Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.197
Filtrar
1.
Science ; 372(6537)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33795429

RESUMO

Gamma oscillations are thought to coordinate the spike timing of functionally specialized neuronal ensembles across brain regions. To test this hypothesis, we optogenetically perturbed gamma spike timing in the rat medial (MEC) and lateral (LEC) entorhinal cortices and found impairments in spatial and object learning tasks, respectively. MEC and LEC were synchronized with the hippocampal dentate gyrus through high- and low-gamma-frequency rhythms, respectively, and engaged either granule cells or mossy cells and CA3 pyramidal cells in a task-dependent manner. Gamma perturbation disrupted the learning-induced assembly organization of target neurons. Our findings imply that pathway-specific gamma oscillations route task-relevant information between distinct neuronal subpopulations in the entorhinal-hippocampal circuit. We hypothesize that interregional gamma-time-scale spike coordination is a mechanism of neuronal communication.


Assuntos
Giro Denteado/fisiologia , Córtex Entorrinal/fisiologia , Ritmo Gama , Aprendizagem , Neurônios/fisiologia , Aprendizagem Espacial , Potenciais de Ação , Animais , Masculino , Aprendizagem em Labirinto , Rememoração Mental , Vias Neurais/fisiologia , Optogenética , Células Piramidais/fisiologia , Ratos , Ratos Long-Evans , Navegação Espacial
2.
Nat Commun ; 12(1): 2135, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837200

RESUMO

Hedonic feeding is driven by the "pleasure" derived from consuming palatable food and occurs in the absence of metabolic need. It plays a critical role in the excessive feeding that underlies obesity. Compared to other pathological motivated behaviors, little is known about the neural circuit mechanisms mediating excessive hedonic feeding. Here, we show that modulation of prefrontal cortex (PFC) and anterior paraventricular thalamus (aPVT) excitatory inputs to the nucleus accumbens (NAc), a key node of reward circuitry, has opposing effects on high fat intake in mice. Prolonged high fat intake leads to input- and cell type-specific changes in synaptic strength. Modifying synaptic strength via plasticity protocols, either in an input-specific optogenetic or non-specific electrical manner, causes sustained changes in high fat intake. These results demonstrate that input-specific NAc circuit adaptations occur with repeated exposure to a potent natural reward and suggest that neuromodulatory interventions may be therapeutically useful for individuals with pathologic hedonic feeding.


Assuntos
Ingestão de Alimentos/psicologia , Comportamento Alimentar/psicologia , Núcleo Accumbens/fisiologia , Recompensa , Ração Animal , Animais , Gorduras na Dieta/administração & dosagem , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Núcleos da Linha Média do Tálamo/fisiologia , Modelos Animais , Motivação , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/citologia , Optogenética , Técnicas de Patch-Clamp , Córtex Pré-Frontal/fisiologia , Técnicas Estereotáxicas , Proteína Vesicular 2 de Transporte de Glutamato/genética
3.
Sci Rep ; 11(1): 8100, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854115

RESUMO

Respiratory rhythm (RR) during sniffing is known to couple with hippocampal theta rhythm. However, outside of the short sniffing bouts, a more stable ~ 2 Hz RR was recently shown to rhythmically modulate non-olfactory cognitive processes, as well. The underlying RR coupling with wide-spread forebrain activity was confirmed using advanced techniques, creating solid premise for investigating how higher networks use this mechanism in their communication. Here we show essential differences in the way prefrontal cortex (PFC) and hippocampus (HC) process the RR signal from the olfactory bulb (OB) that may support dynamic, flexible PFC-HC coupling utilizing this input. We used inter-regional coherences and their correlations in rats, breathing at low rate (~ 2 Hz), outside of the short sniffing bouts. We found strong and stable OB-PFC coherence in wake states, contrasting OB-HC coherence which was low but highly variable. Importantly, this variability was essential for establishing PFC-HC synchrony at RR, whereas variations of RRO in OB and PFC had no significant effect. The findings help to understand the mechanism of rhythmic modulation of non-olfactory cognitive processes by the on-going regular respiration, reported in rodents as well as humans. These mechanisms may be impaired when nasal breathing is limited or in OB-pathology, including malfunctions of the olfactory epithelium due to infections, such as in Covid-19.


Assuntos
Ritmo Delta/fisiologia , Hipocampo/fisiologia , Bulbo Olfatório/fisiologia , Córtex Pré-Frontal/fisiologia , Taxa Respiratória/fisiologia , Animais , Comportamento Animal/fisiologia , Eletromiografia , Masculino , Atividade Motora , Vias Neurais/fisiologia , Ratos , Sono/fisiologia , Vigília/fisiologia
4.
Nat Commun ; 12(1): 1994, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790281

RESUMO

The medial prefrontal cortex (mPFC) steers goal-directed actions and withholds inappropriate behavior. Dorsal and ventral mPFC (dmPFC/vmPFC) circuits have distinct roles in cognitive control, but underlying mechanisms are poorly understood. Here we use neuroanatomical tracing techniques, in vitro electrophysiology, chemogenetics and fiber photometry in rats engaged in a 5-choice serial reaction time task to characterize dmPFC and vmPFC outputs to distinct thalamic and striatal subdomains. We identify four spatially segregated projection neuron populations in the mPFC. Using fiber photometry we show that these projections distinctly encode behavior. Postsynaptic striatal and thalamic neurons differentially process synaptic inputs from dmPFC and vmPFC, highlighting mechanisms that potentially amplify distinct pathways underlying cognitive control of behavior. Chemogenetic silencing of dmPFC and vmPFC projections to lateral and medial mediodorsal thalamus subregions oppositely regulate cognitive control. In addition, dmPFC neurons projecting to striatum and thalamus divergently regulate cognitive control. Collectively, we show that mPFC output pathways targeting anatomically and functionally distinct striatal and thalamic subregions encode bi-directional command of cognitive control.


Assuntos
Cognição/fisiologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Tálamo/fisiologia , Animais , Corpo Estriado/citologia , Fenômenos Eletrofisiológicos , Masculino , Modelos Neurológicos , Vias Neurais/fisiologia , Córtex Pré-Frontal/citologia , Ratos Long-Evans , Tálamo/citologia
5.
Nat Commun ; 12(1): 1793, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741956

RESUMO

Neural substrates of "mind wandering" have been widely reported, yet experiments have varied in their contexts and their definitions of this psychological phenomenon, limiting generalizability. We aimed to develop and test the generalizability, specificity, and clinical relevance of a functional brain network-based marker for a well-defined feature of mind wandering-stimulus-independent, task-unrelated thought (SITUT). Combining functional MRI (fMRI) with online experience sampling in healthy adults, we defined a connectome-wide model of inter-regional coupling-dominated by default-frontoparietal control subnetwork interactions-that predicted trial-by-trial SITUT fluctuations within novel individuals. Model predictions generalized in an independent sample of adults with attention-deficit/hyperactivity disorder (ADHD). In three additional resting-state fMRI studies (total n = 1115), including healthy individuals and individuals with ADHD, we demonstrated further prediction of SITUT (at modest effect sizes) defined using multiple trait-level and in-scanner measures. Our findings suggest that SITUT is represented within a common pattern of brain network interactions across time scales and contexts.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imagem por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Encéfalo/fisiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Testes Neuropsicológicos , Descanso/fisiologia , Adulto Jovem
6.
Neurosci Lett ; 751: 135827, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33727128

RESUMO

The role of the ventral tegmental area (VTA) and the lateral hypothalamus (LH) in the modulation of formalin-induced nociception is well documented individually. The present study aimed to investigate the role of dopamine receptors of the VTA in the modulation of the LH stimulation-induced antinociception during both phases of the formalin test as an animal model of tonic pain. In this study, male Wistar rats were unilaterally implanted with two guide cannulae in the VTA and LH. In two separate groups, animals received different doses (0.25, 1, and 4 µg/rat) of D1- or D2-like dopamine receptor antagonists (SCH-23,390 or Sulpiride, respectively) into the VTA before intra-LH injection of carbachol (22.83 ng/rat) following formalin injection (50 µL; s.c.) into their contralateral hind paws. The blockade of these two receptors reduced intra-LH carbachol-induced antinociception during both phases of the formalin test. This reduction during the late phase of the formalin test was more than that of the early phase. The results indicated that LH stimulation-induced antinociception was mediated by D1- and D2-like dopamine receptors in the VTA, and so, the neural pathway projecting from the LH to the VTA contributes to the modulation of formalin-induced nociception in the rats.


Assuntos
Benzazepinas/farmacologia , Antagonistas de Dopamina/farmacologia , Nociceptividade , Sulpirida/farmacologia , Área Tegmentar Ventral/metabolismo , Analgésicos não Entorpecentes/farmacologia , Animais , Carbacol/farmacologia , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Ratos , Ratos Wistar , Receptores Dopaminérgicos/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
7.
Nat Neurosci ; 24(4): 542-553, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33686297

RESUMO

In humans, tissue injury and depression can both cause pain hypersensitivity, but whether this involves distinct circuits remains unknown. Here, we identify two discrete glutamatergic neuronal circuits in male mice: a projection from the posterior thalamic nucleus (POGlu) to primary somatosensory cortex glutamatergic neurons (S1Glu) mediates allodynia from tissue injury, whereas a pathway from the parafascicular thalamic nucleus (PFGlu) to anterior cingulate cortex GABA-containing neurons to glutamatergic neurons (ACCGABA→Glu) mediates allodynia associated with a depression-like state. In vivo calcium imaging and multi-tetrode electrophysiological recordings reveal that POGlu and PFGlu populations undergo different adaptations in the two conditions. Artificial manipulation of each circuit affects allodynia resulting from either tissue injury or depression-like states, but not both. Our study demonstrates that the distinct thalamocortical circuits POGlu→S1Glu and PFGlu→ACCGABA→Glu subserve allodynia associated with tissue injury and depression-like states, respectively, thus providing insights into the circuit basis of pathological pain resulting from different etiologies.


Assuntos
Depressão/fisiopatologia , Hiperalgesia/fisiopatologia , Vias Neurais/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Animais , Masculino , Camundongos , Neurônios/fisiologia
8.
Neuron ; 109(7): 1202-1213.e5, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33609483

RESUMO

The frontal cortex, especially the anterior cingulate cortex area (ACA), is essential for exerting cognitive control after errors, but the mechanisms that enable modulation of attention to improve performance after errors are poorly understood. Here we demonstrate that during a mouse visual attention task, ACA neurons projecting to the visual cortex (VIS; ACAVIS neurons) are recruited selectively by recent errors. Optogenetic manipulations of this pathway collectively support the model that rhythmic modulation of ACAVIS neurons in anticipation of visual stimuli is crucial for adjusting performance following errors. 30-Hz optogenetic stimulation of ACAVIS neurons in anesthetized mice recapitulates the increased gamma and reduced theta VIS oscillatory changes that are associated with endogenous post-error performance during behavior and subsequently increased visually evoked spiking, a hallmark feature of visual attention. This frontal sensory neural circuit links error monitoring with implementing adjustments of attention to guide behavioral adaptation, pointing to a circuit-based mechanism for promoting cognitive control.


Assuntos
Atenção/fisiologia , Lobo Frontal/fisiologia , Recrutamento Neurofisiológico/fisiologia , Animais , Comportamento Animal , Eletroencefalografia , Fenômenos Eletrofisiológicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Córtex Somatossensorial/fisiologia , Córtex Visual/fisiologia
9.
Nat Neurosci ; 24(3): 401-411, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33619404

RESUMO

Pyramidal cells and GABAergic interneurons fire together in balanced cortical networks. In contrast to this general rule, we describe a distinct neuron type in mice and rats whose spiking activity is anti-correlated with all principal cells and interneurons in all brain states but, most prevalently, during the down state of non-REM (NREM) sleep. We identify these down state-active (DSA) neurons as deep-layer neocortical neurogliaform cells that express ID2 and Nkx2.1 and are weakly immunoreactive to neuronal nitric oxide synthase. DSA neurons are weakly excited by deep-layer pyramidal cells and strongly inhibited by several other GABAergic cell types. Spiking of DSA neurons modified the sequential firing order of other neurons at down-up transitions. Optogenetic activation of ID2+Nkx2.1+ interneurons in the posterior parietal cortex during NREM sleep, but not during waking, interfered with consolidation of cue discrimination memory. Despite their sparsity, DSA neurons perform critical physiological functions.


Assuntos
Potenciais de Ação/fisiologia , Proteína 2 Inibidora de Diferenciação/metabolismo , Interneurônios/fisiologia , Lobo Parietal/fisiologia , Células Piramidais/fisiologia , Sono/fisiologia , Fator Nuclear 1 de Tireoide/metabolismo , Animais , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Optogenética , Lobo Parietal/metabolismo
10.
Neuron ; 109(6): 918-937, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33548173

RESUMO

The superior colliculus is a conserved sensorimotor structure that integrates visual and other sensory information to drive reflexive behaviors. Although the evidence for this is strong and compelling, a number of experiments reveal a role for the superior colliculus in behaviors usually associated with the cerebral cortex, such as attention and decision-making. Indeed, in addition to collicular outputs targeting brainstem regions controlling movements, the superior colliculus also has ascending projections linking it to forebrain structures including the basal ganglia and amygdala, highlighting the fact that the superior colliculus, with its vast inputs and outputs, can influence processing throughout the neuraxis. Today, modern molecular and genetic methods combined with sophisticated behavioral assessments have the potential to make significant breakthroughs in our understanding of the evolution and conservation of neuronal cell types and circuits in the superior colliculus that give rise to simple and complex behaviors.


Assuntos
Cognição/fisiologia , Vias Neurais/fisiologia , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Animais , Humanos , Vias Neurais/anatomia & histologia , Colículos Superiores/anatomia & histologia
11.
Nat Neurosci ; 24(3): 391-400, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589832

RESUMO

Experimental research controls for past experience, yet prior experience influences how we learn. Here, we tested whether we could recruit a neural population that usually encodes rewards to encode aversive events. Specifically, we found that GABAergic neurons in the lateral hypothalamus (LH) were not involved in learning about fear in naïve rats. However, if these rats had prior experience with rewards, LH GABAergic neurons became important for learning about fear. Interestingly, inhibition of these neurons paradoxically enhanced learning about neutral sensory information, regardless of prior experience, suggesting that LH GABAergic neurons normally oppose learning about irrelevant information. These experiments suggest that prior experience shapes the neural circuits recruited for future learning in a highly specific manner, reopening the neural boundaries we have drawn for learning of particular types of information from work in naïve subjects.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Neurônios GABAérgicos/fisiologia , Região Hipotalâmica Lateral/fisiologia , Aprendizagem/fisiologia , Animais , Sinais (Psicologia) , Feminino , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Long-Evans , Ratos Transgênicos , Recompensa
12.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467450

RESUMO

Fear extinction requires coordinated neural activity within the amygdala and medial prefrontal cortex (mPFC). Any behavior has a transcriptomic signature that is modified by environmental experiences, and specific genes are involved in functional plasticity and synaptic wiring during fear extinction. Here, we investigated the effects of optogenetic manipulations of prelimbic (PrL) pyramidal neurons and amygdala gene expression to analyze the specific transcriptional pathways associated to adaptive and maladaptive fear extinction. To this aim, transgenic mice were (or not) fear-conditioned and during the extinction phase they received optogenetic (or sham) stimulations over photo-activable PrL pyramidal neurons. At the end of behavioral testing, electrophysiological (neural cellular excitability and Excitatory Post-Synaptic Currents) and morphological (spinogenesis) correlates were evaluated in the PrL pyramidal neurons. Furthermore, transcriptomic cell-specific RNA-analyses (differential gene expression profiling and functional enrichment analyses) were performed in amygdala pyramidal neurons. Our results show that the optogenetic activation of PrL pyramidal neurons in fear-conditioned mice induces fear extinction deficits, reflected in an increase of cellular excitability, excitatory neurotransmission, and spinogenesis of PrL pyramidal neurons, and associated to strong modifications of the transcriptome of amygdala pyramidal neurons. Understanding the electrophysiological, morphological, and transcriptomic architecture of fear extinction may facilitate the comprehension of fear-related disorders.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Células Piramidais/fisiologia , Transcriptoma/genética , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo/psicologia , Masculino , Memória/fisiologia , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Optogenética/métodos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Células Piramidais/metabolismo , Transmissão Sináptica/fisiologia
13.
Neurosci Lett ; 744: 135604, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33387662

RESUMO

Airway afferents monitor the local chemical and physical micro-environments in the airway wall and lungs and send this information centrally to regulate neural circuits involved in setting autonomic tone, evoking reflex and volitional respiratory motor outflows, encoding perceivable sensations and contributing to higher order cognitive processing. In this mini-review we present a current overview of the central wiring of airway afferent circuits in the brainstem and brain, highlighting recent discoveries that augment our understanding of airway sensory processing. We additionally explore how advances in describing the molecular diversity of airway afferents may influence future research efforts aimed at defining central mesoscale connectivity of airway afferent pathways. A refined understanding of how functionally distinct airway afferent pathways are organized in the brain will provide deeper insight into the physiology of airway afferent-evoked responses and may foster opportunities for targeted modulation of specific pathways involved in disease.


Assuntos
Vias Aferentes/fisiologia , Tronco Encefálico/fisiologia , Rede Nervosa/fisiologia , Fenômenos Fisiológicos Respiratórios , Sistema Respiratório/inervação , Nervo Vago/fisiologia , Vias Aferentes/diagnóstico por imagem , Animais , Tronco Encefálico/diagnóstico por imagem , Humanos , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Sistema Respiratório/diagnóstico por imagem , Núcleo Solitário/diagnóstico por imagem , Núcleo Solitário/fisiologia , Nervo Vago/diagnóstico por imagem
14.
Neuron ; 109(5): 823-838.e6, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476548

RESUMO

The circuit mechanisms underlying fear-induced suppression of feeding are poorly understood. To help fill this gap, mice were fear conditioned, and the resulting changes in synaptic connectivity among the locus coeruleus (LC), the parabrachial nucleus (PBN), and the central nucleus of amygdala (CeA)-all of which are implicated in fear and feeding-were studied. LC neurons co-released noradrenaline and glutamate to excite PBN neurons and suppress feeding. LC neurons also suppressed inhibitory input to PBN neurons by inducing heterosynaptic, endocannabinoid-dependent, long-term depression of CeA synapses. Blocking or knocking down endocannabinoid receptors in CeA neurons prevented fear-induced depression of CeA synaptic transmission and fear-induced suppression of feeding. Altogether, these studies demonstrate that LC neurons play a pivotal role in modulating the circuitry that underlies fear-induced suppression of feeding, pointing to new ways of alleviating stress-induced eating disorders.


Assuntos
Medo/fisiologia , Comportamento Alimentar/fisiologia , Locus Cerúleo/fisiologia , Neurônios/fisiologia , Animais , Núcleo Central da Amígdala/fisiologia , Condicionamento Clássico , Feminino , Ácido Glutâmico/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Norepinefrina/fisiologia , Núcleos Parabraquiais/fisiologia , Transmissão Sináptica
15.
Neuron ; 109(5): 852-868.e8, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33482086

RESUMO

Human brain pathways supporting language and declarative memory are thought to have differentiated substantially during evolution. However, cross-species comparisons are missing on site-specific effective connectivity between regions important for cognition. We harnessed functional imaging to visualize the effects of direct electrical brain stimulation in macaque monkeys and human neurosurgery patients. We discovered comparable effective connectivity between caudal auditory cortex and both ventro-lateral prefrontal cortex (VLPFC, including area 44) and parahippocampal cortex in both species. Human-specific differences were clearest in the form of stronger hemispheric lateralization effects. In humans, electrical tractography revealed remarkably rapid evoked potentials in VLPFC following auditory cortex stimulation and speech sounds drove VLPFC, consistent with prior evidence in monkeys of direct auditory cortex projections to homologous vocalization-responsive regions. The results identify a common effective connectivity signature in human and nonhuman primates, which from auditory cortex appears equally direct to VLPFC and indirect to the hippocampus. VIDEO ABSTRACT.


Assuntos
Lobo Frontal/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Animais , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Estimulação Elétrica , Feminino , Humanos , Macaca mulatta , Imagem por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Giro Para-Hipocampal/fisiologia , Córtex Pré-Frontal/fisiologia , Especificidade da Espécie , Adulto Jovem
16.
Nat Commun ; 12(1): 360, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452252

RESUMO

Endogenous attention is the cognitive function that selects the relevant pieces of sensory information to achieve goals and it is known to be controlled by dorsal fronto-parietal brain areas. Here we expand this notion by identifying a control attention area located in the temporal lobe. By combining a demanding behavioral paradigm with functional neuroimaging and diffusion tractography, we show that like fronto-parietal attentional areas, the human posterior inferotemporal cortex exhibits significant attentional modulatory activity. This area is functionally distinct from surrounding cortical areas, and is directly connected to parietal and frontal attentional regions. These results show that attentional control spans three cortical lobes and overarches large distances through fiber pathways that run orthogonally to the dominant anterior-posterior axes of sensory processing, thus suggesting a different organizing principle for cognitive control.


Assuntos
Atenção/fisiologia , Lobo Frontal/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico , Imagem de Tensor de Difusão , Feminino , Lobo Frontal/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Masculino , Percepção de Movimento/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Lobo Parietal/diagnóstico por imagem , Estimulação Luminosa/métodos , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
17.
Nat Neurosci ; 24(3): 379-390, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495635

RESUMO

The nucleus accumbens shell (NAcSh) and the ventral pallidum (VP) are critical for reward processing, although the question of how coordinated activity within these nuclei orchestrates reward valuation and consumption remains unclear. Inhibition of NAcSh firing is necessary for reward consumption, but the source of this inhibition remains unknown. Here, we report that a subpopulation of VP neurons, the ventral arkypallidal (vArky) neurons, project back to the NAcSh, where they inhibit NAcSh neurons in vivo in mice. Consistent with this pathway driving reward consumption via inhibition of the NAcSh, calcium activity of vArky neurons scaled with reward palatability (which was dissociable from reward seeking) and predicted the subsequent drinking behavior during a free-access paradigm. Activation of the VP-NAcSh pathway increased ongoing reward consumption while amplifying hedonic reactions to reward. These results establish a pivotal role for vArky neurons in the promotion of reward consumption through modulation of NAcSh firing in a value-dependent manner.


Assuntos
Potenciais de Ação/fisiologia , Prosencéfalo Basal/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Recompensa , Animais , Cálcio/metabolismo , Comportamento de Ingestão de Líquido/fisiologia , Feminino , Masculino , Camundongos , Vias Neurais/fisiologia , Núcleo Accumbens/fisiologia , Paladar/fisiologia
18.
Nat Neurosci ; 24(2): 259-265, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495637

RESUMO

Short-term memory is associated with persistent neural activity that is maintained by positive feedback between neurons. To explore the neural circuit motifs that produce memory-related persistent activity, we measured coupling between functionally characterized motor cortex neurons in mice performing a memory-guided response task. Targeted two-photon photostimulation of small (<10) groups of neurons produced sparse calcium responses in coupled neurons over approximately 100 µm. Neurons with similar task-related selectivity were preferentially coupled. Photostimulation of different groups of neurons modulated activity in different subpopulations of coupled neurons. Responses of stimulated and coupled neurons persisted for seconds, far outlasting the duration of the photostimuli. Photostimuli produced behavioral biases that were predictable based on the selectivity of the perturbed neuronal population, even though photostimulation preceded the behavioral response by seconds. Our results suggest that memory-related neural circuits contain intercalated, recurrently connected modules, which can independently maintain selective persistent activity.


Assuntos
Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Atividade Motora/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Comportamento Animal/fisiologia , Cálcio/metabolismo , Aprendizagem por Discriminação/fisiologia , Camundongos , Vias Neurais/fisiologia
19.
Nat Commun ; 12(1): 157, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420038

RESUMO

The vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions.


Assuntos
Apetite/fisiologia , Ensaios de Triagem em Larga Escala/instrumentação , Optogenética/instrumentação , Estômago/fisiologia , Nervo Vago/fisiologia , Animais , Técnicas de Observação do Comportamento/instrumentação , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Quimiorreceptoras/fisiologia , Desenho de Equipamento , Feminino , Masculino , Camundongos Transgênicos , Modelos Animais , Vias Neurais/fisiologia , Tecnologia de Sensoriamento Remoto/instrumentação , Estômago/citologia , Estômago/inervação , Nervo Vago/citologia , Tecnologia sem Fio/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...