Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.675
Filtrar
1.
Lancet ; 395(10227): 888-898, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32085823

RESUMO

BACKGROUND: Antiretroviral therapy (ART) cannot cure HIV infection because of a persistent reservoir of latently infected cells. Approaches that force HIV transcription from these cells, making them susceptible to killing-termed kick and kill regimens-have been explored as a strategy towards an HIV cure. RIVER is the first randomised trial to determine the effect of ART-only versus ART plus kick and kill on markers of the HIV reservoir. METHODS: This phase 2, open-label, multicentre, randomised, controlled trial was undertaken at six clinical sites in the UK. Patients aged 18-60 years who were confirmed as HIV-positive within a maximum of the past 6 months and started ART within 1 month from confirmed diagnosis were randomly assigned by a computer generated randomisation list to receive ART-only (control) or ART plus the histone deacetylase inhibitor vorinostat (the kick) and replication-deficient viral vector T-cell inducing vaccines encoding conserved HIV sequences ChAdV63. HIVconsv-prime and MVA.HIVconsv-boost (the kill; ART + V + V; intervention). The primary endpoint was total HIV DNA isolated from peripheral blood CD4+ T-cells at weeks 16 and 18 after randomisation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, NCT02336074. FINDINGS: Between June 14, 2015 and Jul 11, 2017, 60 men with HIV were randomly assigned to receive either an ART-only (n=30) or an ART + V + V (n=30) regimen; all 60 participants completed the study, with no loss-to-follow-up. Mean total HIV DNA at weeks 16 and 18 after randomisation was 3·02 log10 copies HIV DNA per 106 CD4+ T-cells in the ART-only group versus 3·06 log10 copies HIV DNA per 106 CD4+ T-cells in ART + V + V group, with no statistically significant difference between the two groups (mean difference of 0·04 log10 copies HIV DNA per 106 CD4+ T-cells [95% CI -0·03 to 0·11; p=0·26]). There were no intervention-related serious adverse events. INTERPRETATION: This kick and kill approach conferred no significant benefit compared with ART alone on measures of the HIV reservoir. Although this does not disprove the efficacy kick and kill strategy, for future trials enhancement of both kick and kill agents will be required. FUNDING: Medical Research Council (MR/L00528X/1).


Assuntos
Vacinas contra a AIDS/administração & dosagem , Antirretrovirais/uso terapêutico , Reservatórios de Doenças , Infecções por HIV , Inibidores de Histona Desacetilases/administração & dosagem , Vorinostat/administração & dosagem , Adulto , DNA Viral/análise , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Transcrição Genética/efeitos dos fármacos , Resultado do Tratamento
2.
Exp Parasitol ; 210: 107831, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31926147

RESUMO

Babesia (B.) bovis is one of the main etiological agents of bovine babesiosis, causes serious economic losses to the cattle industry. Control of bovine babesiosis has been hindered by the limited treatment selection for B. bovis, thus, new options are urgently needed. We explored the drug library and unbiasedly screened 640 food and drug administration (FDA) approved drug compounds for their inhibitory activities against B. bovis in vitro. The initial screening identified 13 potentially effective compounds. Four potent compounds, namely mycophenolic acid (MPA), pentamidine (PTD), doxorubicin hydrochloride (DBH) and vorinostat (SAHA) exhibited the lowest IC50 and then selected for further evaluation of their in vitro efficacies using viability, combination inhibitory and cytotoxicity assays. The half-maximal inhibitory concentration (IC50) values of MPA, PTD, DBH, SAHA were 11.38 ± 1.66, 13.12 ± 4.29, 1.79 ± 0.15 and 45.18 ± 7.37 µM, respectively. Of note, DBH exhibited IC50 lower than that calculated for the commonly used antibabesial drug, diminazene aceturate (DA). The viability result revealed the ability of MPA, PTD, DBH, SAHA to prevent the regrowth of treated parasite at 4 × and 2 × of IC50. Antagonistic interactions against B. bovis were observed after treatment with either MPA, PTD, DBH or SAHA in combination with DA. Our findings indicate the richness of FDA approved compounds by novel potent antibabesial candidates and the identified potent compounds especially DBH might be used for the treatment of animal babesiosis caused by B. bovis.


Assuntos
Antiprotozoários/farmacologia , Babesia bovis/efeitos dos fármacos , Animais , Antiprotozoários/toxicidade , Babesia bovis/crescimento & desenvolvimento , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/parasitologia , Cães , Doxorrubicina/farmacologia , Doxorrubicina/toxicidade , Aprovação de Drogas , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Concentração Inibidora 50 , Células Madin Darby de Rim Canino/efeitos dos fármacos , Ácido Micofenólico/farmacologia , Ácido Micofenólico/toxicidade , Pentamidina/farmacologia , Pentamidina/toxicidade , Bibliotecas de Moléculas Pequenas , Espectrometria de Fluorescência , Vorinostat/farmacologia , Vorinostat/toxicidade
3.
Exp Parasitol ; 210: 107833, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31935358

RESUMO

Safety precautions prior to contact lens usage is essential for preventing Acanthamoeba keratitis. Contact lens disinfecting solutions containing 3% hydrogen peroxide (H2O2) are known to exert amoebicidal effect against Acanthamoeba. Yet, these solutions need to be neutralized to prevent ocular irritation, which consequently may result in incomplete disinfection. In this study, amoebicidal effect of tert-butyl hydroperoxide (tBHP) was investigated and its efficacy was compared to those of hydrogen peroxide (H2O2). H2O2 and tBHP showed dose dependent amoebicidal effect, however high concentration of these compounds demonstrated cytotoxicity in human corneal epithelial (HCE) cells. To reduce their cytotoxicity, the concentrations of both compounds were diluted to 50 µM and subsequently combined with 10 µM vorinostat to enhance amoebicidal effect. Addition of vorinostat induced high amoebicidal effect against Acanthamoeba trophozoites, even at low concentrations of H2O2 or tBHP. Cellular damage induced by combined treatment of H2O2 or tBHP with vorinostat in Acanthamoeba were determined by assessing cell cycle arrest and apoptosis via FACS analysis. While 50 µM H2O2 combined with 10 µM vorinostat showed 36.26% cytotoxicity on HCE cells during 24 h exposure, 50 µM tBHP with 10 µM vorinostat did not show cytotoxicity on HCE cells. These findings suggest that the application of tBHP and vorinostat for Acanthamoeba keratitis treatment and contact lens disinfection system is highly plausible.


Assuntos
Acanthamoeba/efeitos dos fármacos , Antiprotozoários/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Vorinostat/farmacologia , terc-Butil Hidroperóxido/farmacologia , Acanthamoeba/citologia , Acanthamoeba/genética , Anti-Infecciosos Locais/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Córnea/citologia , Córnea/efeitos dos fármacos , Córnea/parasitologia , DNA de Protozoário/efeitos dos fármacos , DNA de Protozoário/fisiologia , Combinação de Medicamentos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/parasitologia , Humanos , Peróxido de Hidrogênio/farmacologia
4.
Anticancer Res ; 40(1): 9-26, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892549

RESUMO

BACKGROUND/AIM: Inhibition of apoptosis is one of the hallmarks of cancer, and anti-apoptotic genes are often targets of genetic and epigenetic alterations. Cellular inhibitor of apoptosis 2 (cIAP2) has a role in degrading caspases by linking them to ubiquitin molecules, and is upregulated in triple-negative breast cancer (TNBC). Previous studies have demonstrated that cIAP2 may play a role in the epithelial-to-mesenchymal transition (EMT). MATERIALS AND METHODS: Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, was administered to triple-negative breast cancer (TNBC) cells alone or in combination with epigallocatechin-3-gallate (EGCG), a DNA methyltransferase (DNMT) inhibitor isolated from green tea. RESULTS: The compounds were able to decrease the expression of cIAP2 while increasing the expression of pro-apoptotic caspase 7. There were also changes in histone modifications, suggesting a role of epigenetic mechanisms in these changes in expression of cIAP2. These changes resulted in an increase in apoptosis. SAHA and EGCG were also capable of limiting TNBC cell migration across a fibronectin (FN) matrix. CONCLUSION: SAHA and EGCG reduce the metastatic potential of TNBC by inducing the apoptotic pathway.


Assuntos
Apoptose/efeitos dos fármacos , Proteína 3 com Repetições IAP de Baculovírus/genética , Catequina/análogos & derivados , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética , Vorinostat/farmacologia , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Catequina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
5.
Cancer Sci ; 111(1): 112-126, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31675763

RESUMO

Drug repositioning is an emerging approach to developing novel cancer treatments. Vorinostat is a histone deacetylase inhibitor approved for cancer treatment, but it could attenuate its anticancer activity by activating the mTOR pathway. The HMG-CoA reductase inhibitor fluvastatin reportedly activates the mTOR inhibitor AMP-activated protein kinase (AMPK), and we thought that it would potentiate vorinostat's anticancer activity in renal cancer cells. The combination of vorinostat and fluvastatin induced robust apoptosis and inhibited renal cancer growth effectively both in vitro and in vivo. Vorinostat activated the mTOR pathway, as evidenced by the phosphorylation of ribosomal protein S6, and fluvastatin inhibited this phosphorylation by activating AMPK. Fluvastatin also enhanced vorinostat-induced histone acetylation. Furthermore, the combination induced endoplasmic reticulum (ER) stress that was accompanied by aggresome formation. We also found that there was a positive feedback cycle among AMPK activation, histone acetylation, and ER stress induction. This is the first study to report the beneficial combined effect of vorinostat and fluvastatin in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Fluvastatina/farmacologia , Neoplasias Renais/tratamento farmacológico , Vorinostat/farmacologia , Acetilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Renais/metabolismo , Fosforilação/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
6.
Cancer Sci ; 111(2): 561-570, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31782583

RESUMO

Patients with epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) harboring BIM deletion polymorphism (BIM deletion) have poor responses to EGFR TKI. Mechanistically, the BIM deletion induces preferential splicing of the non-functional exon 3-containing isoform over the functional exon 4-containing isoform, impairing TKI-induced, BIM-dependent apoptosis. Histone deacetylase inhibitor, vorinostat, resensitizes BIM deletion-containing NSCLC cells to EGFR-TKI. In the present study, we determined the safety of vorinostat-gefitinib combination and evaluated pharmacodynamic biomarkers of vorinostat activity. Patients with EGFR-mutated NSCLC with the BIM deletion, pretreated with EGFR-TKI and chemotherapy, were recruited. Vorinostat (200, 300, 400 mg) was given daily on days 1-7, and gefitinib 250 mg was given daily on days 1-14. Vorinostat doses were escalated based on a conventional 3 + 3 design. Pharmacodynamic markers were measured using PBMC collected at baseline and 4 hours after vorinostat dose on day 2 in cycle 1. No dose-limiting toxicities (DLT) were observed in 12 patients. We determined 400 mg vorinostat as the recommended phase II dose (RP2D). Median progression-free survival was 5.2 months (95% CI: 1.4-15.7). Disease control rate at 6 weeks was 83.3% (10/12). Vorinostat preferentially induced BIM mRNA-containing exon 4 over mRNA-containing exon 3, acetylated histone H3 protein, and proapoptotic BIMEL protein in 11/11, 10/11, and 5/11 patients, respectively. These data indicate that RP2D was 400 mg vorinostat combined with gefitinib in BIM deletion/EGFR mutation double-positive NSCLC. BIM mRNA exon 3/exon 4 ratio in PBMC may be a useful pharmacodynamic marker for treatment.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Gefitinibe/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Vorinostat/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/genética , Esquema de Medicação , Receptores ErbB/genética , Feminino , Gefitinibe/farmacocinética , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação , Deleção de Sequência , Análise de Sobrevida , Resultado do Tratamento , Vorinostat/farmacocinética
7.
Eur J Med Chem ; 188: 111991, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31883490

RESUMO

Semisynthetic 18ß-glycyrrhetinic acid (GA) analogues bearing 1-en-2-cyano-3-oxo substitution on ring A have enhanced antitumor effects with reduced levels of HDAC3 and HDAC6 proteins. Aiming to inhibit both HDAC protein and activity, we developed a hybrid molecule by tethering active GA analogue methyl 2-cyano-3,11-dioxo-18ß-olean-1,12-dien-30-oate (CDODA-Me) and Vorinostat (SAHA). We tested the proper hybrid approaches of GA with hydroxamic acid and turned out that GA conjugated with SAHA by a piperazine linker was the best. The conjugate (15) of CDODA-Me and SAHA linked through a piperazine group was a potent cytotoxic agent against cancer cells with apoptosis induction. Compound 15 was more effective than the simple combination of CDODA-Me and SAHA to induce apoptosis. Mechanistic studies revealed that 15 was less effective than SAHA to inhibit HDAC activity, but was more effective than CDODA-Me to decrease the levels of HDAC3 and HDAC6 proteins with upregulated levels of acetylated H3 and acetylated α-tubulin. Compound 15 represents a new HDAC3 and HDAC6 inhibitor by reducing protein levels.


Assuntos
Antineoplásicos/farmacologia , Ácido Glicirretínico/análogos & derivados , Desacetilase 6 de Histona/metabolismo , Vorinostat/análogos & derivados , Vorinostat/farmacologia , Acetilação , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ácido Glicirretínico/farmacocinética , Ácido Glicirretínico/farmacologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Masculino , Ratos Sprague-Dawley , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Vorinostat/farmacocinética
8.
Res Vet Sci ; 126: 207-212, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31610471

RESUMO

To explore the effect of epigenetic modification on the differentiation of goat adipose-derived stem cells in vitro, we used two common epigenetic modification inhibitors, trichostatin A and vorinostat, to treat cashmere goat adipose-derived stem cells and induce adipocyte differentiation. The results showed that trichostatin A and vorinostat changed the relative amounts of H3K9 acetylation and dimethylation in the upstream sequence of PPARG, increased peroxisome proliferator-activated receptor gamma (PPARG) transcription before differentiation and then promoted adipocyte differentiation, and regulated the expression of adipocyte-specific genes. We conclude that adipocyte differentiation is regulated dynamically by different histone modifications. The areas of acetylation and demethylation changed by trichostatin A and vorinostat are the basis for further research on the mechanism of PPARG promoter to regulate adipocytes differentiation and provide research theroies for using adipose-derived stem cells as donor to produce transgenic animals to improve meat quality improvement.


Assuntos
Adipogenia/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Cabras/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Vorinostat/farmacologia , Acetilação/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Animais , Metilação/efeitos dos fármacos , PPAR gama/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
9.
Exp Hematol ; 79: 26-34, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31563618

RESUMO

The myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal neoplastic disorders. Driver mutations in JAK2, CALR, and MPL genes have been identified in the majority of cases. Alongside these, an increasing number of genes are repeatedly identified as mutated in MPN. These, including ASXL1, TET2, DMNT3A, and EZH2, have key roles in epigenetic regulation. Dysregulation of epigenetic processes is therefore a key feature of MPN. Vorinostat is a pan histone deacetylase inhibitor (HDACi) that has been investigated in MPN. DNA methylation (DNAm) is a well-defined epigenetic mechanism of transcription modification. It is known to be affected by ageing, lifestyle, and disease. Epigenetic ageing signatures have been previously described allowing calculation of a methylation age (MA). In this study we examined the effect of vorinostat on MA in MPN cell lines and in patients with polycythaemia vera (PV) and essential thrombocythaemia (ET) treated with vorinostat as part of a clinical trial. An older MA was observed in patients with a higher JAK2 V617F allele burden and those with a longer duration of disease. PV patients had a MA older than that predicted whilst MA was younger than predicted in ET. Treatment with vorinostat resulted in a younger MA in PV patients and older MA in ET patients, in both cases a trend towards the normal chronological age. When MA change was compared against response, nonresponse was associated with a younger than predicted MA in ET patients and a higher than predicted MA in PV patients. The link between MA and JAK2 mutant allele burden implies that allele burden has a role not only in clinical phenotype and disease evolution in MPN patients, but also in the overall methylation landscape of the mutated cells.


Assuntos
Metilação de DNA/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Policitemia Vera , Trombocitemia Essencial , Vorinostat/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Metilação de DNA/genética , DNA de Neoplasias/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Policitemia Vera/tratamento farmacológico , Policitemia Vera/genética , Policitemia Vera/metabolismo , Policitemia Vera/patologia , Trombocitemia Essencial/tratamento farmacológico , Trombocitemia Essencial/genética , Trombocitemia Essencial/metabolismo , Trombocitemia Essencial/patologia
10.
Oncogene ; 38(41): 6737-6751, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31406244

RESUMO

MYCN amplification in neuroblastoma predicts poor prognosis and resistance to therapy. Yet pharmacological strategies of direct MYC inhibition remain unsuccessful due to its "undruggable" protein structure. We herein developed a synthetic lethal screen against MYCN-amplified neuroblastomas using clinically approved therapeutic reagents. We performed a high-throughput screen, from a library of 938 FDA-approved drugs, for candidates that elicit synthetic lethal effects in MYC-driven neuroblastoma cells. The proteasome inhibitors, which are FDA approved for the first-line treatment of multiple myeloma, emerge as top hits to elicit MYC-mediated synthetic lethality. Proteasome inhibition activates the PERK-eIF2α-ATF4 axis in MYC-transformed cells and induces BAX-mediated apoptosis through ATF4-dependent NOXA and TRIB3 induction. A combination screen reveals the proteasome inhibitor bortezomib (BTZ) and the histone deacetylase (HDAC) inhibitor vorinostat (SAHA) concertedly induce dramatic cell death in part through synergistic activation of BAX. This combination causes marked tumor suppression in vivo, supporting dual proteasome/HDAC inhibition as a potential therapeutic approach for MYC-driven cancers. This FDA-approved drug screen with in vivo validation thus provides a rationale for clinical evaluation of bortezomib, alone or in combination with vorinostat, in MYC-driven neuroblastoma patients.


Assuntos
Antineoplásicos/farmacologia , Genes myc , Neuroblastoma/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Fator 4 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Proteínas de Ciclo Celular/metabolismo , Fator de Iniciação 1 em Eucariotos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Autoantígeno Ku/metabolismo , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Estados Unidos , United States Food and Drug Administration , Vorinostat/farmacologia , Proteína X Associada a bcl-2/metabolismo , eIF-2 Quinase/metabolismo
12.
Anticancer Res ; 39(7): 3579-3584, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262882

RESUMO

BACKGROUND/AIM: Neuroblastoma (NB) is the most common extracranial solid tumor in childhood; treatments with greater effectiveness are required for NB, especially in advanced cases. This study aimed at evaluating the combined effect of anaplastic lymphoma kinase (ALK) inhibitor alectinib and histone deacetylase inhibitor vorinostat on NB cell lines harboring wild-type or mutated ALK. MATERIALS AND METHODS: Cytotoxicity was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. Protein expression was analyzed using western blotting. RESULTS: Combination treatment with alectinib and vorinostat had a synergistic effect on growth inhibition of the NB cell line with ALK R1275Q mutation. Cleavage of caspase-3 and poly-(ADP-ribose) polymerase increased, indicating enhanced caspase-dependent apoptosis. In addition, this combination reduced the protein levels of MYCN proto-oncogene and nuclear factor kappa B, both of which are important for NB tumorigenesis and progression. CONCLUSION: Combined treatment with alectinib and vorinostat might be a novel therapeutic option for NB harboring the ALK R1275Q mutation.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Carbazóis/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Neuroblastoma/tratamento farmacológico , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Vorinostat/farmacologia , Quinase do Linfoma Anaplásico/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Mutação , Proteína Proto-Oncogênica N-Myc/metabolismo , NF-kappa B/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo
13.
Cell Physiol Biochem ; 53(1): 258-280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31313541

RESUMO

BACKGROUND/AIMS: Although neuroblastoma is a heterogeneous cancer, a substantial portion overexpresses CD71 (transferrin receptor 1) and MYCN. This study provides a mechanistically driven rationale for a combination therapy targeting neuroblastomas that doubly overexpress or have amplified CD71 and MYCN. For this subset, CD71 was targeted by its natural ligand, gambogic acid (GA), and MYCN was targeted with an HDAC inhibitor, vorinostat. A combination of GA and vorinostat was then tested for efficacy in cancer and non-cancer cells. METHODS: Microarray analysis of cohorts of neuroblastoma patients indicated a subset of neuroblastomas overexpressing both CD71 and MYCN. The viability with proliferation changes were measured by MTT and colony formation assays in neuroblastoma cells. Transfection with CD71 or MYCN along with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to detect expression changes. For pathway analysis, gene ontology (GO) and Protein-protein interaction analyses were performed to evaluate the potential mechanisms of GA and vorinostat in treated cells. RESULTS: For both GA and vorinostat, their pathways were explored for specificity and dependence on their targets for efficacy. For GA-treated cells, the viability/proliferation loss due to GA was dependent on the expression of CD71 and involved activation of caspase-3 and degradation of EGFR. It relied on the JNK-IRE1-mTORC1 pathway. The drug vorinostat also reduced cell viability/proliferation in the treated cells and this was dependent on the presence of MYCN as MYCN siRNA transfection led to a blunting of vorinostat efficacy and conversely, MYCN overexpression improved the vorinostat potency in those cells. Vorinostat inhibition of MYCN led to an increase of the pro-apoptotic miR183 levels and this, in turn, reduced the viability/proliferation of these cells. The combination treatment with GA and vorinostat synergistically reduced cell survival in the MYCN and CD71 overexpressing tumor cells. The same treatment had no effect or minimal effect on HEK293 and HEF cells used as models of non-cancer cells. CONCLUSION: A combination therapy with GA and vorinostat may be suitable for MYCN and CD71 overexpressing neuroblastomas.


Assuntos
Antígenos CD , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistemas de Liberação de Medicamentos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Receptores da Transferrina , Antígenos CD/genética , Antígenos CD/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Células HEK293 , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Receptores da Transferrina/antagonistas & inibidores , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Vorinostat/farmacologia , Xantonas/farmacologia
14.
Cancer Sci ; 110(8): 2493-2506, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31215139

RESUMO

Gallbladder cancer (GBC) is the most common malignancy of the bile duct and has a high mortality rate. Here, we demonstrated that BRD4 inhibitor JQ1 and histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) synergistically inhibited the GBC cells in vitro and in vivo. Our results showed that cotreatment with JQ1 and SAHA significantly inhibited proliferation, cell viability and metastasis, and induced apoptosis and G2/M arrest in GBC cells, with only minor effects in benign cells. In vivo, tumor volumes and weights of GBC xenograft models were significantly decreased after treatment with JQ1 or SAHA; meanwhile, the cotreatment showed the strongest effect. Further study indicated that the above anticancer effects was associated with the downregulation of BRD4 and suppression of PI3K/AKT and MAPK/ERK pathways. These findings highlight JQ1 and SAHA as potential therapeutic agents and their combination as a promising therapeutic strategy for GBC.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias da Vesícula Biliar/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Neoplasias da Vesícula Biliar/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia , Vorinostat/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
PLoS One ; 14(6): e0218382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31206526

RESUMO

Canine urothelial carcinoma (cUC) is the most common tumor of the lower urinary tract in dogs. Although chemotherapy and radical surgery have improved the overall survival, most dogs with cUC succumb to metastasis or recurrence. Therefore, the development of an effective systematic therapy is warranted. In this study, a comprehensive drug screening test using a cUC cell line was performed and the anti-tumor effect of a histone deacetylase (HDAC) inhibitor was evaluated. Comprehensive drug screening was performed on cUC cells. Based on this screening, the anti-proliferation effect of vorinostat, an HDAC inhibitor clinically applied in humans, was evaluated using several cUC cell lines in sulforhodamine B and flow cytometry assays. Western blot analysis was also performed to evaluate the degree of acetylation of histone H3 as well as the expression and phosphorylation of cell cycle-related molecules. The anti-tumor effect of vorinostat in vivo was evaluated using a xenograft model. Finally, immunohistochemistry was performed on acetyl-histone H3 in cUC and the relationship between the degree of acetylation and prognosis was examined using Kaplan-Meier survival analysis. Drug screening revealed that HDAC inhibitors consistently inhibited the growth of cUC cells. Vorinostat inhibited the growth of 6 cUC cell lines in a dose-dependent manner and induced G0/G1 cell cycle arrest. Western blot analysis showed that vorinostat mediated the acetylation of histone H3, the dephosphorylation of p-Rb, and the upregulation of p21 upon exposure to vorinostat. Furthermore, inhibition of tumor growth was observed in the xenograft model. In clinical cUC cases, neoplastic urothelium showed significant deacetylation of histones compared to the normal control, where lower histone acetylation levels were associated with a poor prognosis. In conclusion, the therapeutic potential of vorinostat was demonstrated in cUC. Histone deacetylation may be related to cUC tumor progression.


Assuntos
Carcinoma de Células de Transição/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Urotélio/patologia , Vorinostat/farmacologia , Acetilação , Animais , Antineoplásicos/farmacologia , Carcinoma de Células de Transição/mortalidade , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/veterinária , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cães , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Prognóstico , Análise de Sobrevida , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/veterinária , Vorinostat/uso terapêutico
16.
Sensors (Basel) ; 19(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100944

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. In recent studies, the efficacy of suberoylanilide hydroxamic acid (SAHA) has been investigated for GBM. We explored the effects of two exploratory compounds, the histone deacetylase SAHA and the natural product andrographolide, on Uppsala 87 Malignant Glioma (U-87 MG) cell migration and viability in comparison with the clinically used therapeutic agent temozolomide (TMZ). We used the electric cell-substrate impedance sensing (ECIS) system to monitor the migration of U-87 MG cells after treatment with various concentrations of these compounds. Moreover, we used the Alamar blue assay and western blotting to observe the concentration-dependent changes in the viability and apoptosis of U-87 MG cells. Our results demonstrated that both SAHA and andrographolide (10-300 µM) significantly inhibited GBM cell migration in a concentration-dependent manner, and 10 µM SAHA and 56 µM andrographolide demonstrated remarkable inhibitory effects on U-87 MG migration. Western blotting indicated that compared with TMZ, both SAHA and andrographolide induced higher expression levels of apoptosis-related proteins, such as caspase-3, BAX, and PARP in U-87 MG cells. Furthermore, all three drugs downregulated the expression of the antiapoptotic protein Bcl-2. In conclusion, SAHA and andrographolide showed exceptional results in inhibiting cell migration and motility. The ECIS wound healing assay is a powerful technique to identify and screen potential therapeutic agents that can inhibit cancer cell migration.


Assuntos
Técnicas Biossensoriais , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Impedância Elétrica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Temozolomida/farmacologia , Vorinostat/farmacologia
17.
Mol Biol Rep ; 46(4): 4123-4137, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31087245

RESUMO

Resveratrol is an important stilbene which is having a high demand due to its therapeutic, cosmeceutical and nutraceutical activities. The current study mainly focuses on strategies to enhance the fungal potential to produce resveratrol via the activation of the cryptic biosynthetic pathway with their particular interest in the antioxidant application. The endophytic fungus Xylaria psidii was isolated from the surface sterilized leaf of Vitis vinifera. With the help of HPLC analysis it is found that resveratrol concentration was maximum and enhanced in case of treatment with 5 µm SAHA (52.32 µg/mL) and by 10 µm AZA (48.94 µg/mL) followed by 10 µm SAHA (41.10 µg/mL) and 5 µm AZA (37.72 µg/mL). After treatment with different concentration of epigenetic modifiers such as HDAC inhibitors (SAHA) and dMNTs (AZA) inhibitors, a significant increase in antioxidant potential was obtained. In the case of DPPH increase in scavenging potential was found as compared to wild strain. Treatment with 5 µm SAHA and by 10 µm AZA was showing strong antioxidant potential among all the epigenetic variants as compared to wild strain. In the case of TEAC also the same trend as in the case of DPPH was obtained.


Assuntos
Epigênese Genética/efeitos dos fármacos , Resveratrol/metabolismo , Xylariales/genética , Azacitidina/farmacologia , DNA/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/genética , Epigênese Genética/genética , Epigenômica/métodos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Ácidos Hidroxâmicos/farmacologia , Vorinostat/farmacologia
18.
Chem Biol Interact ; 306: 54-61, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30958996

RESUMO

In the present study, we investigated the p53-independent mechanism by which quercetin (Q) increased apoptosis in human lung cancer H1299 cells exposed to trichostatin A (TSA), a histone deacetylase inhibitor. We also investigated the role of Q in increasing the acetylation of histones H3 and H4 and the possible mechanism. Q at 5 µM significantly increased apoptosis by 88% in H1299 cells induced by TSA at 72 h. Q also significantly increased TSA-induced death receptor 5 (DR5) mRNA and protein expression as well as caspase-10/3 activities in H1299 cells. Transfection of DR5 siRNA into H1299 cells significantly diminished the enhancing effects of Q on TSA-induced apoptosis. Furthermore, TSA in combination with Q rather than TSA alone significantly increased p300 expression. Transfection of p300 siRNA in H1299 cells significantly diminished the increase of histone H3/H4 acetylation, DR5 protein expression, caspase-10/3 activity and apoptosis induced by Q. In addition, similar effects of Q were observed when Q was combined with vorinostat, another FDA-approved histone deacetylase inhibitor. These data suggest that the up-regulation of p300 expression, which in turn increases histone acetylation and DR5 expression, plays an important role in the enhancing effect of Q on TSA/vorinostat- induced apoptosis in H1299 cells.


Assuntos
Antineoplásicos/farmacologia , Proteína p300 Associada a E1A/genética , Ácidos Hidroxâmicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Quercetina/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína p300 Associada a E1A/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Vorinostat/farmacologia
19.
Mol Neurobiol ; 56(10): 6986-7002, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30963442

RESUMO

Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) is a critical efflux transporter that extrudes chemicals from the blood-brain barrier (BBB) and limits neuronal exposure to xenobiotics. Prior studies in malignant cells demonstrated that MDR1 expression can be altered by inhibition of histone deacetylases (HDAC), enzymes that modify histone structure and influence transcription factor binding to DNA. Here, we sought to identify the mechanisms responsible for the up-regulation of MDR1 by HDAC inhibitors in human BBB cells. Immortalized human brain capillary endothelial (hCMEC/D3) cells were treated with HDAC inhibitors and assessed for MDR1 expression and function. Of the HDAC inhibitors profiled, valproic acid (VPA), apicidin, and suberoylanilide hydroxamic acid (SAHA) increased MDR1 mRNA and protein levels by 30-200%, which corresponded with reduced intracellular accumulation of the MDR1 substrate rhodamine 123. Interestingly, induction of MDR1 mRNA by HDAC inhibitors mirrored increases in the expression of the aryl hydrocarbon receptor (AHR) and its target gene cytochrome P450 1A1. To explore the role of AHR in HDAC inhibitor-mediated regulation of MDR1, a pharmacological activator (ß-naphthoflavone, ßNF) and inhibitor (CH-223191, CH) of AHR were tested. The induction of MDR1 in cells treated with SAHA was amplified by ßNF and attenuated by CH. Furthermore, SAHA increased the binding of acetylated histone H3K9/K14 and AHR proteins to regions of the MDR1 promoter that contain AHR response elements. In conclusion, HDAC inhibitors up-regulate the expression and activity of the MDR1 transporter in human brain endothelial cells by increasing histone acetylation and facilitating AHR binding at the MDR1 promoter.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/citologia , Células Endoteliais/metabolismo , Histonas/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acetilação , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Células Endoteliais/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Vorinostat/farmacologia
20.
Int J Mol Sci ; 20(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31014028

RESUMO

In early diabetes, hyperglycemia and the associated metabolic dysregulation promote early changes in the functional properties of cardiomyocytes, progressively leading to the appearance of the diabetic cardiomyopathy phenotype. Recently, the interplay between histone acetyltransferases (HAT) and histone deacetylases (HDAC) has emerged as a crucial factor in the development of cardiac disorders. The present study evaluates whether HDAC inhibition can prevent the development of cardiomyocyte contractile dysfunction induced by a short period of hyperglycemia, with focus on the potential underlying mechanisms. Cell contractility and calcium dynamics were measured in unloaded ventricular myocytes isolated from the heart of control and diabetic rats. Cardiomyocytes were either untreated or exposed to the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) for 90 min. Then, a fraction of each group of cells was used to evaluate the expression levels of proteins involved in the excitation-contraction coupling, and the cardiomyocyte metabolic activity, ATP content, and reactive oxygen species levels. SAHA treatment was able to counteract the initial functional derangement in cardiomyocytes by reducing cell oxidative damage. These findings suggest that early HDAC inhibition could be a promising adjuvant approach for preventing diabetes-induced cardiomyocyte oxidative damage, which triggers the pro-inflammatory signal cascade, mitochondrial damage, and ventricular dysfunction.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Vorinostat/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA