Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.767
Filtrar
1.
Braz. j. biol ; 84: e254016, 2024. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364529

RESUMO

The present study was conducted to isolate and characterize bacteria from water and soil sample taken from the Lahore Canal at different sites i.e. Mall Road, Mohlanwal and Khera site. Isolated bacterial strains were identified on the basis of morphological and biochemical tests. Identification was confirmed by culturing bacteria on selective media. Antibiotic resistance test was also performed to observe the resistance of bacteria against different antibiotics. Blood agar test was performed for identification of different pathogenic bacteria. The result revealed that water and soil samples of Lahore Canal Lahore from different sites were contaminated with Escherichia coli, Salmonella sp., Vibrio sp., Bacillus spp., Enterococcus sp. and Staphylococcus spp. Due to presence of these pathogens, this water is not suitable for any domestic and irrigation use. Study also revealed that water of the Lahore Canal is harmful for human health as it is contaminated with bacteria that can cause severe disease e.g., Escherichia coli can cause gastroenteritis, Bacillus spp. can cause nausea and vomiting, Enterococcus may infect urinary tract, Salmonella sp. is responsible for Bacteremia, Staphylococcus spp. can cause mild fever and Vibrio sp. can be the reason of cholera. Thus it is rendered unfit for any kind of human use even other than drinking like swimming, bathing, washing etc., until and unless some remedial measures are employed to eradicate pathogenic microorganisms by WASA and LWMS according to standards of WHO. Similarly, it is quite harmful, when and where ever it is used for irrigation without proper treatment.


O presente estudo foi realizado para isolar e caracterizar bactérias de amostras de água e solo retiradas do Canal Lahore, em Lahore, em diferentes locais, ou seja, Mall Road, Mohlanwal e Khera. As cepas bacterianas isoladas foram identificadas com base em testes morfológicos e bioquímicos. A identificação foi confirmada por cultura de bactérias em testes de meios seletivos. O teste de resistência aos antibióticos também foi realizado para observar a resistência das bactérias a diferentes antibióticos. Foi realizado o teste de ágar sangue para identificar diferentes bactérias patogênicas. O resultado revelou que amostras de água e solo do Canal Lahore, Lahore, de diferentes localidades estavam contaminadas com Escherichia coli, Salmonella sp., Vibrio sp., Bacillus spp., Enterococcus sp. e Staphylococcus spp. Por causa da presença desses patógenos, essa água não é adequada para qualquer uso doméstico e de irrigação. O estudo revelou que a água do Canal Lahore é prejudicial à saúde humana, pois está contaminada com bactérias que podem causar doenças graves, por exemplo: Escherichia coli pode ocasionar gastroenterite; Bacillus spp. pode causar náuseas e vômitos; Enterococcus sp. pode infectar o trato urinário; Salmonella sp. é responsável pela bacteremia; Staphylococcus spp. pode causar febre leve; e Vibrio sp. pode ser a razão da cólera. Assim, torna-se imprópria para uso humano, como natação, banho, lavagem etc., até que algumas medidas corretivas sejam empregadas para erradicar microrganismos patogênicos por WASA e LWMS de acordo com os padrões da OMS. Da mesma forma, é bastante prejudicial, quando usada para irrigação sem tratamento adequado.


Assuntos
Animais , Solo , Staphylococcus , Vibrio , Resistência Microbiana a Medicamentos , Amostras de Água , Enterococcus , Escherichia coli
2.
Methods Mol Biol ; 2553: 209-220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227546

RESUMO

The fastest-growing bacterium Vibrio natriegens is a highly promising next-generation workhorse for molecular biology and industrial biotechnology. In this work, we described the workflows for developing genome-scale metabolic models and genome-editing protocols for engineering Vibrio natriegens. A case study for metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol was also presented.


Assuntos
Engenharia Metabólica , Vibrio , Edição de Genes , Propilenoglicóis , Vibrio/genética , Vibrio/metabolismo
3.
Sci Total Environ ; 856(Pt 2): 159180, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191704

RESUMO

Microplastic (MPs) pollution is a global marine environmental problem. The effects of MPs on the gut microbiota of aquatic organisms have received considerable attention. For example, microbes colonizing MPs in pond cultures alter the structure and function of the intestinal microbes of shrimp and fish. It was hypothesized that bacteria on MPs in natural mariculture areas also interact with the intestinal flora of golden pompano (Trachinotus ovatus) because biofilms can form on the surface of MPs during long-term floating in seawater. To our knowledge, this study is the first to investigate MPs pollution in T. ovatus aquaculture. DNA sequencing and bioinformatics analysis confirmed the effect of microbial colonization of MPs on the intestinal flora of T. ovatus. The MPs detected in the gut wet weight (w.w.) of golden pompano (546 ± 52 items/g) were mainly pellets and fragments of blue or green, whereas the sediment MPs dry weight (d.w.) (4765 ± 116 items/kg) were mainly black fibers. The MPs richness in the sediment gradually increased from the open-sea aquaculture area to the estuarine aquaculture area and was positively correlated with the MPs richness in the intestinal tract of golden pompano. MPs 20-200 µm were the most common in the gut and sediment. The intake of MPs increased the abundance of Proteobacteria and decreased that of Firmicutes in the intestinal flora. The functional compositions of MP-colonizing microbes and gut microbiota were similar, suggesting that the two communities influence each other. Network analysis further confirmed this and revealed that Vibrio plays a key role in the intestinal flora and surface microorganisms of MPs. Overall, the intake of MPs by aquatic animals not only affects the intestinal flora and intestinal microbial function, but also poses potential risks to aquaculture.


Assuntos
Microbioma Gastrointestinal , Vibrio , Animais , Microplásticos , Plásticos , Aquicultura , Peixes
4.
Emerg Infect Dis ; 28(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36418019

RESUMO

Noncholera vibriosis is a rare, opportunistic bacterial infection caused by Vibrio spp. other than V. cholerae O1/O139 and diagnosed mainly during the hot summer months in patients after seaside activities. Detailed knowledge of circulating pathogenic strains and heterogeneities in infection outcomes and disease dynamics may help in patient management. We conducted a multicenter case-series study documenting Vibrio infections in 67 patients from 8 hospitals in the Bay of Biscay, France, over a 19-year period. Infections were mainly caused by V. alginolyticus (34%), V. parahaemolyticus (30%), non-O1/O139 V. cholerae (15%), and V. vulnificus (10%). Drug-susceptibility testing revealed intermediate and resistant strains to penicillins and first-generation cephalosporins. The acute infections (e.g., those involving digestive disorder, cellulitis, osteitis, pneumonia, and endocarditis) led to a life-threatening event (septic shock), amputation, or death in 36% of patients. Physicians may need to add vibriosis to their list of infections to assess in patients with associated risk factors.


Assuntos
Vibrioses , Vibrio cholerae , Vibrio , Humanos , Baías , Vibrioses/tratamento farmacológico , Vibrioses/epidemiologia , Penicilinas , Estudos Multicêntricos como Assunto
5.
Sci Rep ; 12(1): 18912, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344620

RESUMO

Vibrio species are classified as potent hazards because of their tendency to effect serious diseases like cholera and other gastrointestinal ailments in humans, as well as vibriosis in fish. A total of 144 freshwater samples were aseptically collected monthly across four rivers (Asejire, Ona, Dandaru and Erinle rivers) over a 12-month period from which Vibrio spp. were isolated using culture procedures, confirmed by means of biochemical test as well as Polymerase Chain Reaction (PCR) assay and further characterized for their phenotypic antibiotic susceptibilities and relevant antimicrobial resistant determinants by PCR. Three hundred and fifteen (58%) isolates confirmed across the sampled sites (Asejire = 75, Dandaru = 87, Eleyele = 72, Erinle = 81) showed high resistance against erythromycin-95%, Sulphamethoxazole-94%, rifampicin-92%, doxycycline-82%, tetracycline-75%, amoxicillin-45%, cephalothin-43% and varied susceptibilities to other antibiotics. The multiple antibiotic resistance indices of 97% of the Vibrio isolates were above the 0.2 threshold limit with MAR phenotype pattern E-SUL-RF-TET-DOX (0.38) found to be the most prevalent pattern among the isolates. The distributions of resistance determinant of the tested antibiotics were revealed as follows: sulII 33%, sulI 19% (sulfonamides); blaOXA 27%, ampC 39%, blapse 11% (beta-lactams); tetA 28%, tetE 20%, tet39 8%, (tetracyclines) and strA 39%. aacC2 24%, aphA1 14% (aminoglycosides). Strong positive associations were observed among tetA, sulI, tetE and sulII. This study raises concerns as these selected rivers may contribute to the environmental spread of waterborne diseases and antibiotic resistance genes. Therefore, we recommend environmental context-tailored strategies for monitoring and surveillance of resistance genes so as to safeguard the environment from becoming reservoirs of virulent and infectious Vibrio species.


Assuntos
Farmacorresistência Bacteriana Múltipla , Vibrio , Animais , Humanos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Incidência , Nigéria , Vibrio/genética , Água Doce , Antibacterianos/farmacologia , Genótipo
6.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362371

RESUMO

The intestinal tract is the most important location for symbiotes and pathogens, and the microbiota plays a crucial role in affecting the health of the gut and other host organs. Dysbacteriosis in the intestinal system has been proven to be significant in skin ulceration syndrome (SUS) in sea cucumbers. This study investigates whether the gut microbiota and lipid metabolites are relevant to the initiation and progression of SUS in a Vibrio-splendidus-infected sea cucumber model. The tight junction genes were downregulated and the inflammatory factor gene transcriptions were upregulated after V. splendidus infection in the intestinal tissue of the sea cucumber. V. splendidus infection modulated the gut microbiota by interacting with Psychromonas macrocephali, Propionigenium maris, Bacillus cereus, Lutibacter flavus, and Hoeflea halophila. Meanwhile, the metabolites of the long-chain fatty acids in the intestinal tissue, including triglycerides (TG), phosphatidylethanolamines (PE), and phosphatidylglycerols (PG), were altered after V. splendidus infection. V. splendidus engaged in positive interactions with PG and PE and negative interactions with specific TG. These results related to gut microbiota and metabolites can offer practical assistance in the identification of the inflammatory mechanisms related to SUS, and this study may serve as a reference for predicting the disease.


Assuntos
Microbioma Gastrointestinal , Pepinos-do-Mar , Úlcera Cutânea , Stichopus , Vibrio , Animais , Metabolismo dos Lipídeos , Síndrome , Surtos de Doenças , Imunidade Inata
7.
Mar Drugs ; 20(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355015

RESUMO

Up until now, the characterizations of GH50 agarases from Vibrio species have rarely been reported compared to GH16 agarases. In this study, a deep-sea strain, WPAGA4, was isolated and identified as Vibrio natriegens due to the maximum similarity of its 16S rRNA gene sequence, the values of its average nucleotide identity, and through digital DNA-DNA hybridization. Two circular chromosomes in V. natriegens WPAGA4 were assembled. A total of 4561 coding genes, 37 rRNA, 131 tRNA, and 59 other non-coding RNA genes were predicted in the genome of V. natriegens WPAGA4. An agarase gene belonging to the GH50 family was annotated in the genome sequence and expressed in E. coli cells. The optimum temperature and pH of the recombinant Aga3420 (rAga3420) were 40 °C and 7.0, respectively. Neoagarobiose (NA2) was the only product during the degradation process of agarose by rAga3420. rAga3420 had a favorable stability following incubation at 10-30 °C for 50 min. The Km, Vmax, and kcat values of rAga3420 were 2.8 mg/mL, 78.1 U/mg, and 376.9 s-1, respectively. rAga3420 displayed cold-adapted properties as 59.7% and 41.2% of the relative activity remained at 10 3 °C and 0 °C, respectively. This property ensured V. natriegens WPAGA4 could degrade and metabolize the agarose in cold deep-sea environments and enables rAga3420 to be an appropriate industrial enzyme for NA2 production, with industrial potential in medical and cosmetic fields.


Assuntos
Alteromonadaceae , Vibrio , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Sefarose/metabolismo , RNA Ribossômico 16S/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/metabolismo , Vibrio/genética , Vibrio/metabolismo , DNA/metabolismo
8.
Appl Environ Microbiol ; 88(22): e0165422, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36342150

RESUMO

Ocean acidification upwelling events and the resulting lowered aragonite saturation state of seawater have been linked to high mortality of marine bivalve larvae in hatcheries. Major oyster seed producers along North America's west coast have mitigated impacts via seawater pH buffering (e.g., addition of soda ash). However, little consideration has been given to whether such practice may impact the larval microbiome, with potential carry-over effects on immune competency and disease susceptibility in later-life stages. To investigate possible impacts, Pacific oysters (Crassostrea gigas) were reared under soda ash pH buffered or ambient pH seawater conditions for the first 24 h of development. Both treatment groups were then reared under ambient pH conditions for the remainder of the developmental period. Larval microbiome, immune status (via gene expression), growth, and survival were assessed throughout the developmental period. Juveniles and adults arising from the larval run were then subjected to laboratory-based disease challenges to investigate carry-over effects. Larvae reared under buffered conditions showed an altered microbiome, which was still evident in juvenile animals. Moreover, reduced survival was observed in both juveniles and adults of the buffered group under a simulated marine heatwave and Vibrio exposure compared with those reared under ambient conditions. Results suggest that soda ash pH buffering during early development may compromise later-life stages under stressor conditions, and illustrate the importance of a long-view approach with regard to hatchery husbandry practices and climate change mitigation. IMPORTANCE Shellfish industries are threatened worldwide by recurrent summer mortality events. Such incidences are often associated with Vibrio disease outbreaks, and thus, it is critical that animals are able to mount sufficient immune responses. The oyster immune system is linked to the microbiome which is laid down during early developmental stages. Consequently, shellfish hatcheries play a key role with regard to shaping the immune competency of later-life stages. This study represents the first in-depth examination of whether the adoption of seawater pH buffering practice by hatcheries for mitigation of ocean acidification may alter the larval microbiome, and thus, have repercussions for adult susceptibility to summer mortality events. Findings demonstrate that even minimal buffering results in a changed microbiome which is paralleled by increased mortality of later-life stages under Vibrio and temperature stressors, highlighting the importance of the hatchery environment with regard to shaping resilience to summer mortality events.


Assuntos
Crassostrea , Microbiota , Vibrio , Animais , Água do Mar , Larva , Concentração de Íons de Hidrogênio , Suscetibilidade a Doenças , Dióxido de Carbono
9.
Arch Microbiol ; 204(12): 689, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326918

RESUMO

This study aimed to evaluate the antibacterial properties of nine lactic acid bacterial strains. The agar diffusion method (Oxford cup method) was used to assess the antimicrobial activity against pathogenic bacteria in aquaculture. The results showed that all selected strains inhibited the growth of Photobacterium damsel, Vibrio alginolyticus, Listonella anguillarum, Edwardsiella ictaluri, Aeromonas hydrophila, V. arahaemolyticus, Edwardsiella tarda and V. harveyi, but did not inhibit the growth of Metschnikowia bicuspidata. Among these strains of lactic acid bacteria, r1 was selected for its obvious antibacterial activity against eight kinds of pathogenic bacteria by 96-well plate method. Its inhibitory rate reached 96%, and it could inhibit the growth of six pathogenic bacteria at 121 â„ƒ, 20 min and pH 3.5-4.0. It was identified as Lactiplantibacillus plantarum by morphological observation and 16S rRNA sequencing analysis. Because strain r1 was isolated from culture ponds and exerted strong inhibitory effects on pathogenic bacteria, it holds potential as an agent to prevent and control infectious diseases in aquaculture. This study provides a foundation for the development and utilization of probiotics in aquaculture.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Lactobacillales , Probióticos , Vibrio , Animais , Lactobacillales/genética , RNA Ribossômico 16S/genética , Aquicultura/métodos , Vibrio/genética , Anti-Infecciosos/farmacologia , Probióticos/farmacologia , Antibacterianos/farmacologia , Doenças dos Peixes/microbiologia
10.
Mar Drugs ; 20(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422006

RESUMO

Biofilms, responsible for many serious drawbacks in the medical and marine environment, can grow on abiotic and biotic surfaces. Commercial anti-biofilm solutions, based on the use of biocides, are available but their use increases the risk of antibiotic resistance and environmental pollution in marine industries. There is an urgent need to work on the development of ecofriendly solutions, formulated without biocidal agents, that rely on the anti-adhesive physico-chemical properties of their materials. In this context, exopolysaccharides (EPSs) are natural biopolymers with complex properties than may be used as anti-adhesive agents. This study is focused on the effect of the EPS MO245, a hyaluronic acid-like polysaccharide, on the growth, adhesion, biofilm maturation, and dispersion of two pathogenic model strains, Pseudomonas aeruginosa sp. PaO1 and Vibrio harveyi DSM19623. Our results demonstrated that MO245 may limit biofilm formation, with a biofilm inhibition between 20 and 50%, without any biocidal activity. Since EPSs have no significant impact on the bacterial motility and quorum sensing factors, our results indicate that physico-chemical interactions between the bacteria and the surfaces are modified due to the presence of an adsorbed EPS layer acting as a non-adsorbing layer.


Assuntos
Ácido Hialurônico , Vibrio , Ácido Hialurônico/farmacologia , Biofilmes , Percepção de Quorum , Pseudomonas
11.
Biochemistry ; 61(20): 2248-2260, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36194497

RESUMO

Enzyme stability and function can be affected by various environmental factors, such as temperature, pH, and ionic strength. Enzymes that are located outside the relatively unchanging environment of the cytosol, such as those residing in the periplasmic space of bacteria or extracellularly secreted, are challenged by more fluctuations in the aqueous medium. Bacterial alkaline phosphatases (APs) are generally affected by ionic strength of the medium, but this varies substantially between species. An AP from the marine bacterium Vibrio splendidus (VAP) shows complex pH-dependent activation and stabilization in the 0-1.0 M range of halogen salts and has been hypothesized to specifically bind chloride anions. Here, using X-ray crystallography and anomalous scattering, we have located two chloride binding sites in the structure of VAP, one in the active site and another one at a peripheral site. Further characterization of the binding sites using site-directed mutagenesis and small-angle X-ray scattering showed that upon binding of chloride to the peripheral site, structural dynamics decreased locally, resulting in thermal stabilization of the VAP active conformation. Binding of the chloride ion in the active site did not displace the bound inorganic phosphate product, but it may promote product release by facilitating rotational stabilization of the substrate-binding Arg129. Overall, these results reveal the complex nature and dynamics of chloride binding to enzymes through long-range modulation of electronic potential in the vicinity of the active site, resulting in increased catalytic efficiency and stability.


Assuntos
Fosfatase Alcalina , Vibrio , Fosfatase Alcalina/química , Sítios de Ligação , Cloretos , Cristalografia por Raios X , Halogênios , Concentração de Íons de Hidrogênio , Fosfatos , Sais
12.
MMWR Morb Mortal Wkly Rep ; 71(40): 1260-1264, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201372

RESUMO

To evaluate progress toward prevention of enteric infections in the United States, the Foodborne Diseases Active Surveillance Network (FoodNet) conducts active population-based surveillance for laboratory-diagnosed infections caused by Campylobacter, Cyclospora, Listeria, Salmonella, Shiga toxin-producing Escherichia coli (STEC), Shigella, Vibrio, and Yersinia at 10 U.S. sites. This report summarizes preliminary 2021 data and describes changes in annual incidence compared with the average annual incidence for 2016-2018, the reference period for the U.S. Department of Health and Human Services' (HHS) Healthy People 2030 goals for some pathogens (1). During 2021, the incidence of infections caused by Salmonella decreased, incidence of infections caused by Cyclospora, Yersinia, and Vibrio increased, and incidence of infections caused by other pathogens did not change. As in 2020, behavioral modifications and public health interventions implemented to control the COVID-19 pandemic might have decreased transmission of enteric infections (2). Other factors (e.g., increased use of telemedicine and continued increase in use of culture-independent diagnostic tests [CIDTs]) might have altered their detection or reporting (2). Much work remains to achieve HHS Healthy People 2030 goals, particularly for Salmonella infections, which are frequently attributed to poultry products and produce, and Campylobacter infections, which are frequently attributed to chicken products (3).


Assuntos
COVID-19 , Doenças Transmitidas por Alimentos , Vibrio , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Incidência , Pandemias , Vigilância da População , Salmonella , Estados Unidos/epidemiologia , Conduta Expectante
13.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232925

RESUMO

Vibrio harveyi is one of the most serious bacterial pathogens to aquatic animals worldwide. Evidence is mounting that coinfections caused by multiple pathogens are common in nature and can alter the severity of diseases in marine animals. However, bacterial coinfections involving V. harveyi have received little attention in mariculture. In this study, the results of pathogen isolation indicated that bacterial coinfection was a common and overlooked risk for hybrid groupers (♀ Epinephelus polyphekadion × â™‚ E. fuscoguttatus) reared in an industrialized flow-through pattern in Hainan Province. The artificial infection in hybrid groupers revealed that coinfections with V. harveyi strain GDH11385 (a serious lethal causative agent to groupers) and other isolated pathogens resulted in higher mortality (46.67%) than infection with strain GDH11385 alone (33.33%), whereas no mortality was observed in single infection with other pathogens. Furthermore, the intestine, liver and spleen of hybrid groupers are target organs for bacterial coinfections involving V. harveyi. Based on the infection patterns found in this study, we propose that V. harveyi may have a specific spatiotemporal expression pattern of virulence genes when infecting the host. Taken together, bacterial coinfection with V. harveyi is a neglected high-risk lethal causative agent to hybrid groupers in the industrialized flow-through aquaculture systems in Hainan Province.


Assuntos
Bass , Coinfecção , Doenças dos Peixes , Vibrioses , Vibrio , Animais , Aquicultura , Bass/genética , Coinfecção/veterinária , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Prevalência , Vibrio/genética , Vibrioses/epidemiologia , Vibrioses/microbiologia , Vibrioses/veterinária
14.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293339

RESUMO

The increasing prevalence of resistance in carbapenems is an escalating concern as carbapenems are reserved as last-line antibiotics. Although indiscriminate antibiotic usage is considered the primary cause for resistance development, increasing evidence revealed that inconsequential strains without any direct clinical relevance to carbapenem usage are harboring carbapenemase genes. This phenomenon indirectly implies that environmental microbial populations could be the 'hidden vectors' propelling carbapenem resistance. This work aims to explore the carbapenem-resistance profile of Vibrio species across diverse settings. This review then proceeds to identify the different factors contributing to the dissemination of the resistance traits and defines the transmission pathways of carbapenem resistance. Deciphering the mechanisms for carbapenem resistance acquisition could help design better prevention strategies to curb the progression of antimicrobial resistance development. To better understand this vast reservoir selecting for carbapenem resistance in non-clinical settings, Vibrio species is also prospected as one of the potential indicator strains for carbapenem resistance in the environment.


Assuntos
Vibrio , beta-Lactamases , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Vibrio/genética , Vibrio/metabolismo , Testes de Sensibilidade Microbiana
15.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36269578

RESUMO

A Gram-stain-negative, oxidase- and catalase-positive, facultative anaerobic motile bacterium, designated strain OG9-811T, was isolated from the gut of an oyster collected in the Yellow Sea, Republic of Korea. The strain grew at 10-37 °C, pH 6.0-9.0 and with 0.5-10% (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain OG9-811T affiliated with the genus Vibrio, with the highest sequence similarity of 98.2% to Vibrio coralliilyticus ATCC BAA-450T followed by Vibrio variabilis R-40492T (98.0 %), Vibrio hepatarius LMG 20362T (97.7 %) and Vibrio neptunius LMG 20536T (97.6 %); other relatives were Vibrio tritonius JCM 16456T (97.4 %), Vibrio fluvialis NBRC 103150T (97.0 %) and Vibrio furnissii CIP 102972T (97.0 %). The complete genome of strain OG9-811T comprised two chromosomes of a total 4 807 684 bp and the G+C content was 50.2 %. Results of analysis based on the whole genome sequence showed the distinctiveness of strain OG9-811T. The average nucleotide identity (ANI) values between strain OG9-811T and the closest strains V. coralliilyticus ATCC BAA-450T, V. variabilis R-40492T, V. hepatarius LMG 20362T, V. neptunius KCTC 12702T , V. tritonius JCM 16456T, V. fluvialis ATCC 33809T and V. furnissi CIP 102972T were 73.0, 72.6, 73.3, 73.0, 72.7, 78.5 and 77.8 %, respectively, while the digital DNA-DNA hybridization values between strain OG9-811T and the above closely related strains were 20.8, 21.2, 20.8, 21.7, 20.7, 23.2 and 22.4 %, respectively. The major fatty acids of strain OG9-811T were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), summed feature 8 (C18:1 ω6c and/or C18:1 ω7c) and C16:0. The polar lipids contained phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Strain OG9-811T contained Q-8 as a quinone. On the basis of polyphasic taxonomic characteristics, strain OG9-811T is considered to represent a novel species, for which the name Vibrio ostreae sp. nov. is proposed. The type strain is OG9-811T (=KCTC 72623T=GDMCC 1.2610T).


Assuntos
Ostreidae , Vibrio , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Cardiolipinas , Catalase/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Nucleotídeos , Ostreidae/microbiologia , Fosfatidiletanolaminas , Fosfolipídeos/química , Filogenia , Quinonas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio , Vibrio/genética , Vibrio/isolamento & purificação
16.
Curr Microbiol ; 79(12): 360, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253650

RESUMO

The Hyf-type formate hydrogen lyase (FHL) complex was first proposed based on sequence comparisons in Escherichia coli in 1997 (Andrews et al. in Microbiology 143:3633-3647, 1997). The hydrogenase in the Hyf-type FHL was estimated to be a proton-translocating energy-conserving [NiFe]-hydrogenase. Although the structure of FHL is similar to that of complex I, silent gene expression in E. coli has caused delays in unveiling the genetic and biochemical features of the FHL. The entire set of genes required for Hyf-type FHL synthesis has also been found in the genome sequences of Vibrio tritonius in 2015 (Matsumura et al. in Int J Hydrog Energy 40:9137-9146, 2015), which produces more hydrogen (H2) than E. coli. Here we investigate the physiological characteristics, genome comparisons, and gene expressions to elucidate the genetic backgrounds of Hyf-type FHL, and how Hyf-type FHL correlates with the higher H2 production of V. tritonius. Physiological comparisons among the seven H2-producing vibrios reveal that V. porteresiae and V. tritonius, grouped in the Porteresiae clade, show greater capacity for H2 production than the other species. The structures of FHL-Hyp gene clusters were closely related in both Porteresiae species, but differed from those of the other species with the presence of hupE, a possible nickel permease gene. Interestingly, deeper genome comparisons revealed the co-presence of nickel ABC transporter genes (nik) with the Hyf-type FHL gene only on the genome of the Porteresiae clade species. Therefore, active primary Ni transport might be one of the key factors characterizing higher H2 production in V. tritonius. Furthermore, the expression of FHL gene cluster was significantly up-regulated in V. tritonius cells stimulated with formate, indicating that formate is likely to be a control factor for the gene expression of V. tritonius FHL in a similar way to the formate regulon encoding the E. coli FHL.


Assuntos
Hidrogenase , Vibrio , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Formiatos/metabolismo , Genômica , Hidrogênio/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Níquel/metabolismo , Vibrio/genética , Vibrio/fisiologia
17.
Arch Microbiol ; 204(11): 664, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36209444

RESUMO

This manuscript provides the description of the bacterial strain A621T characterized by Gram negative motile rods, presenting green circular colonies on TCBS. It was obtained from the skin of the sharpnose pufferfish Canthigaster figueredoi (Tetraodontidae Family), collected in Arraial do Cabo, located in the Rio de Janeiro region, Brazil. Optimum growth occurs at 20-28 °C in the presence of 3% NaCl. The Genome sequence of the novel isolate consisted of 4.224 Mb, 4431 coding genes and G + C content of 44.5%. Genomic taxonomy analysis based on average amino acid (AAI), genome-to-genome-distance (GGDH) and phylogenetic reconstruction placed (A621T= CBAS 741T = CAIM 1945T = CCMR 150T) into a new species of the genus Vibrio (Vibrio fluminensis sp. nov). The genome of the novel species contains four gene clusters (~ 56.17 Kbp in total) coding for different types of bioactive compounds that hint to several possible ecological roles in the sharpnose pufferfish host.


Assuntos
Tetraodontiformes , Vibrio , Aminoácidos , Animais , Técnicas de Tipagem Bacteriana , Brasil , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio , Tetraodontiformes/genética
18.
Front Immunol ; 13: 982717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189245

RESUMO

In recent years, with global warming and increasing marine pollution, some novel marine viruses have become widespread in the aquaculture industry, causing huge losses to the aquaculture industry. Decapod iridescent virus 1 (DIV1) is one of the newly discovered marine viruses that has been reported to be detected in a variety of farmed crustacean and wild populations. Several previous studies have found that DIV1 can induce Warburg effect-related gene expression. In this study, the effects of DIV1 infection on intestinal health of shrimp were further explored from the aspects of histological, enzymatic activities, microorganisms and metabolites using Marsupenaeus japonicus as the object of study. The results showed that obvious injury in the intestinal mucosa was observed after DIV1 infection, the oxidative and antioxidant capacity of the shrimp intestine was unbalanced, the activity of lysozyme was decreased, and the activities of digestive enzymes were disordered, and secondary bacterial infection was caused. Furthermore, the increased abundance of harmful bacteria, such as Photobacterium and Vibrio, may synergized with DIV1 to promote the Warburg effect and induce metabolic reprogramming, thereby providing material and energy for DIV1 replication. This study is the first to report the changes of intestinal microbiota and metabolites of M. japonicus under DIV1 infection, demonstrating that DIV1 can induce secondary bacterial infection and metabolic reprogramming. Several bacteria and metabolites highly associated with DIV1 infection were screened, which may be leveraged for diagnosis of pathogenic infections or incorporated as exogenous metabolites to enhance immune response.


Assuntos
Microbioma Gastrointestinal , Penaeidae , Vibrio , Animais , Antioxidantes , Iridoviridae , Muramidase
19.
Front Immunol ; 13: 974604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304468

RESUMO

Infectious diseases have caused dramatic production decline and economic loss for fish aquaculture. However, the poor understanding of fish disease resistance severely hampered disease prevention. Chinese tongue sole (Cynoglossus semilaevis) is an important economic flatfish suffering from vibriosis. Here we used genomic, transcriptomic and experimental approaches to investigate the molecular genetic mechanisms underlying fish vibriosis resistance. A genome-wide comparison revealed that the genes under selective sweeps were enriched for glycosaminoglycan (GAG) chondroitin sulfate (CS)/dermatan sulfate (DS) metabolism. Transcriptomic analyses prioritized synergic gene expression patterns in this pathway, which may lead to an increased CS/DS content in the resistant family. Further experimental evidence showed that carbohydrate sulfotransferases 12 (Chst12), a key enzyme for CS/DS biosynthesis, has a direct antibacterial activity. To the best of our knowledge, this is the first report that the chst12 gene has a bactericidal effect. In addition, CS/DS is a major component of the extracellular matrix (ECM) and the selection signatures and fine-tuned gene expressions of ECM-receptor interaction genes indicated a modification in the ECM structure with an enhancement of the barrier function. Furthermore, functional studies conducted on Col6a2, encoding a collagen gene which constitutes the ECM, pointed to that it may act as a cellular receptor for Vibrio pathogens, thus plays an important role for the Vibrio invasion. Taken together, these findings provide new insights into the molecular protective mechanism underlying vibriosis resistance in fish, which offers crucial genomic resources for the resistant germplasm breeding and infectious disease control in fish culturing.


Assuntos
Vibrioses , Vibrio , Animais , Transcriptoma , Vibrioses/veterinária , Vibrioses/genética , Vibrio/fisiologia , Peixes/genética , Peixes/metabolismo , Sulfatos de Condroitina , Genômica
20.
World J Microbiol Biotechnol ; 38(12): 241, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36271946

RESUMO

Vibrio mimicus is a bacterium that causes gastroenteritis in humans. This pathogen produces an enterotoxic hemolysin called V. mimicus hemolysin (VMH), which is secreted extracellularly as an inactive 80-kDa protoxin and converted to a 66-kDa mature toxin through cleavage between Arg151 and Ser152. The 56-kDa serine protease termed V. mimicus trypsin-like protease (VmtA) is known to mediate this maturating process. However, some strains including strain ES-20 does not possess the vmtA gene. In the present study, the vmtA-negative strains were found to have a replaced gene that encodes a 43-kDa (403 aa) precursor of a serine protease designated by VmtX (V. mimicus trypsin-like protease X). To examine whether VmtX is also involved in the maturation of VMH, VmtX was isolated from the culture supernatant of V. mimicus strain NRE-20, a metalloprotease-negative mutant constructed from strain ES-20. Concretely, the culture supernatant was fractionated with 70% saturated ammonium sulfate and subjected to affinity column chromatography using a HiTrap Benzamidine FF column. The analysis of the N-terminal amino acid sequences of the proteins in the obtained VmtX preparation indicated that the 39-kDa protein was active VmtX consisting of 371 aa (Ile33-Ser403). The VmtX preparation was found to activate pro-VMH through generation of the 66-kDa protein. Additionally, treatment of the VmtX preparation with serine protease inhibitors, such as leupeptin and phenylmethylsulfonyl fluoride, significantly suppressed the activities to hydrolyze the specific peptide substrate and to synthesize the 66-kDa toxin. These findings indicate that VmtX is the second protease that mediats the maturation of VMH.


Assuntos
Proteínas Hemolisinas , Vibrio , Humanos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Peptídeo Hidrolases/genética , Leupeptinas , Sulfato de Amônio , Tripsina , Fluoreto de Fenilmetilsulfonil , Metaloproteases , Inibidores de Serino Proteinase , Benzamidinas , Vibrio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...