Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.423
Filtrar
1.
Nat Commun ; 12(1): 2453, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907186

RESUMO

Parasitoid wasps inflict widespread death upon the insect world. Hundreds of thousands of parasitoid wasp species kill a vast range of insect species. Insects have evolved defensive responses to the threat of wasps, some cellular and some behavioral. Here we find an unexpected response of adult Drosophila to the presence of certain parasitoid wasps: accelerated mating behavior. Flies exposed to certain wasp species begin mating more quickly. The effect is mediated via changes in the behavior of the female fly and depends on visual perception. The sight of wasps induces the dramatic upregulation in the fly nervous system of a gene that encodes a 41-amino acid micropeptide. Mutational analysis reveals that the gene is essential to the behavioral response of the fly. Our work provides a foundation for further exploration of how the activation of visual circuits by the sight of a wasp alters both sexual behavior and gene expression.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila simulans/genética , Drosophila/genética , Receptores Ionotrópicos de Glutamato/genética , Receptores Odorantes/genética , Comportamento Sexual Animal/fisiologia , Vespas/patogenicidade , Adaptação Fisiológica , Animais , Animais Geneticamente Modificados , Carnivoridade/fisiologia , Drosophila/metabolismo , Drosophila/parasitologia , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/parasitologia , Drosophila simulans/metabolismo , Drosophila simulans/parasitologia , Feminino , Fertilidade/genética , Regulação da Expressão Gênica , Masculino , Neurônios/citologia , Neurônios/metabolismo , Reconhecimento Visual de Modelos/fisiologia , Receptores Ionotrópicos de Glutamato/deficiência , Receptores Odorantes/deficiência , Vespas/fisiologia , beta-Caroteno 15,15'-Mono-Oxigenase/genética , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo
2.
J Insect Sci ; 21(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33580255

RESUMO

Insecticides can have consequences for beneficial arthropods. Insect parasitoids can contact insecticides through direct exposure spray droplets or residues on crop foliage. Here, we focus on better understand the response of Meteorus pulchricornis (Wesmael), a parasitoid wasp of lepidopteran pests, and its detoxification mechanisms on stress caused by phoxim and cypermethrin. Hence, we determined the dose-mortality curves and estimating the sublethal concentrations (LC30 and LC50). Then, we applied the sublethal concentrations against adult parasitoids to assess its survival, parasitism efficacy, and also developmental and morphometric parameters of their offspring. Simultaneously, we check the activities of glutathione S-transferase (GST), acetylcholinesterase (AChE), and peroxidase (POD) after sublethal exposure of both insecticides, which has measured until 48 h after treatment. Overall, phoxim and cypermethrin exhibited acute lethal activity toward the parasitoid with LC50 values 4.608 and 8.570 mg/liter, respectively. Also, we detect that LC30 was able to trigger the enzymatic activity of GST, AChE, and POD, suggesting a potential detoxification mechanism. However, even when subjected to sublethal exposure, our results indicate strong negatives effects, in particular for phoxim, which has affected the parasitism efficacy and also the developmental and morphometric parameters of M. pulchricornis offspring. Therefore, it can be concluded that both phoxim and cypermethrin have negative impacts on M. pulchricornis and we suggest cautioning their use and the need for semifield and field assessments to confirm such an impact.


Assuntos
Inseticidas/toxicidade , Compostos Organotiofosforados/toxicidade , Piretrinas/toxicidade , Spodoptera/parasitologia , Vespas/efeitos dos fármacos , Animais , Interações Hospedeiro-Parasita , Vespas/fisiologia
3.
Nat Commun ; 12(1): 718, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531484

RESUMO

Ficus (figs) and their agaonid wasp pollinators present an ecologically important mutualism that also provides a rich comparative system for studying functional co-diversification throughout its coevolutionary history (~75 million years). We obtained entire nuclear, mitochondrial, and chloroplast genomes for 15 species representing all major clades of Ficus. Multiple analyses of these genomic data suggest that hybridization events have occurred throughout Ficus evolutionary history. Furthermore, cophylogenetic reconciliation analyses detect significant incongruence among all nuclear, chloroplast, and mitochondrial-based phylogenies, none of which correspond with any published phylogenies of the associated pollinator wasps. These findings are most consistent with frequent host-switching by the pollinators, leading to fig hybridization, even between distantly related clades. Here, we suggest that these pollinator host-switches and fig hybridization events are a dominant feature of fig/wasp coevolutionary history, and by generating novel genomic combinations in the figs have likely contributed to the remarkable diversity exhibited by this mutualism.


Assuntos
Ficus/fisiologia , Vespas/fisiologia , Animais , Evolução Biológica , Hibridização Genética , Filogenia , Polinização/fisiologia , Simbiose/fisiologia
4.
J Chem Ecol ; 47(1): 28-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33405045

RESUMO

Longhorned beetles (Coleoptera: Cerambycidae) include many species that are among the most damaging pests of managed and natural forest ecosystems worldwide. Many species of cerambycids use volatile chemical signals (i.e., pheromones) to locate mates. Pheromones are often used by natural enemies, including parasitoids, to locate hosts and therefore can be useful tools for identifying host-parasitoid relationships. In two field experiments, we baited linear transects of sticky traps with pheromones of cerambycid beetles in the subfamily Cerambycinae. Enantiomeric mixtures of four linear alkanes or four linear alkanes and a ketol were tested separately to evaluate their attractiveness to hymenopteran parasitoids. We hypothesized that parasitoids would be attracted to these pheromones. Significant treatment effects were found for 10 species of parasitoids. Notably, Wroughtonia ligator (Say) (Hymenoptera: Braconidae) was attracted to syn-hexanediols, the pheromone constituents of its host, Neoclytus acuminatus acuminatus (F.) (Coleoptera: Cerambycidae). Location and time of sampling also significantly affected responses for multiple species of parasitoids. These findings contribute to the basic understanding of cues that parasitoids use to locate hosts and suggest that pheromones can be used to hypothesize host relationships between some species of cerambycids and their parasitoids. Future work should evaluate response by known species of parasitoids to the complete blends of pheromones used by the cerambycids they attack, as well as other odors that are associated with host trees of cerambycids.


Assuntos
Besouros/parasitologia , Atrativos Sexuais/fisiologia , Vespas/fisiologia , Animais , Besouros/fisiologia , Controle Biológico de Vetores
5.
Nat Commun ; 12(1): 234, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431897

RESUMO

Parasitoids are ubiquitous in natural ecosystems. Parasitic strategies are highly diverse among parasitoid species, yet their underlying genetic bases are poorly understood. Here, we focus on the divergent adaptation of a specialist and a generalist drosophilid parasitoids. We find that a novel protein (Lar) enables active immune suppression by lysing the host lymph glands, eventually leading to successful parasitism by the generalist. Meanwhile, another novel protein (Warm) contributes to a passive strategy by attaching the laid eggs to the gut and other organs of the host, leading to incomplete encapsulation and helping the specialist escape the host immune response. We find that these diverse parasitic strategies both originated from lateral gene transfer, followed with duplication and specialization, and that they might contribute to the shift in host ranges between parasitoids. Our results increase our understanding of how novel gene functions originate and how they contribute to host adaptation.


Assuntos
Proteínas de Insetos/metabolismo , Parasitos/fisiologia , Estruturas Animais/metabolismo , Animais , Drosophila/parasitologia , Genoma de Inseto , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Imunidade , Masculino , Mucinas/química , Filogenia , Domínios Proteicos , Especificidade da Espécie , Vespas/genética , Vespas/imunologia , Vespas/fisiologia
6.
Bull Entomol Res ; 111(3): 348-356, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33345769

RESUMO

Parasitoids can be used as biological agents of pest control. Anagyrus saccharicola Timberlake (Hymenoptera: Encyrtidae) is a parasitoid of the pink sugarcane mealybug Saccharicoccus sacchari (Cockerell) (Hemiptera: Pseudococcidae). Although this mealybug is present in all sugarcane-producing countries, there is limited information regarding this pest and its parasitoid. Aiming to elucidate information on bioecological parameters of A. saccharicola, were evaluated the survival of parasitoid females and males at three temperatures, the host preference of the parasitoid, and the fecundity and longevity of the host. In addition, the parasitism rate of A. saccharicola was estimated based on three factors, feeding, mating, and time. Survival was evaluated at 20, 25, and 30°C. Host preference was conducted on 15-, 20-, and 30-day-old mealybugs. And the parasitism rate was evaluated in fed and unfed, mated and unmated parasitoids and with 24 h and newly emerged. The temperature of 20°C was the most favorable for parasitoid survival. Parasitism occurred at all evaluated ages of the mealybug; however, the preference was for those that were 30-days-old. The parasitized mealybugs longevity was approximately 8 additional days after parasitization, and non-parasitized mealybugs lived for an additional 20 days for mealybugs aged 30 and 20 days at the outset of the tests, and a further 13 days for the 15 days. Feeding and mating after 24 h of emergence resulted in a higher parasitism rate. These findings can contribute to more efficient rearing of A. saccharicola and in the planning of the biological control of S. sacchari in the integrated pest management programs.


Assuntos
Hemípteros/parasitologia , Controle Biológico de Vetores/métodos , Vespas/fisiologia , Animais , Produtos Agrícolas , Fertilidade/fisiologia , Interações Hospedeiro-Parasita , Longevidade/fisiologia , Parasitos/fisiologia , Saccharum , Razão de Masculinidade , Especificidade da Espécie , Temperatura
7.
PLoS One ; 15(10): e0239742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33021997

RESUMO

The yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae, Lepeletier 1836), is native to Southeast Asia and has been unintentionally introduced in France. The species is spreading in many areas of the world. The European Union has classified V. velutina as a species of concern because the hornet significantly affects beekeeping activities, mostly by preying honeybees (Apis mellifera) at beehive entrances. No current control method is simultaneously eco-friendly and effective. Here, we aimed to develop a greener technique for destroying V. velutina nests, inspired by a defense behavior used by the eastern honeybee (Apis cerana), the "heat ball". In the laboratory, we tested how V. velutina of different sexes, castes, and developmental stages responded to different heat exposure systems employing a range of temperature levels. Overall, the time of death decreased as temperature increased. Hornets died faster when the temperature was gradually increased than when it was instantaneously increased; larvae seemed to be more thermally tolerant. The most promising and potential technique for quickly destroying hornet nests may be steam injection, as the humid airflow system killed all hornets within 13 seconds, and therefore could be a good candidate for a green nest control method.


Assuntos
Controle de Insetos/métodos , Espécies Introduzidas , Termotolerância/fisiologia , Vespas/fisiologia , Animais , Abelhas/fisiologia , Feminino , França , Temperatura Alta , Larva/fisiologia , Masculino , Temperatura
8.
Proc Biol Sci ; 287(1934): 20201377, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900311

RESUMO

Ever since Darwin's discovery of natural selection, we expect traits to evolve to increase organisms' fitness. As a result, we can use optimization models to make a priori predictions of phenotypic variation, even when selection is frequency-dependent. A notable example is the prediction of female-biased sex ratios resulting from local mate competition (LMC) and inbreeding. LMC models incorporate the effects of LMC and inbreeding. Fig wasp sex ratio adjustments fit LMC predictions well. However, the appropriateness of LMC models to fig wasps has been questioned, and the role that a coincidental by-product plays in creating the apparent fit has been clearly illustrated. Here, we show that the sex ratio adjustments of a fig wasp are the result of a dual mechanism. It consists of a standard facultative LMC response favoured by natural selection, as well as a mechanism that may be the result of selection, but that could also be a coincidental by-product. If it is a by-product, the fitness increase is coincidental and natural selection's role was limited to fine-tuning it for higher fitness returns. We further document a case of an apparent fitness-reducing sex ratio adjustment. We conclude that the use of the adaptationist approach demands that our understanding of traits must be remodelled continually to rectify spurious assumptions.


Assuntos
Seleção Genética , Comportamento Sexual Animal/fisiologia , Vespas/fisiologia , Animais , Feminino , Masculino , Razão de Masculinidade
9.
PLoS One ; 15(9): e0238888, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915879

RESUMO

The vast majority of species of velvet ants (Hymenoptera: Aculeata: Mutillidae) are ectoparasitoids of immature stages of other aculeate Hymenoptera (bees, wasps and ants). Due to their cryptic, furtive behaviour at the host nesting sites, however, even basic information on their biology, like host use diversity, is still unknown for entire subfamilies, and the known information, scattered in over two centuries of published studies, is potentially hiding tendencies to host specialization across velvet ant lineages. In this review, based on 305 host associations spanning 132 species in 49 genera and 10 main lineages (tribes/subfamilies), we explored patterns of host use in velvet ants. Overall, 15 families and 29 subfamilies of Aculeata are listed as hosts of mutillids, with a strong predominance of Apoidea (bees and apoid wasps: 19 subfamilies and 82.3% of host records). A series of bipartite networks, multivariate analyses and calculations of different indices suggested possible patterns of specialization. Host taxonomic spectrum (number of subfamilies) of velvet ants was very variable and explained by variation in the number of host records. Instead, we found a great variation of network-based host specialization degree and host taxonomic distinctness that did not depend on the number of host records. Differences in host use patterns seemed apparent across mutillid tribes/subfamilies, among genera within several tribes/subfamilies, and to lesser extent within genera. Taxonomic host use variation seemed not dependent on phylogeny. Instead, it was likely driven by the exploitation of hosts with different ecological traits (nest type, larval diet and sociality). Thus, taxonomically more generalist lineages may use hosts that essentially share the same ecological profile. Interestingly, closely related mutillid lineages often show contrasting combinations of host ecological traits, particularly sociality and larval diet, with a more common preference for ground-nesting hosts across most lineages. This review may serve as a basis to test hypotheses for host use evolution in this fascinating family of parasitoids.


Assuntos
Formigas/fisiologia , Abelhas/fisiologia , Evolução Molecular , Interações Hospedeiro-Parasita , Filogenia , Vespas/fisiologia , Animais , Formigas/classificação , Abelhas/classificação , Vespas/classificação
10.
PLoS One ; 15(8): e0236791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760094

RESUMO

In May 2010 the large white butterfly, Pieris brassicae L. (Lepidoptera: Pieridae), was discovered to have established in New Zealand. It is a Palearctic species that-due to its wide host plant range within the Brassicaceae-was regarded as a risk to New Zealand's native brassicas. New Zealand has 83 native species of Brassicaceae including 81 that are endemic, and many are threatened by both habitat loss and herbivory by other organisms. Initially a program was implemented to slow its spread, then an eradication attempt commenced in November 2012. The P. brassicae population was distributed over an area of approximately 100 km2 primarily in urban residential gardens. The eradication attempt involved promoting public engagement and reports of sightings, including offering a bounty for a two week period, systematically searching gardens for P. brassicae and its host plants, removing host plants, ground-based spraying of insecticide to kill eggs and larvae, searching for pupae, capturing adults with nets, and augmenting natural enemy populations. The attempt was supported by research that helped to progressively refine the eradication strategy and evaluate its performance. The last New Zealand detection of P. brassicae occurred on 16 December 2014, the eradication program ceased on 4 June 2016 and P. brassicae was officially declared eradicated from New Zealand on 22 November 2016, 6.5 years after it was first detected and 4 years after the eradication attempt commenced. This is the first species of butterfly ever to have been eradicated worldwide.


Assuntos
Brassicaceae/parasitologia , Borboletas/crescimento & desenvolvimento , Animais , Borboletas/fisiologia , Ecossistema , Herbivoria , Controle de Insetos , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/fisiologia , Nova Zelândia , Óvulo/efeitos dos fármacos , Vespas/fisiologia
11.
PLoS One ; 15(7): e0226934, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32722670

RESUMO

The range of the invasive alien hornet, Vespa velutina nigrithorax, has been expanding since its introduction to Korea in 2003. Here, we compare the aggressive behaviors and body size of V. velutina nigrithorax with five native hornet species to identify the interspecific hierarchies that influence the rate of spread of this species. Aggressive behaviors were classified into 11 categories, and each interaction was scored as a win, loss, or tie. We found that V. velutina was superior to V. simillima in fights that V. velutina won and showed a high incidence of threatening behavior. V. mandarinia outperformed V. velutina in fights that V. mandarinia won and grappling behavior was common. V. analis was superior to V. velutina in fights that V. analis won and showed a high degree of threatening behavior. V. crabro was superior to V. velutina in fights that V. crabro won and showed a high rate of threatening behavior. V. dybowskii was superior to V. velutina in fights that V. dybowskii won and showed a high incidence of threatening and grappling behaviors. The body size of V. velutina was greater than V. simillima (although not statistically significant) and smaller than all other Vespa species. Therefore, according to this study, the low interspecific hierarchies of V. velutina seem to be a major cause of the slower spread in Korea than in Europe. However, over time, its density has gradually increased within the forest, where it seems to be overcoming its disadvantages and expanding its range, possibly because the large colonies and good flying abilities of this species help it secure food.


Assuntos
Agressão , Comportamento Animal , Tamanho Corporal , Vespas/fisiologia , Animais , Espécies Introduzidas , República da Coreia
12.
Proc Biol Sci ; 287(1928): 20200704, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32519598

RESUMO

Parasitoids are insects that use other insects as hosts. They sabotage host cellular and humoral defences to promote the survival of their offspring by injecting viruses and venoms along with their eggs. Many pathogens and parasites disrupt host epigenetic mechanisms to overcome immune system defences, and we hypothesized that parasitoids may use the same strategy. We used the ichneumon wasp Pimpla turionellae as a model idiobiont parasitoid to test this hypothesis, with pupae of the greater wax moth Galleria mellonella as the host. We found that parasitoid infestation involves the suppression of host immunity-related effector genes and the modulation of host genes involved in developmental hormone signalling. The transcriptional reprogramming of host genes following the injection of parasitoid eggs was associated with changes in host epigenetic mechanisms. The introduction of parasitoids resulted in a transient decrease in host global DNA methylation and the modulation of acetylation ratios for specific histones. Genes encoding regulators of histone acetylation and deacetylation were mostly downregulated in the parasitized pupae, suggesting that parasitoids can suppress host transcription. We also detected a strong parasitoid-specific effect on host microRNAs regulating gene expression at the post-transcriptional level. Our data therefore support the hypothesis that parasitoids may favour the survival of their offspring by interfering with host epigenetic mechanisms to suppress the immune system and disrupt development.


Assuntos
Epigênese Genética , Vespas/fisiologia , Animais , Interações Hospedeiro-Parasita , Imunidade , Insetos , Parasitos
13.
J Chem Ecol ; 46(5-6): 508-519, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32506384

RESUMO

The Asian eulophid wasp Tetrastichus planipennisi is being released in North America as a biocontrol agent for the emerald ash borer (Agrilus planipennis), a very destructive invasive buprestid beetle that is devastating ash trees (Fraxinus spp.). We identified, synthesized, and tested a female-produced sex pheromone for the wasp. The key component eliciting behavioral responses from male wasps in flight tunnel bioassays was identified as (6S,10S)-(2E,4E,8E)-4,6,8,10-tetramethyltrideca-2,4,8-triene. Female specificity was demonstrated by gas chromatographic (GC) comparison of male and female volatile emissions and whole body extracts. The identification was aided by coupled gas chromatography/mass spectrometry analysis, microchemical reactions, NMR, GC analyses with a chiral stationary phase column, and matching GC retention times and mass spectra with those of synthetic standards. The tetramethyl-triene hydrocarbon was synthesized as a mixture of two enantiomeric pairs of diastereomers, and as the pure insect-produced stereoisomer. In flight-tunnel bioassays, males responded to both the natural pheromone and the chiral synthetic material by upwind flight and landing on the source. In contrast, the mixture of four stereoisomers was not attractive, indicating that one or more of the "unnatural" stereoisomers antagonized attraction. Field trials, using yellow pan traps baited with natural pheromone, captured significantly more male wasps than control traps over a four week trial. The identified pheromone could increase the efficiency and specificity of the current detection methods for Tetrastichus planipennisi and aid in the determination of parasitoid establishment at release sites.


Assuntos
Atrativos Sexuais/farmacologia , Vespas/química , Animais , Besouros/parasitologia , Feminino , Interações Hospedeiro-Parasita , Espécies Introduzidas , América do Norte , Controle Biológico de Vetores , Atrativos Sexuais/síntese química , Atrativos Sexuais/isolamento & purificação , Vespas/fisiologia
14.
Bull Entomol Res ; 110(5): 630-637, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32419690

RESUMO

Doryctobracon areolatus is a native parasitoid of the Neotropical region that presents the highest percentages of natural parasitism of fruit flies of the genus Anastrepha. In the Moscafrut Program SADER-SENASICA, located in Metapa de Domínguez, Chiapas, Mexico, a laboratory colony of this species is maintained on Anastrepha ludens, the Mexican fruit fly, with the aim to scale the production of the parasitoid up to massive levels. In order to eliminate unwanted emergence of adult flies during the rearing process, this study evaluated the effect of irradiation (at doses of 20, 30, 40, and 50 Gy) applied to eggs, and first and second instar larvae of A. ludens; all irradiated stages were subsequently exposed as second instar larvae to adult females of D. areolatus. Irradiation did not affect the eclosion of A. ludens eggs but, at doses of 40 and 50 Gy, it did cause delayed larval development and pupation, as well as lower larval weight. Adult fly emergence was suppressed at all doses, except in eggs irradiated at 20 Gy. Doses of 20 and 30 Gy applied to the eggs and larvae did not affect the emergence, survival, fecundity or flight ability of the emerged parasitoids, but the second instar larvae were easily handled during the rearing process. Our results suggest that D. areolatus can be successfully produced in second instar larvae of A. ludens irradiated at 30 Gy.


Assuntos
Tephritidae/parasitologia , Tephritidae/efeitos da radiação , Vespas/crescimento & desenvolvimento , Animais , Agentes de Controle Biológico , Feminino , Voo Animal/fisiologia , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/efeitos da radiação , Masculino , Óvulo/efeitos da radiação , Tephritidae/crescimento & desenvolvimento , Vespas/fisiologia
15.
J Insect Sci ; 20(3)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396201

RESUMO

The African parasitoids Cephalonomia stephanoderis Waterston (Bethylidae: Hymenoptera), Prorops nasuta Betrem (Bethylidae: Hymenoptera), and Phymastichus coffea LaSalle (Eulophidae: Hymenoptera) are biological control agents of the coffee berry borer (Coleoptera: Curculionidae). In this study, we investigated in laboratory the female behavioral responses of these parasitoids to 14 different wavelengths (340-670 nm) against a control (570 nm, yellow). When nonchooser females were included in the analysis, none parasitoids species showed a preference between 340, 350, 370, 460, 490, 520, 540, 590, 640, and 650 nm with respect to the control wavelength. In contrast, the three species of parasitoids were more attracted to wavelengths of 380, 400, and 420 nm than the control wavelength. Phymastichus coffea and P. nasuta were more attracted to the wavelength of 400 and 420 nm compared to C. stephanoderis. At 380 nm, P. coffea and C. stephanoderis wasps showed the higher responses in comparison to P. nasuta females. When nonchooser wasps were excluded from the analysis, we observed other differences among the parasitoid species. For instance, P. coffea were more attracted to 490-540 nm than to 570 nm, whereas the bethylids did not discriminate between 490-540 nm or 570 nm. Our results are discussed in relation to possible implications associated with the vision of these parasitoid species.


Assuntos
Percepção de Cores , Interações Hospedeiro-Parasita , Controle de Insetos , Controle Biológico de Vetores , Vespas/fisiologia , Gorgulhos/parasitologia , Animais , Cor , Feminino , México
16.
J Insect Sci ; 20(3)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32458990

RESUMO

Survival and parasitism activity of Trichopria drosophilae Perkins adults, a cosmopolitan parasitoid of Drosophila spp., were studied under laboratory conditions using five constant temperatures at the lower range known for this enemy, from 4 to 20°C in 4°C increments. Drosophila suzukii Matsumura, an invasive pest of small fruits, was used as a host. Commercially available adult parasitoids were provided with 1) food and D. suzukii pupae; 2) food and no D. suzukii pupae; 3) no food and no pupae. The results show that adult females of T. drosophilae lived longer than males, and both generally benefitted from food supply. The highest level of survival was observed between 8 and 12°C for fed insects, irrespective of whether they were offered host pupae or not. The absence of food led to the highest mortality, but the parasitoid demonstrated considerably resistance to prolonged starvation. Successful parasitism increased steadily with temperature and reached the highest value at 20°C. Conversely, D. suzukii emergence rate was high after exposure of pupae to parasitoids at 4°C, while pupal mortality increased strongly with temperature until 12°C. The findings indicate that T. drosophilae is well adapted to the relatively cold conditions experienced in early spring and in autumn or at high elevations, when the host pupae could be largely available. The long lifespan of the adults and the ability to parasitize the host at low temperature make T. drosophilae potentially useful for the biocontrol of D. suzukii.


Assuntos
Drosophila/parasitologia , Interações Hospedeiro-Parasita , Controle de Insetos , Controle Biológico de Vetores , Vespas/fisiologia , Animais , Temperatura Baixa , Drosophila/crescimento & desenvolvimento , Feminino , Masculino , Pupa/crescimento & desenvolvimento , Pupa/parasitologia , Estações do Ano , Fatores Sexuais , Vespas/crescimento & desenvolvimento
17.
J Insect Sci ; 20(3)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32458992

RESUMO

Aggressive behavior is widely observed in animal species for acquiring important resources and usually includes both dangerous and nondangerous fighting patterns. Only a few species show dangerous fighting patterns that are defined by fights ending with contestants being severely injured or killed. Prior experience, an important factor in many species, has been demonstrated to affect a contestant's subsequent fighting behavior. Few studies have focused on the effect of experience on aggression involving dangerous fighting patterns. Here, an egg parasitoid wasp, Anastatus disparis, which shows extreme and dangerous fighting behavior to acquire mating opportunities, was used as an experimental model. Our results showed that the fighting intensity of the winning males significantly decreased subsequent fighting behavior, which was inconsistent with general predictions. Transcriptomic analyses showed that many genes related to energy metabolism were downregulated in winners, and winners increased their fighting intensity after dietary supplementation. Our study suggested that fighting in A. disparis is a tremendous drain on energy. Thus, although males won at combat, significant reductions in available energy constrained the intensity of subsequent fights and influenced strategic decisions. In addition, winners might improve their fighting skills and abilities from previous contests, and their fighting intensity after dietary supplementation was significantly higher than that of males without any fighting experience. Generally, in A. disparis, although winners increased their fighting ability with previous experience, the available energy in winners was likely to be a crucial factor affecting the intensity and strategic decisions in subsequent fights.


Assuntos
Comportamento Sexual Animal , Vespas/fisiologia , Agressão , Animais , Comportamento Animal , Acontecimentos que Mudam a Vida , Masculino
18.
J Insect Sci ; 20(2)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32322881

RESUMO

New Zealand's intensive pastures, comprised almost entirely introduced Lolium L. and Trifolium L. species, are arguably the most productive grazing-lands in the world. However, these areas are vulnerable to destructive invasive pest species. Of these, three of the most damaging pests are weevils (Coleoptera: Curculionidae) that have relatively recently been controlled by three different introduced parasitoids, all belonging to the genus Microctonus Wesmael (Hymenoptera: Braconidae). Arguably that these introduced parasitoids have been highly effective is probably because they, like many of the exotic pest species, have benefited from enemy release. Parasitism has been so intense that, very unusually, one of the weevils has now evolved resistance to its parthenogenetic parasitoid. This review argues that New Zealand's high exotic pasture pest burden is attributable to a lack of pasture plant and natural enemy diversity that presents little biotic resistance to invasive species. There is a native natural enemy fauna in New Zealand that has evolved over millions of years of geographical isolation. However, these species remain in their indigenous ecosystems and, therefore, play a minimal role in creating biotic resistance in the country's exotic ecosystems. For clear ecological reasons relating to the nature of New Zealand pastures, importation biological control can work extremely well. Conversely, conservation biological control is less likely to be effective than elsewhere.


Assuntos
Controle de Insetos , Controle Biológico de Vetores , Vespas/fisiologia , Gorgulhos/parasitologia , Animais , Espécies Introduzidas , Nova Zelândia
19.
Zoolog Sci ; 37(2): 117-121, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32282142

RESUMO

The parasitoid wasp Protaphidius nawaii parasitizes the aphid Stomaphis japonica, which is obligatorily attended by several species of ants of genus Lasius. Subgenus Lasius or Dendrolasius ants use different defense strategies to protect the aphids that they attend (Lasius, shelter building; Dendrolasius, aggressive attack). We performed molecular phylogenetic analysis based on partial mitochondrial DNA sequences of P. nawaii and found that the parasitoid wasp consists of two highly differentiated genetic lineages. Although these two lineages distributed sympatrically, one tends to parasitize aphids attended by ants of subgenus Lasius, and the other parasitizes aphids attended by ants of subgenus Dendrolasius. The two lineages of P. nawaii appear to exhibit different oviposition behaviors adapted to the different aphid-protection strategies of the two ant subgenera.


Assuntos
Afídeos/parasitologia , Vespas/genética , Vespas/fisiologia , Animais , Formigas/classificação , Formigas/fisiologia , DNA Mitocondrial/genética , Interações Hospedeiro-Parasita , Japão , Oviposição , Filogenia , Análise de Sequência de DNA , Simbiose
20.
J Chem Ecol ; 46(4): 430-441, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32140948

RESUMO

Despite their enormous economic importance and the fact that there are almost 5000 tephritid (Diptera) species, fruit fly - host plant interactions are poorly understood from a chemical perspective. We analyzed the interactions among Anastrepha acris (a little studied monophagous tephritid) and its highly toxic host plant Hippomane mancinella from chemical, ecological and experimental perspectives, and also searched for toxicants from H. mancinella in the larval-pupal endoparasitoid Doryctobracon areolatus. We identified 18 phenolic compounds from H. mancinella pulp belonging to different chemical groups including phenylpropanoids, flavonoids, chalcones and coumarins. No traces of Hippomanin A were detected in larvae, pupae or A. acris adults, or in D. areolatus adults, implying that A. acris larvae can metabolize this toxicant, that as a result does not reach the third trophic level. We tested the "behavioral preference - lack of larval specialization-hypothesis" via feeding experiments with a larval rearing medium containing H. mancinella fruit (skin + pulp or pulp alone). The high toxicity of H. mancinella was confirmed as only two (out of 2520 in three experiments) A. ludens larvae (a polyphagous pest species that preferentially feeds on plants within the Rutaceae) survived without reaching the adult stage when fed on media containing H. mancinella, whereas A. acris larvae developed well and produced healthy adults. Together, these findings open a window of opportunity to study the detoxification mechanisms used by tephritid fruit flies.


Assuntos
Cadeia Alimentar , Hippomane/química , Interações Hospedeiro-Parasita , Larva/parasitologia , Fenóis/metabolismo , Pupa/parasitologia , Tephritidae/fisiologia , Tephritidae/parasitologia , Vespas/fisiologia , Animais , Preferências Alimentares , Larva/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Tephritidae/crescimento & desenvolvimento , Vespas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...