb NDV strain, Goose/CH/GD/E115/2017 (E115), from geese in Guangdong province, Southern China, in 2017. Phylogenetic analysis showed that E115 and six other NDVs from geese in China were grouped under subgenotype XIIb and were distinct from subgenotype XIIa, isolated from chickens in South Africa, and subgenotype XIId, isolated from chickens in Vietnam. To better understand the pathogenicity and transmission of the subgenotype XIIb NDVs from geese in Guangdong province, we inoculated chickens and geese with 106 EID50 of the E115 virus. Eight hours after inoculation, three naïve chickens and three naïve geese were co-housed with the infected chickens or geese to assess intraspecific and interspecific horizontal transmission of the E115 virus. The E115 virus induced significant clinical signs without mortality in chickens, while it was not pathogenic to geese. Intraspecific and interspecific horizontal transmission of the E115 virus was observed among chickens and geese via direct contact. Furthermore, although the current vaccines provided complete protection against disease in chickens after challenging them with the E115 virus, the virus could also be transmitted from vaccinated chickens to naïve contact chickens. Collectively, our findings highlight the need for avoiding the mixing of different bird species to reduce cross-species transmission and for surveillance of NDV in waterfowl.


Assuntos
Doenças das Aves/virologia , Galinhas/virologia , Gansos/virologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Doenças das Aves/prevenção & controle , Doenças das Aves/transmissão , China/epidemiologia , Feminino , Genótipo , Doença de Newcastle/prevenção & controle , Doença de Newcastle/transmissão , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/patogenicidade , Vírus da Doença de Newcastle/fisiologia , Filogenia , África do Sul/epidemiologia , Organismos Livres de Patógenos Específicos , Vietnã/epidemiologia , Virulência , Eliminação de Partículas Virais
8.
Arch Virol ; 165(1): 245-248, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31705209

RESUMO

We determined the genomic sequence of a Newcastle disease virus (NDV) line obtained directly from the first NDV isolate, named Herts'33. This strain shared ≤ 90% nucleotide sequence identity with the NDV sequences available in the GenBank database, and formed a distinct branch in a phylogenetic tree. This branch may be considered to represent a separate NDV genotype. Our study indicates that investigation of the genomic sequences of old NDV strains that originated from the early outbreaks of Newcastle disease may alter the phylogenetic grouping of the NDV strains and provide data on the evolution of viral genomes over time.


Assuntos
Vírus da Doença de Newcastle/genética , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Genoma Viral , Técnicas de Genotipagem , Vírus da Doença de Newcastle/classificação , Filogenia
9.
Int J Cancer ; 146(2): 531-541, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31584185

RESUMO

We have developed an oncolytic Newcastle disease virus (NDV) that has potent in vitro and in vivo anti-tumor activities and attenuated pathogenicity in chickens. In this ex vivo study using the same recombinant NDV backbone with GFP transgene (NDV-GFP, designated as rNDV), we found that rNDV induces maturation of monocyte-derived immature dendritic cells (iDCs) by both direct and indirect mechanisms, which promote development of antigen-specific T cell responses. Addition of rNDV directly to iDCs culture induced DC maturation, as demonstrated by the increased expression of costimulatory and antigen-presenting molecules as well as the production of type I interferons (IFNs). rNDV infection of the HER-2 positive human breast cancer cell line (SKBR3) resulted in apoptotic cell death, release of proinflammatory cytokines, and danger-associated molecular pattern molecules (DAMPs) including high-mobility group protein B1 (HMGB1) and heat shock protein 70 (HSP70). Addition of rNDV-infected SKBR3 cells to iDC culture resulted in greatly enhanced upregulation of the maturation markers and release of type I IFNs by DCs than rNDV-infected DCs only. When co-cultured with autologous T cells, DCs pre-treated with rNDV-infected SKBR3 cells cross-primed T cells in an antigen-specific manner. Altogether, our data strongly support the potential of oncolytic NDV as efficient therapeutic agent for cancer treatment.


Assuntos
Apresentação Cruzada , Células Dendríticas/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Animais , Chlorocebus aethiops , Técnicas de Cocultura , Células Dendríticas/metabolismo , Feminino , Células HeLa , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Neoplasias/imunologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , RNA/administração & dosagem , RNA/genética , RNA Viral/administração & dosagem , RNA Viral/genética , Linfócitos T/imunologia , Células Vero
10.
Virol J ; 16(1): 164, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881976

RESUMO

BACKGROUND: The paramyxovirus haemagglutinin-neuraminidase (HN) is a multifunctional protein that is responsible for attachment to receptors, removal of receptors from infected cells to prevent viral self-aggregation (neuraminidase, NA) and fusion promotion. It is commonly accepted that there are two receptor binding sites in the globular head of HN, and the second receptor binding site is only involved in the function of receptor binding and fusion promotion. METHODS: 10 conserved residues in the second receptor binding site of Newcastle disease virus (NDV) HN were chosen and substituted to alanine (A). The desired mutants were examined to detect the functional change in hemadsorption (HAD) ability, NA activity and fusion promotion ability. RESULTS: The HAD and fusion promotion ability of mutants C172A, R174A, C196A, D198A, Y526A and E547A were abolished. Compared with wild-type (wt) HN, the HAD of mutants T167A, S202A and R516A decreased to 55.81, 44.53, 69.02%, respectively, and the fusion promotion ability of these three mutants decreased to 54.74, 49.46, 65.26%, respectively; however, mutant G171A still maintained fusion promotion ability comparable with wt HN but had impaired HAD ability. All the site-directed mutations altered the NA activity of NDV HN without affecting protein cell surface expression. CONCLUSIONS: The data suggest that mutants C172A, R174A, C196A, D198A, Y526A and E547A do not allow the conformational change that is required for fusion promotion ability and HAD activity, while the other mutants only affect the conformational change to a limited extent, except mutant G171A with intact fusion promotion ability. Overall, the conserved amino acids in the second receptor binding site, especially residues C172, R174, C196, D198, Y526 and E547, are crucial to normal NDV HN protein function.


Assuntos
Aminoácidos/metabolismo , Proteína HN/metabolismo , Vírus da Doença de Newcastle/fisiologia , Ligação Viral , Substituição de Aminoácidos , Aminoácidos/genética , Animais , Sítios de Ligação , Linhagem Celular , Cricetinae , Análise Mutacional de DNA , Proteína HN/genética , Mutação de Sentido Incorreto , Vírus da Doença de Newcastle/genética , Internalização do Vírus
11.
Avian Dis ; 63(4): 634-640, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31865678

RESUMO

Chickens in live bird markets (LBMs) from six different regions of Tanzania were surveyed for Newcastle disease (ND) virus (NDV) and avian influenza virus in 2012. ELISA-based serology, virus isolation, and characterization, including pathotyping was conducted. Virulent NDV was isolated from almost 10% of the tested samples, with two distinct genotypes being detected. One genotype was similar to recent viruses circulating in Kenya and Uganda, which share a northern border with Tanzania. Several viruses of this genotype were also isolated from Tanzania in 1995, the last time surveillance for NDV was conducted in the country. The second genotype of virus from Tanzania was closely related to viruses from Mozambique, a southern neighbor, and more distantly to viruses from South Africa, Botswana, and several European countries. Partial fusion gene sequence from the isolated viruses showed identical fusion cleavage sites that were compatible with virulent viruses. Selected viruses were tested by the intracerebral pathogenicity index, and all viruses tested had scores of >1.78, indicating highly virulent viruses. Serology showed only a third of the chickens had detectable antibody to NDV, suggesting that vaccination is not being commonly used in the country, despite the availability of vaccines in agricultural-related markets. All samples were taken from clinically healthy birds, and it is believed that the birds were sold or slaughtered before showing ND clinical signs. LBMs remain a biosecurity risk for farmers through the return of live infected birds to the farm or village or the movement of virus on fomites, such as uncleaned wooden cages.


Assuntos
Galinhas , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/epidemiologia , Animais , Vírus da Influenza A/genética , Influenza Aviária/virologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/virologia , Prevalência , Tanzânia/epidemiologia
12.
Vet Microbiol ; 239: 108490, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31767075

RESUMO

Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) poses a significant threat to the pig industry, for which vaccination is considered to be an effective means of prevention and control. Here, we developed two recombinant Newcastle disease virus (NDV) LaSota-vectored PRRS candidate vaccines, rLaSota-GP5 and rLaSota-GP3-GP5, using reverse genetic techniques. The two recombinant viruses exhibited a high degree of genetic stability after 10 successive generations in chicken embryos. There was no significant difference in pathogenicity compared with the rLaSota parent strain in poultry, mice and pigs. The recombinant viruses could not be detected in the feeding environment of immunized pigs, but could be detected in the organs and tissues of pigs for no more than 10 days after immunization. Importantly, in contrast to rLaSota-GP5, rLaSota-GP3-GP5 elicited both significant humoral and cellular immune responses in pigs. In particular, the neutralizing antibody titer in the rLaSota-GP3-GP5 group was 1.51 times significantly higher than that of the commercial vaccine group at 42 days post-immunization. At the same time, there was significant difference in the level of IFN-γ between the rLaSota-GP3-GP5 group and the commercial vaccine group. Furthermore, the viral load in the organs and tissues of rLaSota-GP3-GP5-immunized pigs was substantially lower than that of unimmunized pigs after being challenged with HP-PRRS virus GD strain. These results suggest that rLaSota-GP3-GP5 is a safe and promising candidate vaccine, and there is potential for further development of a recombinant virus vaccine for PRRS using NDV.


Assuntos
Vírus da Doença de Newcastle/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Suínos
13.
Vet Microbiol ; 239: 108460, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31767079

RESUMO

Newcastle disease (ND) is an acute and contagious avian disease caused by Newcastle disease virus (NDV). MicroRNAs (miRNAs) play a significant role in host-pathogen interactions and the innate immune response. However, the role of miRNAs in the host response to NDV infection is not clearly understood. In this study, we showed that expression of the cellular miRNA gga-miR-455-5p was downregulated in vivo and in vitro in response to NDV infection. Next, we found that the transfection of chicken embryonic fibroblasts (CEFs) with gga-miR-455-5p suppressed NDV replication, while the blockade of endogenous gga-miR-455-5p expression with inhibitors enhanced NDV replication. In addition, gga-miR-455-5p enhanced the expression of type I interferon and the interferon-inducible genes (ISGs) OASL and Mx1 by targeting SOCS3, a negative regulator of type I IFN signaling. Altogether, these findings highlight the crucial role of gga-miR-455-5p in host defense against NDV by targeting the SOCS3 gene to inhibit NDV replication.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Vírus da Doença de Newcastle/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Replicação Viral/genética , Animais , Células Cultivadas , Regulação para Baixo , Fibroblastos/virologia , Interações entre Hospedeiro e Microrganismos/genética , Interferon Tipo I/genética , Doença de Newcastle/fisiopatologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Transdução de Sinais/genética
14.
PLoS One ; 14(11): e0209539, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725727

RESUMO

Although typical Newcastle disease virus (NDV) vaccines can prevent mortality, they are not effective in preventing viral shedding. To overcome this, genotype-matched vaccines have been proposed. To date, this approach has never been tested against genotype XII strains. In this study, we generated and assessed the protection against genotype XII challenge of two chimeric NDV vaccine strains (rLS1-XII-1 and rLS1-XII-2). The rLS1-XII-1 virus has the complete fusion protein (F) and the hemagglutinin-neuraminidase (HN) open reading frames replaced with those from genotype XII strain NDV/peacock/Peru/2011 (PP2011) in a recombinant LaSota (rLS1) backbone. In rLS1-XII-2 virus, cytoplasmic tails of F and HN proteins were restored to those of rLS1. In vitro evaluation showed that rLS1-XII-2 and the parental rLS1 strains replicate at higher efficiencies than rLS1-XII-1. In the first vaccine/challenge experiment, SPF chickens vaccinated with rLS1-XII-1 virus showed only 71.3% protection, whereas, rLS1 and rLS1-XII-2 vaccinated chickens were fully protected. In a second experiment, both rLS1-XII-2 and the commercial vaccine strain LaSota induced 100% protection. However, rLS1-XII-2 virus significantly reduced viral shedding, both in the number of shedding birds and in quantity of shed virus. In conclusion, we have developed a vaccine candidate capable of fully protecting chickens against genotype XII challenges. Furthermore, we have shown the importance of cytoplasmic tails in virus replication and vaccine competence.


Assuntos
Doença de Newcastle/imunologia , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Galinhas , Genótipo , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Homologia de Sequência de Aminoácidos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Virulência/genética , Virulência/imunologia , Replicação Viral/genética , Replicação Viral/imunologia , Eliminação de Partículas Virais/genética , Eliminação de Partículas Virais/imunologia
15.
Biomed Res Int ; 2019: 1486072, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687378

RESUMO

Newcastle disease is a devastating viral disease of chicken in low- and middle-income countries where the backyard production system is predominant. Marker-assisted selection of chickens that are resistant to Newcastle disease virus (NDV) is the promising strategy that needs to be explored. The aim of the present study was to investigate polymorphisms of the promoter region of the chicken Mx gene and association with Kuroiler, Sasso, and local Tanzanian chicken embryos' survival variability to virulent NDV infection. Chicken embryos were initially challenged with a minimum lethal dose of virulent NDV suspension and then were followed over time to gather information on their survival variability. Using the survival data, high and less susceptible cohorts were established, and a total of 88 DNA samples from high and less susceptible groups were genotypes by sequencing. Five single-nucleotide polymorphisms (SNPs), which were previously reported, were detected. Interestingly, for the first time, the findings demonstrated the association of the promoter region of chicken myxovirus-resistance (Mx) gene polymorphisms with chicken embryos' susceptibility to the virulent NDV challenge. At the genotypic level, the SNP4 G > A mutation that was located within the IFN-stimulating response element was associated (LR: 6.97, P=0.03) with chicken embryos' susceptibility to the virulent NDV challenge. An allele G frequency was higher in the less susceptible cohort, whereas an allele A frequency was higher in the high susceptible cohort. At the haplotype level, the haplotype group ACGC was associated (OR: 9.8, 95% CI: 1.06-79.43, P=0.042) with the same trait and had a resistant effect. In conclusion, the results have demonstrated the association of chicken Mx gene promoter polymorphisms and chicken embryos' survival variability to the virulent NDV challenge, and the information is useful for breeding programs designed to develop chicken genotypes that are resistant to Newcastle disease virus.


Assuntos
Embrião de Galinha/virologia , Doença de Newcastle/genética , Polimorfismo Genético/genética , Regiões Promotoras Genéticas/genética , Virulência/genética , Alelos , Animais , Sobrevivência Celular/genética , Galinhas/virologia , Frequência do Gene/genética , Genótipo , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Polimorfismo de Nucleotídeo Único/genética , Doenças das Aves Domésticas/etiologia
16.
BMC Cancer ; 19(1): 976, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640627

RESUMO

BACKGROUND: Nicotinic acetylcholine receptors (nAChRs) have been reported to be overexpressed in malignancies in humans and is associated with tumorigenesis and cell migration. In previous studies of gastric cancer, alpha7 nicotinic acetylcholine receptor (α7-nAChR) overexpression leads to epithelial-mesenchymal transition (EMT) and promotes the migration of gastric cancer cells. Recombinant avirulent LaSota strain of Newcastle disease virus (NDV) expressing the rabies virus glycoprotein (rL-RVG) may promote apoptosis of gastric cancer cells and reduces the migration of lung cancer metastasis. However, whether rL-RVG inhibits migration of gastric cancer cells and what the underlying functional mechanism is remains unknown. METHODS: The gastric cancer cell lines BGC and SGC were randomly divided into 3 groups: rL-RVG, NDV and Phosphate Buffered Solution (PBS) control groups. Furthermore,we adopted ACB and MLA,α7nAChR-siRNA for the overexpression and silencing of α7-nAChR.Corynoxenine was used for inhibiting the MEK-ERK pathway. Western blot, Immunofluoresce,cell proliferation assays,cell migration analyses through wound-healing assays and Transwell assays were used to explore the underlying mechanisms. A mouse xenograft model was used to investigate the effects of rL-RVG,NDV on tumor growth. RESULTS: In this study, our findings demonstrate that rL-RVG suppressed the migration of gastric cancer cells and reduced EMT via α7-nAChR in vitro. Furthermore rL-RVG decreased the phosphorylation levels of the MEK/ERK signaling pathway such as down-regulating the expression of P-MEK and P-ERK. Additionally, rL-RVG also reduced the expression level of mesenchymal markers N-cadherin and Vimentin and enhanced the expression of the epithelial marker E-cadherin. Lastly, rL-RVG inhibited nicotinic acetylcholine receptors (nAChRs) to suppress cell migration and epithelial to mesenchymal transition (EMT) in gastric cell. We also found that rL-RVG suppresses the growth of gastric cancer subcutaneous tumor cells in vivo. CONCLUSION: rL-RVG inhibits α7-nAChR-MEK/ERK-EMT to suppress migration of gastric cancer cells.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Sistema de Sinalização das MAP Quinases , Vírus da Doença de Newcastle/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Inativação Gênica , Glicoproteínas/metabolismo , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Vírus da Doença de Newcastle/genética , RNA Interferente Pequeno/genética , Vírus da Raiva/química , Neoplasias Gástricas/tratamento farmacológico , Proteínas Virais/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética
17.
Asian Pac J Cancer Prev ; 20(10): 3071-3075, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31653156

RESUMO

BACKGROUND: Treatment of cancer with chemo-radiotherapy causes severe side effects due to cytotoxic effects towards normal tissues which often results in morbidity. Therefore, developing anticancer agents which can selectively target the cancer cells and cause less side effects are the main objectives of the new therapeutic strategies for treatment advanced or metastatic cancers. Newcastle disease virus strains AF2240 and V4-UPM were shown to be cytolytic against various cancer cells in-vitro and very effective as antileukemicagents. METHODS: 45 rats at 6 weeks of age, were randomly assigned to nine groups with 5 rats in each group, both azoxymethane (AOM) and 5-Fluorouracil (5-FU) were given to rats according to the body weight. NDV virus strains (AF2240 and V4-UPM) doses were determined to rats according to CD50 resulted from MTT assay. After 8 doses of NDV strians and 5-FU, tissue sections preparations and histopathological study of rats' organs were done. RESULTS: In this article morphological changes of rats' organs, especially in livers, after treatment with a colon carcinogen (azoxymethane) and Newcastle disease virus strains have been recorded. We observed liver damage caused by AOM evidenced by morphological changes and enzymatic elevation were protected by the oncolytic viruses sections. Also we found that combination treatment NDV with 5-FU had greater antitumor efficacy than treatment with NDV or 5-FU alone. CONCLUSION: We noted morphological changes in liver and other rats' organs due to a chemical carcinogen and their protection by NDV AF2240 and NDV V4-UPM seems to be most protective.


Assuntos
Hepatopatias/patologia , Hepatopatias/terapia , Vírus da Doença de Newcastle/genética , Terapia Viral Oncolítica , Animais , Antimetabólitos Antineoplásicos/toxicidade , Azoximetano/toxicidade , Carcinógenos/toxicidade , Fluoruracila/toxicidade , Hepatopatias/etiologia , Vírus da Doença de Newcastle/classificação , Ratos
18.
Microb Pathog ; 137: 103785, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31604156

RESUMO

Newcastle disease (ND), caused by Avian orthoavulavirus 1 (AOAV-1), affects multiple avian species around the globe. Frequent disease outbreaks are not uncommon even in vaccinates despite routine vaccination and, in this regards, viruses of diverse genotypes originating from natural reservoirs (migratory waterfowls) play an important role in a disease endemic setting. Though genomic characterization of waterfowl originated viruses has been well-elucidated previously, there is a paucity of data on clinico-pathological assessment of mallard-originated sub-genotype VII.2 in commercial chickens. Hence, the current study was designed to evaluate its transmission potential, tissue tropism and micro- and macroscopic lesions in commercial broilers. Based on complete genome and complete F gene, phylogenetic analysis clustered the study isolate within genotype VII and sub-genotype VII.2 in close association with those reported previously from multiple avian species worldwide. The study strain was found to be velogenic on the basis of typical residue pattern in the F-protein cleavage site (112R-RQ-K-R↓F117), sever disease induction in chicken, tissue tropism and subsequent clinico-pathological characteristics. Giving a clear evidence of horizontal transmission, a 100% mortality was observed by 4th and 6th day post infection (dpi) in chickens challenged with the virus and those kept with the challenged birds (contact birds), respectively. The observed clinical signs, particularly the greenish diarrhea, and macroscopic lesions such as pinpoint hemorrhages in proventriculus and caecal tonsils were typical of the infection caused by an AOAV-1 in chickens. The virus exhibited a broad tissue tropism where genomic RNA corresponding to study virus was detected in all of the tissues collected from recently mortile and necropsied birds. The study concludes that mallard-originated Avian orthoavulavirus 1 is highly velogenic to commercial chicken and therefore ascertain continuous disease monitoring and surveillance of migratory/aquatic fowls to better elucidate infection epidemiology and subsequent potential impacts on commercial poultry.


Assuntos
Doença de Newcastle/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/virologia , Animais , Galinhas/virologia , Patos/virologia , Genoma Viral , Genótipo , Doença de Newcastle/patologia , Doença de Newcastle/transmissão , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/fisiologia , Filogenia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/transmissão
19.
Arch Virol ; 164(12): 3007-3017, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31598846

RESUMO

Classical swine fever (CSF) is an important viral disease of domestic pigs and wild boar. The structural proteins E2 and Erns of classical swine fever virus (CSFV), which participate in the attachment of the virion to the host cell surface and its subsequent entry, are immunogenic. The E2 and Erns proteins are used for diagnosis and the development of vaccines against CSFV infection in swine. Newcastle disease virus (NDV) has been successfully used as a viral vector to express heterologous proteins. In the present study, the E2 and Erns proteins of CSFV were expressed in cell culture as well as embryonated chicken eggs, using recombinant NDV (rNDV). Rescued rNDV expressing the E2 and Erns proteins induced the production of CSFV-neutralizing antibodies upon intranasal vaccination of pigs. Serum samples from vaccinated animals were found to neutralize both homologous and heterologous CSFV strains. Furthermore, rNDV expressing the E2 and Erns proteins of CSFV was used to develop an indirect ELISA, which was used to measure the the antibody titers of randomly collected serum samples. The results suggested that the ELISA based on rNDV-expressed E2 and Erns proteins could be used to screen for CSFV infections. This study shows that rNDV-based expression of CSFV antigens is potentially applicable for development of vaccines and diagnostic tests for CSFV infection. This approach could be an economically favorable alternative to the existing vaccine and diagnostics for CSFV in pigs.


Assuntos
Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/diagnóstico , Testes Diagnósticos de Rotina/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Glicoproteínas de Membrana/sangue , Vírus da Doença de Newcastle/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Peste Suína Clássica/sangue , Peste Suína Clássica/imunologia , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Vírus da Doença de Newcastle/imunologia , Recombinação Genética , Suínos
20.
Mol Biol Rep ; 46(6): 6391-6397, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549369

RESUMO

Newcastle disease virus (NDV) and infectious bronchitis virus (IBV) are two poultry pathogens affecting the respiratory tract of chickens, and cause major economic losses in the industry. Rapid detection of these viruses is crucial to inform implementation of appropriate control measures. The objective of our study is developing a simple, rapid and field applicable recombinase polymerase amplification (RPA)-nucleic acid lateral flow (NALF) immunoassay for detection of NDV and IBV. Isothermal amplification of the matrix protein (M) gene of NDV and the nucleoprotein (N) gene of IBV was implemented via recombinase polymerase amplification at 38 °C for 40 min and 20 min, respectively using modified labeled primers. NALF device used in this study utilizes antibodies for detection of labeled RPA amplicons. The results revealed that RPA-NALF immunoassays can detect both viruses after 40 min at 38 °C and only NDV after 20 min. The limit of detection (LOD) was 10 genomic copies/RPA reaction. The assays results on clinical samples collected from diseased chicken farms demonstrated a good performance in comparison with quantitative real time reverse transcription polymerase chain reaction (qRT-PCR). The assays established in this study can facilitate rapid, on-site molecular diagnosis of suspected cases of ND and IB viral infections as the results can be detected by the naked eye without the need for measuring fluorescence. Furthermore, the NALF device could be adapted to detect other infectious agents.


Assuntos
Vírus da Bronquite Infecciosa/isolamento & purificação , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/virologia , Recombinases/metabolismo , Animais , Galinhas , Imunoensaio , Vírus da Bronquite Infecciosa/genética , Limite de Detecção , Vírus da Doença de Newcastle/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA