Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 872
Filtrar
13.
Am J Prev Med ; 59(4): 493-503, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778354

RESUMO

INTRODUCTION: Given the continuing COVID-19 pandemic and much of the U.S. implementing social distancing owing to the lack of alternatives, there has been a push to develop a vaccine to eliminate the need for social distancing. METHODS: In 2020, the team developed a computational model of the U.S. simulating the spread of COVID-19 coronavirus and vaccination. RESULTS: Simulation experiments revealed that to prevent an epidemic (reduce the peak by >99%), the vaccine efficacy has to be at least 60% when vaccination coverage is 100% (reproduction number=2.5-3.5). This vaccine efficacy threshold rises to 70% when coverage drops to 75% and up to 80% when coverage drops to 60% when reproduction number is 2.5, rising to 80% when coverage drops to 75% when the reproduction number is 3.5. To extinguish an ongoing epidemic, the vaccine efficacy has to be at least 60% when coverage is 100% and at least 80% when coverage drops to 75% to reduce the peak by 85%-86%, 61%-62%, and 32% when vaccination occurs after 5%, 15%, and 30% of the population, respectively, have already been exposed to COVID-19 coronavirus. A vaccine with an efficacy between 60% and 80% could still obviate the need for other measures under certain circumstances such as much higher, and in some cases, potentially unachievable, vaccination coverages. CONCLUSIONS: This study found that the vaccine has to have an efficacy of at least 70% to prevent an epidemic and of at least 80% to largely extinguish an epidemic without any other measures (e.g., social distancing).


Assuntos
Controle de Doenças Transmissíveis , Simulação por Computador , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Vacinação , Vacinas Virais/farmacologia , Betacoronavirus/isolamento & purificação , Controle de Doenças Transmissíveis/métodos , Controle de Doenças Transmissíveis/estatística & dados numéricos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Erradicação de Doenças/métodos , Erradicação de Doenças/estatística & dados numéricos , Humanos , Determinação de Necessidades de Cuidados de Saúde , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Resultado do Tratamento , Estados Unidos/epidemiologia , Vacinação/métodos , Vacinação/estatística & dados numéricos , Cobertura Vacinal , Vacinas Virais/normas
15.
Vaccine ; 38(39): 6184-6189, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747214

RESUMO

Inactivated viral vaccines have long been used in humans for diseases of global health threat and are now among the vaccines for COVID-19 under development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of inactivated viral vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of the vaccine platform. The standardized and structured assessment provided by the template would also help to contribute to improved communication and support public acceptance of licensed inactivated viral vaccines.


Assuntos
Infecções por Coronavirus/prevenção & controle , Aprovação de Drogas/legislação & jurisprudência , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Medição de Risco , Vacinas Virais/normas , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Defesa Civil , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Regulamentação Governamental , Humanos , Imunogenicidade da Vacina , Cooperação Internacional , Segurança do Paciente , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Vacinas de Produtos Inativados , Vacinas Virais/administração & dosagem , Vacinas Virais/biossíntese
18.
Expert Opin Drug Discov ; 15(11): 1267-1281, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32662677

RESUMO

INTRODUCTION: A new body of evidence depicts the applications of artificial intelligence and systems biology in vaccine design and development. The combination of both approaches shall revolutionize healthcare, accelerating clinical trial processes and reducing the costs and time involved in drug research and development. AREAS COVERED: This review explores the basics of artificial intelligence and systems biology approaches in the vaccine development pipeline. The topics include a detailed description of epitope prediction tools for designing epitope-based vaccines and agent-based models for immune system response prediction, along with a focus on their potentiality to facilitate clinical trial phases. EXPERT OPINION: Artificial intelligence and systems biology offer the opportunity to avoid the inefficiencies and failures that arise in the classical vaccine development pipeline. One promising solution is the combination of both methodologies in a multiscale perspective through an accurate pipeline. We are entering an 'in silico era' in which scientific partnerships, including a more and more increasing creation of an 'ecosystem' of collaboration and multidisciplinary approach, are relevant for addressing the long and risky road of vaccine discovery and development. In this context, regulatory guidance should be developed to qualify the in silico trials as evidence for intelligent vaccine development.


Assuntos
Inteligência Artificial , Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Desenvolvimento de Medicamentos/métodos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Biologia de Sistemas , Vacinas Virais/normas , Infecções por Coronavirus/terapia , Humanos , Pneumonia Viral/terapia , Vacinas Virais/uso terapêutico
19.
Vaccine ; 38(34): 5556-5561, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571717

RESUMO

Nucleic acid (DNA and RNA) vaccines are among the most advanced vaccines for COVID-19 under development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of nucleic acid vaccines. This will facilitate the assessment by key stakeholders of potential safety issues and understanding of overall benefit-risk. The structured assessment provided by the template can also help improve communication and public acceptance of licensed nucleic acid vaccines.


Assuntos
Medição de Risco/métodos , Vacinas de DNA/efeitos adversos , Vacinas de DNA/normas , Vacinas Virais/genética , Vacinas Virais/normas , Infecções por Coronavirus/genética , Infecções por Coronavirus/prevenção & controle , Humanos , Opinião Pública , Medição de Risco/normas , Vacinas de DNA/genética , Vacinas Virais/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...