Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 897
Filtrar
1.
Front Immunol ; 12: 679767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177924

RESUMO

The hepatopancreas is an important digestive and immune organ in crustacean. There were low but stable numbers of microbes living in the hemolymph of crustacean, whereas the organs (including hepatopancreas) of crustacean were immersed in the hemolymph. It is very important to study the immune mechanism of the hepatopancreas against bacteria. In this study, a novel CTL (HepCL) with two CRDs, which was mainly expressed in the hepatopancreas, was identified in red swamp crayfish (Procambarus clarkii). HepCL binds to bacteria in vitro and could enhance bacterial clearance in vivo. Compared with the C-terminal CRD of HepCL (HepCL-C), the N-terminal CRD (HepCL-N) showed weaker bacterial binding ability in vitro and stronger bacterial clearance activity in vivo. The expression of some antimicrobial proteins, such as FLP, ALF1 and ALF5, was downregulated under knockdown of HepCL or blocked with Anti-HepCL after challenge with Vibrio in crayfish. These results demonstrated that HepCL might be involved in the antibacterial immune response by regulating the expression of antimicrobial proteins.


Assuntos
Crustáceos/imunologia , Crustáceos/metabolismo , Resistência à Doença/imunologia , Hepatopâncreas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Lectinas/metabolismo , Animais , Infecções Bacterianas/veterinária , Crustáceos/genética , Crustáceos/microbiologia , Resistência à Doença/genética , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Vibrio/imunologia
2.
Fish Shellfish Immunol ; 114: 253-262, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33979691

RESUMO

Vibriosis, an illness caused by the Vibrio bacteria species, results in significant economic loss in olive flounder farms. Here we present a novel anti-Vibrio feed vaccine protecting multiple strains of Vibrio pathogens, a universal vaccine effect. The vaccine was generated by engineering Lactococcus lactis BFE920 to express the fusion antigens of Vibrio outer membrane protein K (OmpK) and flagellin B subunit (FlaB). These antigen genes are highly conserved among Vibrio species. Olive flounder (7.1 ± 0.8 g and 140 ± 10 g) were fed the vaccine adsorbed to a regular feed (1 × 107 CFU/g) for one week with a 1-week interval, repeating three times (a triple boost). The vaccinated fish increased the significant levels of antigen-specific antibodies, T cell numbers (CD4-1, CD4-2, and CD8α), cytokine production (T-bet and IFN-γ), and innate immune responses (TLR5M, IL-1ß, and IL-12p40). Also, the survival rates of adult and juvenile fish fed the vaccine were significantly elevated when challenged with V. anguillarum, V. alginolyticus, and V. harveyi. In addition, weight gain rate and feed conversion ratio were improved in vaccinated fish. The feed vaccine protected multiple Vibrio pathogens, a universal vaccine effect, by activating innate and adaptive immune responses. This oral vaccine may be developed as an anti-Vibrio vaccine to protect against a broad spectrum of Vibrio pathogens.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Linguado , Lactococcus lactis/metabolismo , Vibrioses/veterinária , Vibrio/metabolismo , Imunidade Adaptativa , Animais , Vacinas Bacterianas/administração & dosagem , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Imunidade Inata , Probióticos , Vibrio/imunologia , Vibrioses/prevenção & controle
3.
Front Immunol ; 12: 639489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968031

RESUMO

Rainbow trout (Oncorhynchus mykiss) is one of the most common aquaculture fish species worldwide. Vibriosis disease outbreaks cause significant setbacks to aquaculture. The stress and immune responses are bidirectionally modulated in response to the health challenges. Therefore, an investigation into the regulatory mechanisms of the stress and immune responses in trout is invaluable for identifying potential vibriosis treatments. We investigated the transcriptional profiles of genes associated with stress and trout immune functions after Vibrio anguillarum infection. We compared the control trout (CT, 0.9% saline injection), asymptomatic trout (AT, surviving trout with minor or no symptoms after bacteria injection), and symptomatic trout (ST, moribund trout with severe symptoms after bacteria injection). Our results showed activated immunomodulatory genes in the cytokine network and downregulated glucocorticoid and mineralocorticoid receptors in both AT and ST, indicating activation of the proinflammatory cytokine cascade as a common response in AT and ST. Moreover, the AT specifically activated the complement- and TNF-associated immune defenses in response to V. anguillarum infection. However, the complement and coagulation cascades, as well as steroid hormone homeostasis in ST, were disturbed by V. anguillarum. Our studies provide new insights toward understanding regulatory mechanisms in stress and immune functions in response to diseases.


Assuntos
Imunidade/genética , Imunidade/imunologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/imunologia , Transcrição Genética/genética , Transcrição Genética/imunologia , Vibrio/imunologia , Animais , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/imunologia , Citocinas/genética , Citocinas/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Oncorhynchus mykiss/microbiologia , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/microbiologia
4.
J Immunol ; 206(9): 2001-2014, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33858963

RESUMO

IgZ or its equivalent IgT is a newly discovered teleost specific Ig class that is highly specialized in mucosal immunity. However, whether this IgZ/IgT class participates in other biological processes remains unclear. In this study, we unexpectedly discovered that IgZ is highly expressed in zebrafish ovary, accumulates in unfertilized eggs, and is transmitted to offspring from eggs to zygotes. Maternally transferred IgZ in zygotes is found at the outer and inner layers of chorion, perivitelline space, periphery of embryo body, and yolk, providing different lines of defense against pathogen infection. A considerable number of IgZ+ B cells are found in ovarian connective tissues distributed between eggs. Moreover, pIgR, the transporter of IgZ, is also expressed in the ovary and colocalizes with IgZ in the zona radiata of eggs. Thus, IgZ is possibly secreted by ovarian IgZ+ B cells and transported to eggs through association with pIgR in a paracrine manner. Maternal IgZ in zygotes showed a broad bacteriostatic activity to different microbes examined, and this reactivity can be manipulated by orchestrating desired bacteria in water where parent fish live or immunizing the parent fish through vaccination. These observations suggest that maternal IgZ may represent a group of polyclonal Abs, providing protection against various environmental microbes encountered by a parent fish that were potentially high risk to offspring. To our knowledge, our findings provide novel insights into a previously unrecognized functional role of IgZ/IgT Ig in the maternal transfer of immunity in fish, greatly enriching current knowledge about this ancient Ig class.


Assuntos
Resistência à Doença/imunologia , Doenças dos Peixes/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Isotipos de Imunoglobulinas/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Aeromonas hydrophila/imunologia , Aeromonas hydrophila/fisiologia , Animais , Resistência à Doença/genética , Embrião não Mamífero/embriologia , Embrião não Mamífero/imunologia , Embrião não Mamífero/microbiologia , Feminino , Doenças dos Peixes/microbiologia , Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Isotipos de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/metabolismo , Masculino , Herança Materna/genética , Herança Materna/imunologia , Vibrio/classificação , Vibrio/imunologia , Vibrio/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/microbiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Zigoto/imunologia , Zigoto/metabolismo , Zigoto/microbiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-33845220

RESUMO

The p38 mitogen-activated protein kinase (MAPK) is one important member of MAPK family and reported to serve a predominant function in regulating innate immunity after the occurrence of certain infection. In the present study, one novel p38 MAPK gene was acquired from Cyclina sinensis based on the RNA-seq analysis and designated as Csp38 MAPK. This novel gene contained a full length of 1781 bp, 1104 bp of which was deemed as open reading frames and gave rise to a peptide of 367 amino acids with a predicted molecular weight of 42.31 KDa. A conserved serine/threonine protein kinase (S_Tkc) region along with a Thr-Gly-Tyr motif was discovered in the deduced sequence. According to the phylogenetic analysis, there was a close relationship between this kinase and Meretrix petechialis p38 MAPK. As for the expression pattern, this newly-identified Csp38 MAPK was ubiquitously distributed in several tissues throughout the body but with varied abundance. After the challenge of Vibrio anguillarum, both the transcription and phosphorylation level of Csp38 MAPK in hemolymph were coordinately altered with a time-dependent manner. Besides, with the application of double strand RNA homologous to myeloid differentiation factor 88 (MyD88) of C. sinensis, the activation of Csp38 MAPK was found to obviously decrease in hemolymph after the pathogen stimulation. Hence, our experimental data presented evidence for the potential involvement of p38 MAPK in response to bacterial invaders in C. sinensis, possibly facilitating the understanding for pathogen-induced innate immunity in clams.


Assuntos
Bivalves , DNA Complementar , Vibrio/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Bivalves/genética , Bivalves/imunologia , Bivalves/microbiologia , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
6.
Mol Immunol ; 135: 170-182, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33901762

RESUMO

The polymeric immunoglobulin receptor (pIgR) transports secretory immunoglobulins across mucosal epithelial cells into external secretions, playing critical roles in mucosal surface defenses, but the regulation mechanism of pIgR expression is not clarified in teleost fish. In this study, the dynamic changes of flounder (Paralichthys olivaceus) pIgR (fpIgR) and pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) mRNA expression in mucosal tissues were first analyzed post inactivated Vibrio anguillarum immunization, and increased production of TNF-α was found to correlate with increased expression of fpIgR. To determine that cytokine TNF-α influenced fpIgR expression, following confirming that natural fpIgR expressed on flounder gill (FG) cells, FG cells were incubated with various concentrations of recombinant TNF-α for different time, the results showed that the expressions of fpIgR were significantly upregulated at gene and protein levels in a dose-dependent and time-dependent manner, and similar change trend was observed for free secretory component (SC) secreted by fpIgR into the culture supernatant. After FG cells were treated with TNF-α, specific phosphoinositide 3-kinase (PI3K) inhibitor wortmannin, nuclear factor kappa-B (NF-κB) inhibitor Bay11-7082, and the mixtures of TNF-α and wortmannin / Bay11-7082 respectively, the fpIgR protein and mRNA levels, together with SC secretion, obviously decreased in wortmannin- and Bay11-7082-treated cells compared with the untreated control, and cotreatment with wortmannin / Bay11-7082 plus TNF-α resulted in lower expression compared with that upon treatment with TNF-α alone, indicating that the inhibition of PI3K and NF-κB both blocked the ability of TNF-α to increase cellular fpIgR and SC levels. Furthermore, the gene expressions of PI3K and NF-κB were upregulated and present a tendency to increase first and then decrease after TNF-α treatment of FG cells; However, the expression of PI3K mRNA was inhibited significantly by wortmannin but not by Bay11-7082, and the expression of NF-κB mRNA was suppressed obviously by Bay11-7082 but not by wortmannin, suggesting that inhibition of PI3K or NF-κB had no influence on each other. All these results collectively revealed that TNF-α could transcriptionally upregulate fpIgR expression and SC production, and this TNF-α-induced pIgR expression was regulated by complex mechanisms that involved PI3K and NF-κB signaling pathways, which provided evidences for pro-inflammatory cytokine TNF-α acting as a regulator in pIgR expression and better understanding of regulation mechanism of pIgR expression in teleost fish.


Assuntos
Regulação da Expressão Gênica/imunologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Receptores de Imunoglobulina Polimérica/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Células Cultivadas , Linguado/imunologia , Brânquias/citologia , Brânquias/imunologia , Imunização , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Imunoglobulina Polimérica/genética , Transdução de Sinais/imunologia , Sulfonas/farmacologia , Regulação para Cima/genética , Vibrio/imunologia , Wortmanina/farmacologia
7.
Int J Biol Macromol ; 178: 492-503, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647335

RESUMO

Myeloid differentiation factor 88 (MyD88) is a crucial adaptor protein for Toll-like receptor (TLR)-mediated signaling pathways and plays an important role in immune response. In this study, the full-length cDNA of MyD88 from Macrobrachium rosenbergii (MRMyD88) was cloned. The MRMyD88 cDNA is 1758 bp long and contains a 1398-bp open reading frame. Multiple sequence alignment and phylogenetic analysis revealed that the amino acid sequence of MRMyD88 shared high identity with the known MyD88 proteins. The MRMyD88 mRNA was widely expressed in all examined tissues, with highest level in intestine, followed by gonad and pleopod. Furthermore, the MRMyD88 promoter region, spanning 1622 bp, contains several transcription factor-binding sites, including nine GATA-1 box motifs. Electrophoretic mobility shift assay showed that Gfi-1, SRF, and Oct-1 bind to the upstream region of MRMyD88. Additionally, the results showed that the expression levels of TLR1, TLR2 and TLR3 were different in response to Vibrio anguillarum, Lactobacillus plantarum and Aeromonas hydrophila infections. However, these bacteria significantly increased the expression levels of MyD88 and prophenoloxidase. These data suggest that the TLR-mediated signaling pathway is MyD88-dependent in response to pathogenic and probiotic bacteria in M. rosenbergii.


Assuntos
Proteínas de Artrópodes , Fator 88 de Diferenciação Mieloide , Palaemonidae , Vibrioses , Vibrio/imunologia , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Palaemonidae/genética , Palaemonidae/imunologia , Palaemonidae/microbiologia , Vibrioses/genética , Vibrioses/imunologia
8.
Front Immunol ; 12: 647202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659012

RESUMO

The innate immune organs and cells detect the invasion of pathogenic microorganisms, which trigger the innate immune response. A proper immune response can protect the organisms from pathogen invasion. However, excessive immunity can destroy immune homeostasis, leading to uncontrolled inflammation or pathogen transmission. Evidence shows that the miRNA-mediated immune regulatory network in mammals has had a significant impact, but the antibacterial and antiviral responses involved in miRNAs need to be further studied in lower vertebrates. Here, we report that miR-2187 as a negative regulator playing a critical role in the antiviral and antibacterial response of miiuy croaker. We find that pathogens such as Vibrio anguillarum and Siniperca chuatsi rhabdovirus (SCRV) can up-regulate the expression of miR-2187. Elevated miR-2187 is capable of reducing the production of inflammatory factors and antiviral genes by targeting TRAF6, thereby avoiding excessive inflammatory response. Furthermore, we proved that miR-2187 modulates innate immunity through TRAF6-mediated NF-κB and IRF3 signaling pathways. The above results indicate that miR-2187 acts as an immune inhibitor involved in host antibacterial and antiviral responses, thus enriching the immune regulatory network of the interaction between host and pathogen in lower vertebrates.


Assuntos
Proteínas de Peixes/genética , Fator Regulador 3 de Interferon/genética , MicroRNAs/genética , NF-kappa B/genética , Perciformes/genética , Fator 6 Associado a Receptor de TNF/genética , Animais , Sequência de Bases , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/metabolismo , NF-kappa B/metabolismo , Perciformes/microbiologia , Perciformes/virologia , Rhabdoviridae/imunologia , Rhabdoviridae/fisiologia , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fator 6 Associado a Receptor de TNF/metabolismo , Vibrio/imunologia , Vibrio/fisiologia
9.
Mol Immunol ; 133: 1-13, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33610121

RESUMO

Transcription factor PU.1 is a regulator of macrophage function, however, the specific function of PU.1 in teleost monocytes/macrophages (MO/MФ) remains unknown. We determined the cDNA sequence of two PU.1 genes from ayu (Plecoglossus altivelis; PaPU.1a and PaPU.1b). Sequence comparisons showed that PaPU.1 were most closely related to the PU.1 of rainbow smelt (Osmerus mordax). The PU.1 transcripts were mainly expressed in the spleen, and their expression was altered in various tissues upon infection with Vibrio anguillarum. PaPU.1a and PaPU.1b proteins were upregulated in MO/MФ, after infection. RNA interference was employed to knockdown PaPU.1a and PaPU.1b to investigate their function in MO/MФ. The expression of inflammatory cytokines was regulated by PaPU.1a, but not PaPU.1b, in ayu MO/MФ upon V. anguillarum infection. Both PaPU.1a and PaPU.1b knockdown lowered the phagocytic activity of MO/MФ. Furthermore, PaPU.1b knockdown attenuated MO/MФ bacterial killing capability. Our results indicate that two PaPU.1 genes differentially modulate the immune response in ayu MO/MФ against bacterial infection.


Assuntos
Macrófagos/imunologia , Monócitos/imunologia , Osmeriformes/genética , Osmeriformes/imunologia , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Sequência de Aminoácidos , Animais , Sequência de Bases/genética , Citocinas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Imunidade Inata/genética , Imunidade Inata/imunologia , Masculino , Fagocitose/genética , Fagocitose/imunologia , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Transativadores/metabolismo , Vibrio/imunologia , Vibrioses/imunologia
10.
Genes (Basel) ; 12(1)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467444

RESUMO

Circular RNA (circRNA) is a new class of non-coding RNA that is structured into a closed loop without polyadenylation. Recent studies showed that circRNAs are involved in the host immune response to pathogen infection. Japanese flounder (Paralichthys olivaceus), an important economical marine fish cultured in north Asia, is affected by Vibrio anguillarum, a pathogenic bacterium that can infect a large number of fish. In this study, we systematically explored the circRNAs in the spleen of V. anguillarum-infected flounder at different infection time points. A total of 6581 circRNAs were identified, 148 of which showed differential expression patterns after V. anguillarum infection and were named DEcirs. Most of the DEcirs were strongly time-specific. The parental genes of the DEcirs were identified and functionally classified into diverse pathways, including immune-related pathways. Among the immune-related DEcirs, seven were predicted to sponge 18 targeted miRNAs that were differentially expressed during V. anguillarum infection (named DETmiRs). Further analysis showed that the DEcirs and their corresponding DETmiRs intertwined into complicated immune related networks. These results indicate that in flounder, circRNAs are regulated by V. anguillarum and form interactive networks with mRNAs and miRNAs that likely play important roles in the immune defense against pathogen infection.


Assuntos
Doenças dos Peixes , Linguado , RNA Circular , Vibrioses , Vibrio/imunologia , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Linguado/genética , Linguado/imunologia , RNA Circular/genética , RNA Circular/imunologia , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/veterinária
11.
Int J Biol Macromol ; 174: 457-465, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33493561

RESUMO

Vibrio anguillarum is a globally distributed aquatic pathogen, and its flagellin B (FlaB) protein can evoke innate immune responses in hosts. In order to explore the role of FlaB in V. anguillarum infection, we constructed a FlaB-deficient mutant using overlapping PCR and two-step homologous recombination, and gene sequencing confirmed successful knockout of the FlaB gene. Scanning electron microscopy showed no significant differences in the morphological structure of the flagellum between wild-type and FlaB-deficient strains. The mutant was subsequently injected into the freshwater prawn (Macrobrachium rosenbergii) to explore its pathogenicity in the host, and expression of myeloid differentiation factor 88, prophenoloxidase, catalase, superoxide dismutase and glutathione peroxidase was investigated by real-time PCR. The results showed that deletion of FlaB had little effect on V. anguillarum-induced expression of these immune-related genes (p > 0.05). In general, the FlaB mutant displayed similar flagella morphology and immune characteristics to the wild-type strain, hence we speculated that knockout of FlaB might promote the expression and function of other flagellin proteins. Furthermore, this study provides a rapid and simple method for obtaining stable mutants of V. anguillarum free from foreign plasmid DNA.


Assuntos
Proteínas de Artrópodes/genética , Flagelina/administração & dosagem , Mutação , Palaemonidae/imunologia , Vibrio/metabolismo , Animais , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Catalase/genética , Catecol Oxidase/genética , Clonagem Molecular , Precursores Enzimáticos/genética , Flagelina/genética , Flagelina/imunologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Glutationa Peroxidase/genética , Imunidade Inata , Microscopia Eletrônica de Varredura , Fator 88 de Diferenciação Mieloide/genética , Palaemonidae/genética , Superóxido Dismutase/genética , Vibrio/imunologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-33516925

RESUMO

Tyrosinase (EC1.14.18.1, TYR) is also called phenol oxidase, is not only involved in pigmentation but also plays an important role in modulating innate immunity in invertebrates. Tyrosinase is a copper containing metalloenzyme. The tyrosinase protein has two copper binding sites and three conserved histidines. In this study, 21 tyrosinase genes (RpTYR) were obtained from the whole genome of Ruditapes philippinarum. Their open reading frames were from 951 to 5424 aa, the range of predicted relative molecular weight from 36.72 to 203.81 kDa, and the range of isoelectric point from 4.72 to 9.88. Transcriptome analysis showed that RpTYR gene was expressed specifically in different developmental stages, adult tissues, four strains and two groups with different shell colors. Besides, the expression profiles of 21 RpTYRs were investigated against the immune response of R. philippinarum to a Vibrio challenge. The qPCR results showed that RpTYRs were involved in the immune response of R. philippinarum after Vibrio anguillarum challenge. This study provides preliminary evidence that the tyrosinases genes are involved in the immune defense and the potential immune function of R. philippinarum. Overall, these findings suggested that the expansion of TYR genes may play vital roles in larval development, the formation of shell color pattern, and immune response in R. philippinarum.


Assuntos
Bivalves/genética , Bivalves/microbiologia , Interações Hospedeiro-Patógeno , Monofenol Mono-Oxigenase/genética , Vibrio/fisiologia , Animais , Bivalves/imunologia , Perfilação da Expressão Gênica , Imunidade Inata , Família Multigênica , Transcriptoma , Vibrio/imunologia , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/veterinária
13.
Fish Shellfish Immunol ; 108: 73-79, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33285163

RESUMO

A unique strain of Vibrio harveyi is the causative agent of scale drop and muscle necrosis disease (SDMND) in Asian sea bass (Lates calcarifer). This study investigated the protein profiles of SDMND-causing Vibrio harveyi isolates compared to the reference V. harveyi ATCC 14126 strain. A distinct protein band of 33 kDa, namely HP33, found from only V. harveyi SDMND was subjected to analysis by LC-MS/MS and the identified peptide sequences matched to an unknown hypothetical protein. Detection of HP33 coding sequence was investigated at both genomic and transcriptional levels and the results consistently supported the protein analysis. Recombinant HP33 protein was then produced using Escherichia coli system. The rHP33 protein did not cause mortality or visible clinical signs to Asian sea bass. However, the rHP33 protein was able to stimulate antibody response in Asian sea bass as evidenced by Western blotting and agglutination tests. Here, we proposed that rHP33 might be a good protein target for development of subunit vaccine and/or immunostimulant to protect Asian sea bass from SDMND.


Assuntos
Proteínas de Bactérias/genética , Bass , Doenças dos Peixes/imunologia , Imunogenicidade da Vacina , Necrose/veterinária , Vibrioses/veterinária , Vibrio/imunologia , Escamas de Animais/patologia , Animais , Proteínas de Bactérias/imunologia , Doenças dos Peixes/microbiologia , Doenças Musculares/imunologia , Doenças Musculares/microbiologia , Doenças Musculares/veterinária , Necrose/imunologia , Necrose/microbiologia , Vibrio/genética , Vibrioses/imunologia , Vibrioses/microbiologia
14.
Front Immunol ; 11: 607754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324424

RESUMO

Vibrio harveyi causes vibriosis in nearly 70% of grouper (Epinephelus sp.), seriously limiting grouper culture. As well as directly inhibiting pathogens, the gut microbiota plays critical roles in immune homeostasis and provides essential health benefits to its host. However, there is still little information about the variations in the immune response to V. harveyi infection and the gut microbiota of grouper. To understand the virulence mechanism of V. harveyi in the pearl gentian grouper, we investigated the variations in the pathological changes, immune responses, and gut bacterial communities of pearl gentian grouper after exposure to differently virulent V. harveyi strains. Obvious histopathological changes were detected in heart, kidney, and liver. In particular, nodules appeared and huge numbers of V. harveyi cells colonized the liver at 12 h postinfection (hpi) with highly virulent V. harveyi. Although no V. harveyi was detected in the gut, the infection simultaneously induced a gut-liver immune response. In particular, the expression of 8 genes associated with cellular immune processes, including genes encoding inflammatory cytokines and receptors, and pattern recognition proteins, was markedly induced by V. harveyi infection, especially with the highly virulent V. harveyi strain. V. harveyi infection also induced significant changes in gut bacterial community, in which Vibrio and Photobacterium increased but Bradyrhizobium, Lactobacillus, Blautia, and Faecalibaculum decreased in the group infected with the highly virulent strain, with accounting for 82.01% dissimilarity. Correspondingly, four bacterial functions related to bacterial pathogenesis were increased by infection with highly virulent V. harveyi, whereas functions involving metabolism and genetic information processing were reduced. These findings indicate that V. harveyi colonizes the liver and induces a gut-liver immune response that substantially disrupts the composition of and interspecies interactions in the bacterial community in fish gut, thereby altering the gut-microbiota-mediated functions and inducing fish death.


Assuntos
Doenças dos Peixes/microbiologia , Peixes/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Fígado/microbiologia , Vibrioses/veterinária , Vibrio/patogenicidade , Animais , Disbiose , Feminino , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Peixes/genética , Peixes/imunologia , Peixes/metabolismo , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Fígado/imunologia , Fígado/metabolismo , Masculino , Vibrio/genética , Vibrio/imunologia , Vibrioses/imunologia , Vibrioses/metabolismo , Vibrioses/microbiologia , Virulência
15.
Front Immunol ; 11: 599625, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281827

RESUMO

The interaction between host immune response and the associated microbiota has recently become a fundamental aspect of vertebrate and invertebrate animal health. This interaction allows the specific association of microbial communities, which participate in a variety of processes in the host including protection against pathogens. Marine aquatic invertebrates such as scallops are also colonized by diverse microbial communities. Scallops remain healthy most of the time, and in general, only a few species are fatally affected on adult stage by viral and bacterial pathogens. Still, high mortalities at larval stages are widely reported and they are associated with pathogenic Vibrio. Thus, to give new insights into the interaction between scallop immune response and its associated microbiota, we assessed the involvement of two host antimicrobial effectors in shaping the abundances of bacterial communities present in the scallop Argopecten purpuratus hemolymph. To do this, we first characterized the microbiota composition in the hemolymph from non-stimulated scallops, finding both common and distinct bacterial communities dominated by the Proteobacteria, Spirochaetes and Bacteroidetes phyla. Next, we identified dynamic shifts of certain bacterial communities in the scallop hemolymph along immune response progression, where host antimicrobial effectors were expressed at basal level and early induced after a bacterial challenge. Finally, the transcript silencing of the antimicrobial peptide big defensin ApBD1 and the bactericidal/permeability-increasing protein ApLBP/BPI1 by RNA interference led to an imbalance of target bacterial groups from scallop hemolymph. Specifically, a significant increase in the class Gammaproteobacteria and the proliferation of Vibrio spp. was observed in scallops silenced for each antimicrobial. Overall, our results strongly suggest that scallop antimicrobial peptides and proteins are implicated in the maintenance of microbial homeostasis and are key molecules in orchestrating host-microbiota interactions. This new evidence depicts the delicate balance that exists between the immune response of A. purpuratus and the hemolymph microbiota.


Assuntos
Regulação da Expressão Gênica/imunologia , Hemócitos , Hemolinfa , Microbiota/imunologia , Pectinidae , Vibrio/imunologia , Animais , Forma Celular/imunologia , Hemócitos/citologia , Hemócitos/imunologia , Hemócitos/microbiologia , Hemolinfa/citologia , Hemolinfa/imunologia , Hemolinfa/microbiologia , Pectinidae/citologia , Pectinidae/imunologia , Pectinidae/microbiologia
16.
Fish Shellfish Immunol ; 106: 1025-1030, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32971269

RESUMO

Vaccination is one of the strategies for preventing Vibrio harveyi infection in marine-cultured animals. In this study, we prepared a formalin-killed cells of V. harveyi ZJ0603 vaccine (FKC) combined with ß-glucan to immune pearl gentian grouper. The results indicated that the expression levels of IgM, TNF-α, MHC-Iα, IL-1ß and IL-16 significantly increased in the spleen of the vaccinated fish. Antibody titers, activities of lysozyme and superoxide dismutase were significantly prompted in blood of the vaccinated fish. After 35 d post-vaccination, all fish were challenged intraperitoneally by virulent V. harveyi, and the relative percentage of survival (RPS) of FKC+ß-glucan, FKC, ß-glucan and PBS were 68 ± 5.7%, 55 ± 8.5%, 42 ± 7.5% and 32 ± 6.9%, respectively. These results demonstrated that ß-glucan could be as a potential adjuvant of FKC and provide good protective effect against V. harveyi infection in the pearl gentian grouper culture.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Bacterianas/farmacologia , Doenças dos Peixes/prevenção & controle , Perciformes/imunologia , Vacinas de Produtos Inativados/farmacologia , Vibrioses/prevenção & controle , Vibrio/imunologia , beta-Glucanas/farmacologia , Animais , Anticorpos Antibacterianos/sangue , Citocinas/genética , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Perciformes/genética , Perciformes/microbiologia , Vibrioses/genética , Vibrioses/imunologia
17.
Microb Pathog ; 147: 104419, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32768517

RESUMO

Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that causes acute gastroenteritis after the consumption of contaminated food, wound infection, and seizures. Antibiotic therapy is the main method for controlling Vibrio infections, which inevitably leads to drug resistance. Therefore, a vaccine is urgently needed to avoid this problem. Outer membrane proteins (OMPs) play a pivotal role in the interaction between the host immune system and bacteria. VP1243 is an OMP of V. parahaemolyticus, and it possessed immunogenicity in our previous study. The present study found that VP1243 was widely distributed, highly conserved and possessed similar surface epitopes among the major Vibrio species. The protein stimulated a strong antibody response and induced cross-reactive immune responses in V. parahaemolyticus, V. alginolyticus and V. vulnificus. Notably, it provided 100% immune protection against lethal challenges by the three Vibrio species in mice immunized with VP1243. Efficient clearance of cells of the three Vibrio bacterial species was observed in immunized mice. These findings provide solid evidence for VP1243 as a promising candidate for the development of a versatile vaccine to protect against Vibrio infections.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Vibrio , Animais , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Camundongos , Vibrio/imunologia , Vibrioses/imunologia , Vibrioses/prevenção & controle , Vibrio parahaemolyticus/imunologia
18.
Front Immunol ; 11: 1379, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793193

RESUMO

Cluster of differentiation 63 (CD63), a four-transmembrane glycoprotein in the subfamily of tetraspanin, has been widely recognized as a gateway from the infection of foreign invaders to the immune defense of hosts. Its role in Pacific oyster Crassostrea gigas is, however, yet to be discovered. This work makes contributions by identifying CgCD63H, a CD63 homolog with four transmembrane domains and one conservative CCG motif, and establishing its role as a receptor that participates in immune recognition and hemocyte phagocytosis. The presence of CgCD63H messenger RNA (mRNA) in hepatopancreas, labial palps, gill, and hemocytes is confirmed. The expression level of mRNA in hemocytes is found significantly (p < 0.01) upregulated after the injection of Vibrio splendidus. CgCD63H protein, typically distributed over the plasma membrane of oyster hemocytes, is recruited to the Yarrowia lipolytica-containing phagosomes after the stimulation of Y. lipolytica. The recombinant CgCD63H protein expresses binding capacity to glucan (GLU), peptidoglycan (PGN), and lipopolysaccharide (LPS) in the presence of lyophilized hemolymph. The phagocytic rate of hemocytes toward V. splendidus and Y. lipolytica is significantly inhibited (p < 0.01) after incubation with anti-CgCD63H antibody. Our work further suggests that CgCD63H functions as a receptor involved in the immune recognition and hemocyte phagocytosis against invading pathogen, which can be a marker candidate for the hemocyte typing in C. gigas.


Assuntos
Crassostrea/imunologia , Imunidade Celular/imunologia , Fagossomos/imunologia , Tetraspanina 30/imunologia , Animais , Crassostrea/parasitologia , Hemócitos/imunologia , Hemócitos/parasitologia , Vibrio/imunologia , Vibrioses/imunologia , Yarrowia/imunologia
19.
Mar Drugs ; 18(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847054

RESUMO

Cuttlefish (Sepia officinalis) haemocytes are potential sources of antimicrobial peptides (AMPs). To study the immune response to Vibrio splendidus and identify new AMPs, an original approach was developed based on a differential transcriptomic study and an in-depth in silico analysis using multiple tools. Two de novo transcriptomes were retrieved from cuttlefish haemocytes following challenge by V. splendidus or not. A first analysis of the annotated transcripts revealed the presence of Toll/NF-κB pathway members, including newly identified factors such as So-TLR-h, So-IKK-h and So-Rel/NF-κB-h. Out of the eight Toll/NF-κB pathway members, seven were found up-regulated following V. splendidus challenge. Besides, immune factors involved in the immune response were also identified and up-regulated. However, no AMP was identified based on annotation or conserved pattern searches. We therefore performed an in-depth in silico analysis of unannotated transcripts based on differential expression and sequence characteristics, using several tools available like PepTraq, a homemade software program. Finally, five AMP candidates were synthesized. Among them, NF19, AV19 and GK28 displayed antibacterial activity against Gram-negative bacteria. Each peptide had a different spectrum of activity, notably against Vibrio species. GK28-the most active peptide-was not haemolytic, whereas NF19 and AV19 were haemolytic at concentrations between 50 and 100 µM, 5 to 10 times higher than their minimum inhibitory concentration.


Assuntos
Antibacterianos/farmacologia , Decapodiformes/microbiologia , Proteínas de Peixes/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Hemócitos/microbiologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Vibrio/patogenicidade , Animais , Antibacterianos/metabolismo , Mineração de Dados , Bases de Dados Genéticas , Decapodiformes/genética , Decapodiformes/imunologia , Decapodiformes/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Hemócitos/imunologia , Hemócitos/metabolismo , Hemólise/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Transcriptoma , Vibrio/imunologia
20.
Microbiol Res ; 239: 126554, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32683217

RESUMO

The aim of this experiment was to investigate the effects of reducing dietary fishmeal (FM) with yeast culture (SYC) supplementation on growth, immune response, intestinal microbiota, intestinal morphology, and disease resistance of Litopenaeus vannamei. A total of 480 shrimps with an average initial body weight of 0.35 ± 0.002 g were randomly distributed into twelve tanks. Three isonitrogenous (40.00 crude protein) and isolipidic (8.00 crude lipids) diets with yeast culture supplementing fishmeal were formulated. The groups were divided into two (2) namely control group and experimental groups. The formulations of the groups were control (0 %, without yeast culture) and the experiment groups (SYC) [(1 % of yeast culture), and (2 % of yeast culture)]. Each diet was delivered in four replicate per treatment group. The results indicate significant improvement on the growth indices (specific growth rate, weight gain rate, survival rate and lower feed conversion ratio) with yeast culture treatment group after 56 days feeding trials (P < 0.05). Total hemolymph protein, superoxide dismutase, catalase, alkaline phosphatase, acid phosphatase, lysozyme and phenoxidase were enhanced but low aspartate aminotransferase, alanine aminotransferase, and glucose were observed in shrimp fed yeast culture diets (P < 0.05). The SYC groups showed insignificant differences in hemolymph cholesterol and triglyceride. Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant bacteria found in all the SYC groups. At the genus level, Vibrio was significantly decreased (P < 0.05) in 2 % yeast culture diets supplemented group whereas the beneficial bacteria Pseudoalteromonas was significantly enhanced. Moreover, intestinal villus length and width in shrimps fed yeast culture diets were improved (P < 0.05). Dietary yeast culture supplementation can improve growth, intestinal health, immune response, and resistance against Vibrio harveyi infections in L. vannamei.


Assuntos
Ração Animal/análise , Resistência à Doença/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Vibrio/patogenicidade , Animais , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Penaeidae/efeitos dos fármacos , Vibrio/imunologia , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...