Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.345
Filtrar
1.
Zoonoses Public Health ; 69(8): 938-943, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36345967

RESUMO

Minks and brown rats are reservoir hosts for many endoparasites including those of the genus Trichinella, a group of parasite nematodes with a worldwide distribution. However, little is known about the prevalence of Trichinella sp. infection in the American mink (Neovison vison) and rats (Rattus norvegicus) in China. Therefore, we aimed to examine the prevalence of Trichinella sp. infection in farmed minks in Weihai city, Shandong province, China and infer the possible route for Trichinella transmission to farmed American minks. In total, 289 muscle samples from minks and 102 carcasses of rats were collected from Weihai City. The appearance of Trichinella sp. was examined using the pooled artificial HCl-pepsin digestion method. The results showed that muscle larvae were detected in 20 of 289 minks (6.92%) and 2 of 102 synanthropic rats (1.96%). The larval density of Trichinella sp. in mink samples ranged from 0.025 to 0.815 larvae per gram (lpg), while the average larval burden in rats was 0.17 lpg. The isolates derived from minks and rats were identified at the species level using multiplex polymerase chain reaction (PCR), which revealed that the size of the two PCR products matched that of T. spiralis at 173 bp. Furthermore, sequence analysis showed 100% identity of the 5S rDNA inter-gene spacer regions of the two isolates to that of T. spiralis. This study presents a novel report of T. spiralis-mediated infection in minks and synanthropic rats in China. We highlight the vulnerability of farmed minks to Trichinella infection through exposure to synanthropic rats, which may raise a public health concern of potential zoonotic risks for domestic animals.


Assuntos
Doenças dos Roedores , Trichinella spiralis , Trichinella , Triquinelose , Animais , Ratos , Vison , Prevalência , Triquinelose/epidemiologia , Triquinelose/veterinária , Triquinelose/parasitologia , China/epidemiologia , Larva , Doenças dos Roedores/epidemiologia
2.
Genes (Basel) ; 13(11)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36360176

RESUMO

Domestication and selection are the major driving forces responsible for creating genetic variability in farmed species. American mink has been under selection for more than 100 years for improved body size and pelt quality. This study aimed to identify the genomic regions subjected to selection for pelt quality traits, and coat color using the whole genome sequences of 100 mink raised in the Canadian Centre for Fur Animal Research (CCFAR) at Dalhousie Agriculture Campus (Truro, NS, Canada), and Millbank fur farm (Rockwood, ON, Canada). Measurements of three dried pelt characteristics (including pelt size (n = 35), overall quality of fur (n = 27), and nap size (n = 29)), and three coat color of Black, Stardust, and Pastel (Stardust_ Black (n = 38), and Pastel_Black (n = 41)) were used to assign animals to pairwise groups. Signatures of selection were detected using integrated measurement of fixation index (Fst), extended haplotype homozygosity (XP-EHH), and nucleotide diversity (θπ) tests. In total, overlapping top 1% of Fst and XP-EHH harbored 376 genes for pelt quality traits (110 for nap size, 163 for overall quality of fur, and 98 pelt size), and 194 genes for coat color (123 for Pastel_Black and 71 for Stardust_Black) were detected in different groups. Integrating results of Fst, and XP-EHH with the θπ test supported 19 strongly selected regions on chromosomes 3, 4, 5, 6, 7, 8, 9, and 10 that contained 33 candidate genes related to fur quality, hair follicle function, and pelt size traits. Gene ontology revealed numerous genes related to the hair cycle process and molting cycle process, epidermis development, Wnt signaling pathway and muscle development. This study provided the first map of putative selection signals related to pelt quality and coat color in American mink, which could be used as a reference for future studies attempting to identify genes associated with economically important traits in mink.


Assuntos
Genoma , Vison , Animais , Vison/genética , Canadá , Fenótipo , Tamanho Corporal/genética
3.
BMC Vet Res ; 18(1): 364, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192746

RESUMO

BACKGROUND: Selecting American mink (Neovison vison) for tolerance to Aleutian mink disease virus (AMDV) has gained popularity in recent years, but data on the outcomes of this activity are scant. The objectives of this study were to determine the long-term changes in viremia, seroconversion and survival in infected mink. Mink were inoculated intranasally with a local isolate of Aleutian mink disease virus (AMDV) over 4 years (n = 1742). The animals had been selected for tolerance to AMDV for more than 20 years (TG100) or were from herds free of AMDV (TG0). The progenies of TG100 and TG0, and their crosses with 25, 50 and 75% tolerance ancestry were also used. Blood samples were collected from each mink up to 14 times until 1211 days post-inoculation (dpi) and were tested for viremia by PCR and for anti-AMDV antibodies by counter-immunoelectrophoresis (CIEP). Viremia and CIEP status were not considered when selecting replacements. Low-performing animals were pelted and the presence of antibodies in their blood and antibody titer were measured by CIEP, and viremia and viral DNA in seven organs (n = 936) were tested by PCR. RESULTS: The peak incidences of viremia (66.7%) and seropositivity (93.5%) were at 35 dpi. The incidence of viremia decreased over time while the incidence of seroconversion increased. The least-squares means of the incidence of PCR positive of lymph node (0.743) and spleen (0.656) were significantly greater than those of bone marrow, liver, kidneys, lungs and small intestine (0.194 to 0.342). Differences in tolerant ancestry were significant for every trait measured. Incidences of viremia over time, terminal viremia, seropositivity over time, AMDV DNA in organs and antibody titer were highest in the susceptible groups (TG0 or TG25) and lowest in the tolerant groups (TG100 or TG75). CONCLUSION: Previous history of selection for tolerance resulted in mink with reduced viral replication and antibody titer. Viremia had a negative effect and antibody production had a positive effect on survival and productivity.


Assuntos
Vírus da Doença Aleutiana do Vison , Doença Aleutiana do Vison , Anticorpos Antivirais , Formação de Anticorpos , Vison , Viremia , Doença Aleutiana do Vison/sangue , Doença Aleutiana do Vison/imunologia , Doença Aleutiana do Vison/mortalidade , Doença Aleutiana do Vison/virologia , Vírus da Doença Aleutiana do Vison/genética , Vírus da Doença Aleutiana do Vison/imunologia , Vírus da Doença Aleutiana do Vison/isolamento & purificação , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , DNA Viral/análise , Feminino , Masculino , Vison/sangue , Vison/imunologia , Vison/virologia , Taxa de Sobrevida , Viremia/sangue , Viremia/imunologia , Viremia/veterinária , Viremia/virologia , Replicação Viral
4.
Viruses ; 14(10)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36298773

RESUMO

Parvoviruses are small, single-stranded DNA viruses with non-enveloped capsids. Determining the capsid structures provides a framework for annotating regions important to the viral life cycle. Aleutian mink disease virus (AMDV), a pathogen in minks, and human parvovirus 4 (PARV4), infecting humans, are parvoviruses belonging to the genera Amdoparvovirus and Tetraparvovirus, respectively. While Aleutian mink disease caused by AMDV is a major threat to mink farming, no clear clinical manifestations have been established following infection with PARV4 in humans. Here, the capsid structures of AMDV and PARV4 were determined via cryo-electron microscopy at 2.37 and 3.12 Å resolutions, respectively. Despite low amino acid sequence identities (10-30%) both viruses share the icosahedral nature of parvovirus capsids, with 60 viral proteins (VPs) assembling the capsid via two-, three-, and five-fold symmetry VP-related interactions, but display major structural variabilities in the surface loops when the capsid structures are superposed onto other parvoviruses. The capsid structures of AMDV and PARV4 will add to current knowledge of the structural platform for parvoviruses and permit future functional annotation of these viruses, which will help in understanding their infection mechanisms at a molecular level for the development of diagnostics and therapeutics.


Assuntos
Vírus da Doença Aleutiana do Vison , Infecções por Parvoviridae , Parvovirus , Animais , Humanos , Vírus da Doença Aleutiana do Vison/genética , Capsídeo/química , Microscopia Crioeletrônica , DNA de Cadeia Simples , Proteínas do Capsídeo/genética , Parvovirus/genética , Infecções por Parvoviridae/veterinária , Vison , Proteínas Virais/genética
5.
Viruses ; 14(10)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36298686

RESUMO

Zoonotic transmission of SARS-CoV-2 from infected humans to other animals has been documented around the world, most notably in mink farming operations in Europe and the United States. Outbreaks of SARS-CoV-2 on Utah mink farms began in late July 2020 and resulted in high mink mortality. An investigation of these outbreaks revealed active and past SARS-CoV-2 infections in free-roaming and in feral cats living on or near several mink farms. Cats were captured using live traps, were sampled, fitted with GPS collars, and released on the farms. GPS tracking of these cats show they made frequent visits to mink sheds, moved freely around the affected farms, and visited surrounding residential properties and neighborhoods on multiple occasions, making them potential low risk vectors of additional SARS-CoV-2 spread in local communities.


Assuntos
COVID-19 , SARS-CoV-2 , Gatos , Animais , Humanos , Vison , COVID-19/epidemiologia , COVID-19/veterinária , Fazendas , Utah/epidemiologia
6.
Arch Environ Contam Toxicol ; 83(4): 313-325, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36173440

RESUMO

We present two models to monitor the health of ecosystems by assessing hazard from a persistent organic compound to a top predator species. Our diet model predicts the dietary exposure of American Mink (Neovison vison) to PCB toxic equivalents (TEQ) by combining concentrations in their prey using weighted average proportions consistent with literature-based mink diets. Our bioaccumulation model predicts the dietary exposure of mink to PCB TEQ based on each congener's total concentration in water (dissolved plus particulate fractions), the octanal/water partition coefficient (log Kow) of the compound, and the trophic levels of prey taxa. Both models predict mink dietary concentrations which can be directly compared with each other and with lowest observable adverse effects concentrations (LOAECs) to assess chronic and acute hazards of PCB TEQ to mink. By our choice of certain parameters in the bioaccumulation model, we forced it to match the diet model within less than 5% for Eighteenmile Creek in western New York State. When the two models were used for a similar creek about 25 km away, the differences in their predictions were of the same magnitude.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Vison , Bifenilos Policlorados/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , New York , Água
7.
BMC Genomics ; 23(1): 649, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36096727

RESUMO

BACKGROUND: Copy number variations (CNVs) represent a major source of genetic diversity and contribute to the phenotypic variation of economically important traits in livestock species. In this study, we report the first genome-wide CNV analysis of American mink using whole-genome sequence data from 100 individuals. The analyses were performed by three complementary software programs including CNVpytor, DELLY and Manta. RESULTS: A total of 164,733 CNVs (144,517 deletions and 20,216 duplications) were identified representing 5378 CNV regions (CNVR) after merging overlapping CNVs, covering 47.3 Mb (1.9%) of the mink autosomal genome. Gene Ontology and KEGG pathway enrichment analyses of 1391 genes that overlapped CNVR revealed potential role of CNVs in a wide range of biological, molecular and cellular functions, e.g., pathways related to growth (regulation of actin cytoskeleton, and cAMP signaling pathways), behavior (axon guidance, circadian entrainment, and glutamatergic synapse), lipid metabolism (phospholipid binding, sphingolipid metabolism and regulation of lipolysis in adipocytes), and immune response (Wnt signaling, Fc receptor signaling, and GTPase regulator activity pathways). Furthermore, several CNVR-harbored genes associated with fur characteristics and development (MYO5A, RAB27B, FGF12, SLC7A11, EXOC2), and immune system processes (SWAP70, FYN, ORAI1, TRPM2, and FOXO3). CONCLUSIONS: This study presents the first genome-wide CNV map of American mink. We identified 5378 CNVR in the mink genome and investigated genes that overlapped with CNVR. The results suggest potential links with mink behaviour as well as their possible impact on fur quality and immune response. Overall, the results provide new resources for mink genome analysis, serving as a guideline for future investigations in which genomic structural variations are present.


Assuntos
Variações do Número de Cópias de DNA , Vison , Animais , Mapeamento Cromossômico , Fatores de Crescimento de Fibroblastos/genética , Genoma , Vison/genética , Sequenciamento Completo do Genoma
8.
Front Cell Infect Microbiol ; 12: 980917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072226

RESUMO

Cryptosporidium spp. are common parasitic pathogens causing diarrhea in humans and various animals. Fur animals are widely farmed in Shandong Province, China, but the prevalence and genetic identity of Cryptosporidium spp. in them are unclear. In this study, 1,211 fecal samples were collected from 602 minks, 310 raccoon dogs and 299 foxes on two farms in Shandong and analyzed for Cryptosporidium spp. by nested PCR and sequence analyses of the small subunit rRNA gene. The overall infection rate of Cryptosporidium spp. was 31.5% (381/1,211), with a higher infection rate in raccoon dogs (37.7%, 117/310) than in foxes (32.4%, 97/299) and minks (27.7%, 167/602). By age, the highest infection rates of Cryptosporidium spp. were observed in raccoon dogs of 1-2 months, minks of 5-6 months, and foxes of > 12 months. Three Cryptosporidium species and genotypes were detected, including C. canis (n = 279), C. meleagridis (n = 65) and Cryptosporidium mink genotype (n = 37). Among the three major host species, raccoon dogs were infected with C. canis only (n = 117), while foxes were infected with both C. canis (n = 32) and C. meleagridis (n = 65), and minks with C. canis (n = 130) and Cryptosporidium mink genotype (n = 37). Subtyping of C. canis by sequence analysis of the 60 kDa glycoprotein gene identified eight subtypes. They belonged to two known subtype families, XXa and XXd, and two novel subtype families XXf and XXg, with host adaptation at the subtype family level. Notably, C. canis from foxes was genetically distant from those in other hosts. Further subtyping analysis identified three subtypes (IIIeA21G2R1, IIIeA19G2R1 and IIIeA17G2R1) of C. meleagridis and two novel subtype families Xf and Xg of the Cryptosporidium mink genotype. The presence of zoonotic C. canis subtypes in raccoon dogs and C. meleagridis subtypes in foxes suggests that these fur animals might be potential reservoirs for human-pathogenic Cryptosporidium spp.


Assuntos
Criptosporidiose , Cryptosporidium , Animais , China/epidemiologia , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/genética , Fazendas , Raposas/parasitologia , Adaptação ao Hospedeiro , Humanos , Vison/parasitologia , Cães Guaxinins/parasitologia
9.
PLoS One ; 17(9): e0266161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170266

RESUMO

The introduction and expansion of an invasive non-native species could have important consequences for the genetic patterns and processes of native species, moreover if the new arrival competes strongly for resources and space. This may result in the demographic decline of the native species. Knowing the effects on the levels of genetic diversity and structure in native species is key in terms of their conservation. We analysed temporal (over 50 years) genetic variation of the population of the European polecat (Mustela putorius), a species under threat in several European countries, in the Bialowieza Primeval Forest (BPF), Poland, before and after the invasion of the American mink (Neovison vison). Using 11 microsatellite loci and a fragment of the mitochondrial control region we show that levels of diversity changed in the polecat population over 53 generations (over the period 1959-2012) and after the invasion of mink. When compared with other threatened European polecat populations, high levels of diversity are observed in the population in BPF in both periods, as well as in other areas in Poland. Our data shows that genetic structure was not present either before or after the mink invasion in BPF. This would suggest that the polecat population in Poland was not affected by invasive species and other negative factors and would be a potential good source of individuals for captive breeding or genetic rescue conservation management actions in areas where such actions are needed, for example the UK.


Assuntos
Furões , Vison , Animais , Furões/genética , Variação Genética , Humanos , Espécies Introduzidas , Repetições de Microssatélites/genética , Vison/genética
10.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934827

RESUMO

One of the unique features of SARS-CoV-2 is its apparent neutral evolution during the early pandemic (before February 2020). This contrasts with the preceding SARS-CoV epidemics, where viruses evolved adaptively. SARS-CoV-2 may exhibit a unique or adaptive feature which deviates from other coronaviruses. Alternatively, the virus may have been cryptically circulating in humans for a sufficient time to have acquired adaptive changes before the onset of the current pandemic. To test the scenarios above, we analyzed the SARS-CoV-2 sequences from minks (Neovision vision) and parental humans. In the early phase of the mink epidemic (April to May 2020), nonsynonymous to synonymous mutation ratio per site in the spike protein is 2.93, indicating a selection process favoring adaptive amino acid changes. Mutations in the spike protein were concentrated within its receptor-binding domain and receptor-binding motif. An excess of high-frequency derived variants produced by genetic hitchhiking was found during the middle (June to July 2020) and late phase I (August to September 2020) of the mink epidemic. In contrast, the site frequency spectra of early SARS-CoV-2 in humans only show an excess of low-frequency mutations, consistent with the recent outbreak of the virus. Strong positive selection in the mink SARS-CoV-2 implies that the virus may not be preadapted to a wide range of hosts and illustrates how a virus evolves to establish a continuous infection in a new host. Therefore, the lack of positive selection signal during the early pandemic in humans deserves further investigation.


Assuntos
COVID-19 , Evolução Molecular , SARS-CoV-2 , Animais , COVID-19/virologia , Humanos , Vison/virologia , Mutação , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
11.
J Virol ; 96(17): e0081422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000849

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted between humans and minks, and some mutations in the spike (S) protein, especially in the receptor-binding domain (RBD), have been identified in mink-derived viruses. Here, we examined binding of the mink angiotensin-converting enzyme 2 (ACE2) receptor to mink-derived and important human-originating variants, and we demonstrated that most of the RBD variants increased the binding affinities to mink ACE2 (mkACE2). Cryo-electron microscopy structures of the mkACE2-RBD Y453F (with a Y-to-F change at position 453) and mkACE2-RBD F486L complexes helped identify the key residues that facilitate changes in mkACE2 binding affinity. Additionally, the data indicated that the Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and human vaccinated sera efficiently prevented infection of human cells by pseudoviruses expressing Y453F, F486L, or N501T RBD. Our findings provide an important molecular mechanism for the rapid adaptation of SARS-CoV-2 in minks and highlight the potential influence of the main mink-originating variants for humans. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a broad range of hosts. Mink-derived SARS-CoV-2 can transmit back to humans. There is an urgent need to understand the binding mechanism of mink-derived SARS-CoV-2 variants to mink receptor. In this study, we identified all mutations in the receptor-binding domain (RBD) of spike (S) protein from mink-derived SARS-CoV-2, and we demonstrated the enhanced binding affinity of mink angiotensin-converting enzyme 2 (ACE2) to most of the mink-derived RBD variants as well as important human-originating RBD variants. Cryo-electron microscopy structures revealed that the Y453F and F486L mutations enhanced the binding forces in the interaction interface. In addition, Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and the SARS-CoV-2 pseudoviruses with Y453F, F486L, or N501T mutations were neutralized by human vaccinated sera. Therefore, our results provide valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19/veterinária , Vison , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Monoclonais/metabolismo , COVID-19/virologia , Microscopia Crioeletrônica , Humanos , Mutação , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2/genética
12.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012583

RESUMO

The European mink (Mustela lutreola) is one of Europe's most endangered species, and it is on the brink of extinction in the Iberian Peninsula. The species' precarious situation requires the application of new ex situ conservation methodologies that complement the existing ex situ and in situ conservation measures. Here, we report for the first time the establishment of a biobank for European mink mesenchymal stem cells (emMSC) and oocytes from specimens found dead in the Iberian Peninsula, either free or in captivity. New emMSC lines were isolated from different tissues: bone marrow (emBM-MSC), oral mucosa (emOM-MSc), dermal skin (emDS-MSC), oviduct (emO-MSc), endometrium (emE-MSC), testicular (emT-MSC), and adipose tissue from two different adipose depots: subcutaneous (emSCA-MSC) and ovarian (emOA-MSC). All eight emMSC lines showed plastic adhesion, a detectable expression of characteristic markers of MSCs, and, when cultured under osteogenic and adipogenic conditions, differentiation capacity to these lineages. Additionally, we were able to keep 227 Cumulus-oocyte complexes (COCs) in the biobank, 97 of which are grade I or II. The European mink MSC and oocyte biobank will allow for the conservation of the species' genetic variability, the application of assisted reproduction techniques, and the development of in vitro models for studying the molecular mechanisms of infectious diseases that threaten the species' precarious situation.


Assuntos
Células-Tronco Mesenquimais , Vison , Animais , Diferenciação Celular , Células Cultivadas , Espécies em Perigo de Extinção , Feminino , Vison/genética , Oócitos , Osteogênese
13.
Viruses ; 14(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36016375

RESUMO

SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.


Assuntos
COVID-19 , Fazendas , Vison , SARS-CoV-2 , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Feminino , Masculino , Vison/virologia , Países Baixos/epidemiologia , Fatores de Risco , SARS-CoV-2/isolamento & purificação
14.
Viruses ; 14(8)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36016360

RESUMO

This study described a SARS-CoV-2 infection in minks on an Italian farm. Surveillance was performed based on clinical examination and a collection of 1879 swabs and 74 sera from dead and live animals. The farm was placed under surveillance for 4.5 months, from the end of July 2020, when a man working on the farm tested positive by RT-PCR, till mid-December 2020 when all the animals were sacrificed. Clinical examination revealed no clinical signs or increased mortality rates attributable to SARS-CoV-2, while diagnostic tests detected only four weak PCR-positive samples, but 100% of sera were positive for SARS-CoV-2 anti-S antibodies. The phylogenetic analysis of two SARS-CoV-2 sequences from two minks and the sequence of the worker showed that they belonged to different clades. It could be therefore assumed that two distinct introductions of the virus occurred on the farm, and that the first introduction probably occurred before the start of the surveillance period. From the data collected, and especially from the detection of specific antibodies through the combination of different tests, it can be postulated that syndromic surveillance combined with genome detection by PCR may not be sufficient to achieve a diagnosis in asymptomatic animals. In particular, the serological approach, especially when using tests directed towards the S protein, may be useful for improving the traceability of virus circulation in similar environments.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/veterinária , Teste para COVID-19 , Fazendas , Humanos , Vison , Filogenia , SARS-CoV-2/genética
15.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35801647

RESUMO

Feed cost is the largest expense of mink production systems, and, therefore, improvement of feed efficiency (FE) through selection for high feed-efficient mink is a practical way to increase the mink industry's sustainability. In this study, we estimated the heritability, phenotypic, and genetic correlations for different FE measures and component traits, including harvest weight (HW), harvest length (HL), final body length (FBL), final body weight (FBW), average daily gain (ADG), daily feed intake (DFI), feed conversion ratio (FCR), residual feed intake (RFI), residual gain (RG), residual intake and gain (RIG), and Kleiber ratio (KR), using data from 2,288 American mink (for HW and HL), and 1,038 to 1,906 American mink (for other traits). Significance (P < 0.05) of fixed effects (farm, sex, and color type), a covariate (age of animal), and random effects (additive genetic, maternal, and common litter) were evaluated through univariate models implemented in ASReml-R version 4. Genetic parameters were estimated via fitting a set of bivariate models using ASReml-R version 4. Estimates of heritabilities (±SE) were 0.28 ± 0.06, 0.23 ± 0.06, 0.28 ± 0.10, 0.27 ± 0.11, 0.25 ± 0.09, 0.26 ± 0.09, 0.20 ± 0.09, 0.23 ± 0.09, 0.21 ± 0.10, 0.25 ± 0.10, and 0.26 ± 0.10 for HW, HL, FBL, FBW, ADG, DFI, FCR, RFI, RG, RIG, and KR, respectively. RIG had favorable genetic correlations with DFI (-0.62 ± 0.24) and ADG (0.58 ± 0.21), and nonsignificant (P > 0.05) genetic correlations with FBW (0.14 ± 0.31) and FBL (-0.15 ± 0.31). These results revealed that RIG might be a superior trait as it guarantees reduced feed intake with faster-growing mink yet with no negative impacts on body weight and length. In addition, the strong positive genetic correlations (±SE) between KR with component traits (0.88 ± 0.11 with FBW, 0.68 ± 0.17 with FBL, and 0.97 ± 0.02 with ADG) suggested KR as an applicable indirect measure of FE for improvement of component traits as it did not require the individual feed intake to be measured. Overall, our results confirmed the possibility of including FE traits in mink breeding programs to effectively select feed-efficient animals.


Improvement of feed efficiency (FE) in American mink is highly beneficial, as feed costs comprise the largest expense of mink production systems. The present study estimated the heritability, phenotypic and genetic correlations for different FE measures and component traits in mink. The residual intake and gain can be applied as FE measurement in selection programs as it will guarantee faster-growing mink with reduced feed intake, yet without negative impacts on growth traits. In addition, Kleiber ratio had strong positive genetic correlations with component traits, which made this trait an appealing indirect FE trait for mink breeding programs, knowing the fact that this trait was not dependent on feed intake records. Overall, our results suggested that including FE traits can assist mink breeding programs to develop an index for the selection of feed-efficient mink and, therefore, reduce the cost of mink production.


Assuntos
Ingestão de Alimentos , Vison , Ração Animal , Animais , Peso Corporal/genética , Ingestão de Alimentos/genética , Vison/genética , Fenótipo
16.
Tissue Cell ; 77: 101870, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35872358

RESUMO

Sapphire mink, a mutant colour variant of American mink, is an animal model of the Chediak-Higashi syndrome (CHS). As in CHS, there are enlarged cytoplasmic granules in various cell types including leukocytes in Sapphire mink due to abnormal granulogenesis. Such cellular abnormality leads to a weakening of the immune defence as a consequence to the development of infections. A study with Sapphire mink and Standard mink was conducted to evaluate the immunostimulant effect of vitamin C (VC) supplementation (100 mg/day) on some leukocyte parameters. In the end of the 20-day treatment period, blood samples were collected to determine hematological (total and differential leukocyte counts, red blood cells (RBC) counts, and haemoglobin level) and cytochemical (activity and staining area of myeloperoxidase, eosinophilc peroxidase, alkaline phosphatase, and alpha naphthyl acetate esterase) parameters. The study showed that total leukocyte counts, segmented neutrophil counts, and monocyte counts were significantly (p < 0.05) higher in Sapphire mink from the VC-supplemented group than in those receiving the control diet. These results indicate that VC supplementation may have a positive effect on immunity in Sapphire mink. Another interesting finding is an increase in the number of neutrophils with enlarged granules and lysosomal enzyme-positive area in VC-supplemented mink as compared with those fed the control diet. These observations suggest that VC supplementation can affect the lysosomal apparatus of leukocytes.


Assuntos
Síndrome de Chediak-Higashi , Vison , Óxido de Alumínio , Animais , Ácido Ascórbico , Suplementos Nutricionais , Leucócitos
17.
Toxins (Basel) ; 14(6)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35737032

RESUMO

Deoxynivalenol (DON), the most naturally-occurring trichothecenes, may affect animal and human health by causing vomiting as a hallmark of food poisoning. Deoxynivalenol-3-glucoside (D3G) usually co-occurs with DON as its glucosylated form and is another emerging food safety issue in recent years. However, the toxicity of D3G is not fully understood compared to DON, especially in emetic potency. The goals of this research were to (1) compare emetic effects to D3G by oral and intraperitoneal (IP) routes and relate emetic effects to brain-gut peptides glucose-dependent insulinotropic polypeptide (GIP) and substance P (SP) in mink; (2) determine the roles of calcium-sensing receptor (CaSR) and transient receptor potential (TRP) channel in D3G's emetic effect. Both oral and IP exposure to D3G elicited marked emetic events. This emetic response corresponded to an elevation of GIP and SP. Blocking the GIP receptor (GIPR) diminished emetic response induction by GIP and D3G. The neurokinin 1 receptor (NK-1R) inhibitor Emend® restrained the induction of emesis by SP and D3G. Importantly, CaSR antagonist NPS-2143 or TRP channel antagonist ruthenium red dose-dependently inhibited both D3G-induced emesis and brain-gut peptides GIP and SP release; cotreatment with both antagonists additively suppressed both emetic and brain-gut peptide responses to D3G. To summarize, our findings demonstrate that activation of CaSR and TRP channels contributes to D3G-induced emesis by mediating brain-gut peptide exocytosis in mink.


Assuntos
Eméticos , Tricotecenos , Animais , Eméticos/toxicidade , Glucose , Glucosídeos , Vison , Receptores Acoplados a Proteínas G , Receptores dos Hormônios Gastrointestinais , Substância P , Tricotecenos/química , Tricotecenos/toxicidade , Vômito/induzido quimicamente
18.
Sci Rep ; 12(1): 10483, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729186

RESUMO

Sable (Martes zibellina) and American mink (Neogale vison) are valuable species characterized by a variety of coat colour produced on fur farms. Black crystal fur phenotype is Mendelian codominant trait: heterozygous animals (Cr/ +) have white guard hairs scattered predominantly on the spine and the head, while homozygous (Cr/Cr) minks have coats resembling the Himalayan (ch/ch) or white Hedlund (h/h) types. It is one of the most recent of more than 35 currently known phenotypic traits of fur colour in American mink. Black crystal fur phenotype was first described in 1984 in the Russian population of mink, which had undergone selection for domestic defensive response to humans. Here, we performed whole-genome sequencing of American mink with Cr/Cr phenotype. We identified a missense mutation in the gene encoding the α-COP subunit of the COPI complex (COPA). The COPI complex mediates retrograde trafficking from the Golgi system to the endoplasmic reticulum and sorting of transmembrane proteins. We observed an interaction between a newly identified mutation in the COPA gene and a mutation in the microphthalmia-associated transcription factor (MITF), the latter mutation led to the formation of the white Hedlund (h/h) phenotype. Double heterozygotes for these mutations have an entirely white coat and a black-eyed phenotype similar to the phenotype of Cr/Cr or h/h minks. Our data could be useful for tracking economically valuable fur traits in mink breeding programs to contribute to global fur production.


Assuntos
Epistasia Genética , Mustelidae , Animais , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Cor de Cabelo/genética , Vison/genética , Mustelidae/genética , Fenótipo
19.
Vet Microbiol ; 270: 109452, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35584574

RESUMO

Aleutian mink disease virus (AMDV) is distributed widely among mink farms and wild mustelids despite ongoing attempts to stop the spread. The severity of Aleutian disease (AD) varies from subclinical to fatal but the reasons for its varying severity are complex and unclear. Recently, breeding of tolerant mink has drawn attention as the possible solution to reduce the effects of AD in farms. The aim of this study was to gather information on the effects of breeding based on overall health, production traits, and antibody titer on AD severity by comparing a positive farm (farm 1) that has been breeding for tolerance in mink to an infected farm without tolerance selection, and an AMDV-free farm. During the 2.5-year follow-up, the mink in farm 1 remained mostly free of clinical AD, had normal pelt quality and litter size, and had low virus copy numbers in tissues and low antibody titers in ELISA. In histopathological studies, most of the farm 1 mink had no/mild lesions in their kidneys. 29-43% of the mink were ELISA negative but PCR positive throughout the follow-up and frequent changes in virus strains and coinfections were observed. Several differences in gene expression between animals from different farms were also detected. These results indicate that the disease burden of AMDV can be reduced, with seemingly normal health and production rates, despite continual circulation of ADMV in cases where eradication attempts are unsuccessful.


Assuntos
Vírus da Doença Aleutiana do Vison , Doença Aleutiana do Vison , Vírus da Doença Aleutiana do Vison/genética , Animais , Fazendas , Vison , Reação em Cadeia da Polimerase/veterinária
20.
Microb Drug Resist ; 28(6): 734-743, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35575717

RESUMO

Enterococcus species are a normal flora of animals and humans. However, life-threatening opportunistic infections can be caused by antimicrobial resistant strains. Fecal (n = 42) and feed (n = 8) samples were obtained from a mink farm and cultured for the enumeration and detection of erythromycin-resistant (a macrolide; ERYr)- and tetracycline-resistant (TETr) enterococci. ERYr and TETr enterococci were detected from all fecal (mean concentrations = 6 and 7 logs, respectively) and feed (mean concentrations = 5 and 4 logs, respectively) samples. While Enterococcus faecalis and Enterococcus faecium were detected at equal proportions among the fecal TETr isolates, E. faecium predominated among ERYr fecal isolates. All ERYr and 90% of the TETr isolates (n = 50) were multidrug resistant (resistant to three or more antimicrobial classes). Among ERYr isolates, while 83% of E. faecalis (n = 12) were positive for erm(B), 58% of E. faecium (n = 38) isolates were positive for msr(C). Among ERYr isolates, tet(M) was detected from 92% of E. faecalis (n = 12) and 97% of E. faecium (n = 38) isolates. Conversely, however, erm(B) was detected in 18% of E. faecalis (n = 22) and 33% of E. faecium (n = 27) TETr isolates. Our study provides a baseline for future efforts to reduce antimicrobial resistance and improve antimicrobial stewardship in commercial mink production facilities.


Assuntos
Enterococcus faecium , Enterococcus , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Enterococcus faecalis , Fazendas , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Vison , Tetraciclina/farmacologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...