Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.488
Filtrar
1.
Asian Cardiovasc Thorac Ann ; 28(7): 381-383, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33023307
2.
Nat Commun ; 11(1): 4709, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948765

RESUMO

Glioblastoma cancer-stem like cells (GSCs) display marked resistance to ionizing radiation (IR), a standard of care for glioblastoma patients. Mechanisms underpinning radio-resistance of GSCs remain largely unknown. Chromatin state and the accessibility of DNA lesions to DNA repair machineries are crucial for the maintenance of genomic stability. Understanding the functional impact of chromatin remodeling on DNA repair in GSCs may lay the foundation for advancing the efficacy of radio-sensitizing therapies. Here, we present the results of a high-content siRNA microscopy screen, revealing the transcriptional elongation factor SPT6 to be critical for the genomic stability and self-renewal of GSCs. Mechanistically, SPT6 transcriptionally up-regulates BRCA1 and thereby drives an error-free DNA repair in GSCs. SPT6 loss impairs the self-renewal, genomic stability and tumor initiating capacity of GSCs. Collectively, our results provide mechanistic insights into how SPT6 regulates DNA repair and identify SPT6 as a putative therapeutic target in glioblastoma.


Assuntos
Reparo do DNA , Instabilidade Genômica , Glioblastoma/genética , Células-Tronco Neoplásicas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proteína BRCA1 , Neoplasias Encefálicas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Glioblastoma/patologia , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética , Tolerância a Radiação , Radiação Ionizante , Transcriptoma
3.
Mol Cell ; 79(6): 1008-1023.e4, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32871104

RESUMO

TMPRSS2-ERG gene fusion occurs in approximately 50% of cases of prostate cancer (PCa), and the fusion product is a key driver of prostate oncogenesis. However, how to leverage cellular signaling to ablate TMPRSS2-ERG oncoprotein for PCa treatment remains elusive. Here, we demonstrate that DNA damage induces proteasomal degradation of wild-type ERG and TMPRSS2-ERG oncoprotein through ERG threonine-187 and tyrosine-190 phosphorylation mediated by GSK3ß and WEE1, respectively. The dual phosphorylation triggers ERG recognition and degradation by the E3 ubiquitin ligase FBW7 in a manner independent of a canonical degron. DNA damage-induced TMPRSS2-ERG degradation was abolished by cancer-associated PTEN deletion or GSK3ß inactivation. Blockade of DNA damage-induced TMPRSS2-ERG oncoprotein degradation causes chemotherapy-resistant growth of fusion-positive PCa cells in culture and in mice. Our findings uncover a previously unrecognized TMPRSS2-ERG protein destruction mechanism and demonstrate that intact PTEN and GSK3ß signaling are essential for effective targeting of ERG protein by genotoxic therapeutics in fusion-positive PCa.


Assuntos
Proteínas de Ciclo Celular/genética , Glicogênio Sintase Quinase 3 beta/genética , Proteínas de Fusão Oncogênica/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Proteínas Tirosina Quinases/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Tratamento Farmacológico , Proteína 7 com Repetições F-Box-WD/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(8): 1200-1206, 2020 Aug 30.
Artigo em Chinês | MEDLINE | ID: mdl-32895183

RESUMO

OBJECTIVE: To investigate the difference of tumor formation in different mouse strains bearing patient-derived xenograft of esophageal squamous cell carcinoma(ESCC) and establish a better animal model for preclinical study of individualized treatment of ESCC. METHODS: The tumor tissues collected from 22 ESCC patients were used to establish tumor-bearing mouse models in B-NDG? (NSG) mice and BALB/c nude mice. The tumor formation rate and tumor formation time were compared between the two mouse models, and HE staining, immunohistochemistry and genome sequencing were carried out to assess the consistency between transplanted tumor tissues in the models and patient-derived tumor tissues. RESULTS: The tumor-bearing models were established successfully in both NSG mice (50%, 11/22) and BALB/c nude mice (18.18%, 4/22). The average tumor formation time was significantly shorter in NSG mice than in BALB/c nude mice (75.95 vs 91.67 days, P < 0.001). In both of the mouse models, the transplanted tumors maintained morphological characteristics identical to those of patient-derived ESCC tumors. Genetic analysis showed that the xenografts in NSG mice had a greater genetic similarity to the patients' tumors than those in BALB/c nude mice (P < 0.0001). CONCLUSIONS: Mouse models bearing xenografts of patient-derived ESCC can be successfully established in both NSG mice and BALB/c nude mice, but the models in the former mouse strain can be more reliable.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Linhagem Celular Tumoral , Proliferação de Células , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(5): 654-660, 2020 May 30.
Artigo em Chinês | MEDLINE | ID: mdl-32897219

RESUMO

OBJECTIVE: To investigate the effect of ß-arrestin1 overexpression on tumor progression in a NCG mouse model bearing T-cell acute lymphocytic leukemia (T-ALL) Molt-4 cell xenograft. METHODS: Molt-4 cells were tagged with firefly-luciferase (F-Luc) by lentiviral infection, and fluorescence intensity of the cells was detected using a luminescence detector. Molt-4 cell lines with ß-arrestin1 overexpression or knockdown were constructed by lentivirus infection and injected via the tail vein in sub-lethal irradiated NCG mice. Body weight changes and survival time of the xenografted mice were observed, and the progression of T-ALL in the mice was evaluated using an in vivo fluorescence imaging system. Sixteen days after xenografting, the mice were euthanatized and tumor cell infiltration was observed in the slices of the liver and spleen. RESULTS: We successfully tagged Molt-4 cells with F-Luc and overexpressed or knocked down ß-arrestin1 in the tagged cells. Bioluminescent imaging showed obvious luminescence catalyzed by F-Luc in Molt-4 cells. After injection of Molt-4-Luc cells into irradiated NCG mice, a gradual enhancement of luminescence in the xenografted mice was observed over time, while the body weight of the mice decreased. Compared with the control mice, the mice xenografted with ß-arrestin1-overexpressing Molt-4 cells had significantly prolonged survival time (P < 0.001), while the survival time of the mice xenografted with Molt-4 cells with ß- arrestin1 knockdown was significantly shortened (P < 0.001). Histological examination revealed fewer infiltrating tumor cells in the liver and spleen of the mice xenografted with ß-arrestin1-overexpressing Molt-4 cells in comparison with the mice bearing parental Molt-4 cell xenografts. CONCLUSIONS: ß-arrestin1 overexpression suppresses tumor progression in mice bearing Molt-4 cell xenograft.


Assuntos
Linfócitos T , Animais , Progressão da Doença , Xenoenxertos , Humanos , Camundongos , Transplante Heterólogo , beta-Arrestina 1
6.
Nat Commun ; 11(1): 4455, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901005

RESUMO

Dysregulated alternative splicing (AS) driving carcinogenetic mitosis remains poorly understood. Here, we demonstrate that cancer metastasis-associated antigen 1 (MTA1), a well-known oncogenic chromatin modifier, broadly interacts and co-expresses with RBPs across cancers, contributing to cancerous mitosis-related AS. Using developed fCLIP-seq technology, we show that MTA1 binds abundant transcripts, preferentially at splicing-responsible motifs, influencing the abundance and AS pattern of target transcripts. MTA1 regulates the mRNA level and guides the AS of a series of mitosis regulators. MTA1 deletion abrogated the dynamic AS switches of variants for ATRX and MYBL2 at mitotic stage, which are relevant to mitosis-related tumorigenesis. MTA1 dysfunction causes defective mitotic arrest, leads to aberrant chromosome segregation, and results in chromosomal instability (CIN), eventually contributing to tumorigenesis. Currently, little is known about the RNA splicing during mitosis; here, we uncover that MTA1 binds transcripts and orchestrates dynamic splicing of mitosis regulators in tumorigenesis.


Assuntos
Carcinogênese/genética , Carcinogênese/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Mitose/fisiologia , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Processamento Alternativo , Animais , Sítios de Ligação/genética , Montagem e Desmontagem da Cromatina/genética , Instabilidade Cromossômica , Feminino , Células HCT116 , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Mitose/genética , Neoplasias/genética , Neoplasias/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transativadores/antagonistas & inibidores , Transativadores/genética
7.
Acta Cir Bras ; 35(8): e202000801, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32901678

RESUMO

PURPOSE: To evaluate the use of demineralized bone matrix of caprine origin in experimental bone defects of the tibia in New Zealand rabbits. METHODS: Fragments of the tibia diaphysis were collected aseptically from clinically healthy goats. The bones were sectioned into 1 cm fragments and stored at -20°C for subsequent hydrochloric acid (HCL) demineralization. A 70 mg portion of DBMc was used to fill the experimental bone defects. Twenty-four female adult New Zealand rabbits were divided into 2 groups: the MG (matrix group, left tibia) and CG (control group, right tibia). Additionally, they were separated into 4 groups with 6 animals, according to the period of analysis (15, 30, 60 and 90 days postoperatively). Using microCT, volumetric parameters were evaluated: bone volume, relationship between bone volume and total volume, bone surface area, relationship between bone surface area and total volume, number of trabeculae, trabecular thickness and trabecular separation. RESULTS: There was a statistically significant difference (P<0.05) between groups considering bone volume (BV) and bone:total volume (BV/TV), on 15, 30 and 90 days postoperatively. Control group showed a statistically significant superiority (P < 0.05) considering the mean of the variables bone surface (BS), number of trabeculae (Tb.N) and between bone surface and total volume (BS/TV) at 15 and 90 days. CONCLUSIONS: Caprine demineralized bone matrix was safe and tolerable. No signs of material rejection were seen macroscopically. It is an alternative for the treatment of bone defects when autologous graft is not available or in insufficient quantities.


Assuntos
Transplante Ósseo , Cabras , Transplante Heterólogo , Animais , Matriz Óssea , Feminino , Xenoenxertos , Coelhos , Tíbia
8.
Nat Commun ; 11(1): 4192, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826886

RESUMO

Bioluminescence imaging has been widely used in life sciences and biomedical applications. However, conventional bioluminescence imaging usually operates in the visible region, which hampers the high-performance in vivo optical imaging due to the strong tissue absorption and scattering. To address this challenge, here we present bioluminescence probes (BPs) with emission in the second near infrared (NIR-II) region at 1029 nm by employing bioluminescence resonance energy transfer (BRET) and two-step fluorescence resonance energy transfer (FRET) with a specially designed cyanine dye FD-1029. The biocompatible NIR-II-BPs are successfully applied to vessels and lymphatics imaging in mice, which gives ~5 times higher signal-to-noise ratios and ~1.5 times higher spatial resolution than those obtained by NIR-II fluorescence imaging and conventional bioluminescence imaging. Their capability of multiplexed imaging is also well displayed. Taking advantage of the ATP-responding character, the NIR-II-BPs are able to recognize tumor metastasis with a high tumor-to-normal tissue ratio at 83.4.


Assuntos
Trifosfato de Adenosina/metabolismo , Medições Luminescentes/métodos , Metástase Neoplásica/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Técnicas Biossensoriais , Linhagem Celular Tumoral , Feminino , Transferência Ressonante de Energia de Fluorescência/instrumentação , Transferência Ressonante de Energia de Fluorescência/métodos , Xenoenxertos , Humanos , Medições Luminescentes/instrumentação , Camundongos , Imagem Óptica/instrumentação , Neoplasias Ovarianas/diagnóstico por imagem
9.
Nat Commun ; 11(1): 4184, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826889

RESUMO

Oncogenic processes exert their greatest effect by targeting regulators of cell proliferation. Studying the mechanism underlying growth augmentation is expected to improve clinical therapies. The ovarian tumor (OTU) subfamily deubiquitinases have been implicated in the regulation of critical cell-signaling cascades, but most OTUs functions remain to be investigated. Through an unbiased RNAi screen, knockdown of OTUD5 is shown to significantly accelerate cell growth. Further investigation reveals that OTUD5 depletion leads to the enhanced transcriptional activity of TRIM25 and the inhibited expression of PML by altering the ubiquitination level of TRIM25. Importantly, OTUD5 knockdown accelerates tumor growth in a nude mouse model. OTUD5 expression is markedly downregulated in tumor tissues. The reduced OTUD5 level is associated with an aggressive phenotype and a poor clinical outcome for cancers patients. Our findings reveal a mechanism whereby OTUD5 regulates gene transcription and suppresses tumorigenesis by deubiquitinating TRIM25, providing a potential target for oncotherapy.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença/genética , Células HEK293 , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Interferência de RNA , Transdução de Sinais , Transcriptoma , Ubiquitinação
10.
Nat Commun ; 11(1): 4261, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848136

RESUMO

Metastasis, the spread of malignant cells from a primary tumour to distant sites, causes 90% of cancer-related deaths. The integrin ITGB3 has been previously described to play an essential role in breast cancer metastasis, but the precise mechanisms remain undefined. We have now uncovered essential and thus far unknown roles of ITGB3 in vesicle uptake. The functional requirement for ITGB3 derives from its interactions with heparan sulfate proteoglycans (HSPGs) and the process of integrin endocytosis, allowing the capture of extracellular vesicles and their endocytosis-mediated internalization. Key for the function of ITGB3 is the interaction and activation of focal adhesion kinase (FAK), which is required for endocytosis of these vesicles. Thus, ITGB3 has a central role in intracellular communication via extracellular vesicles, proposed to be critical for cancer metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Comunicação Celular/fisiologia , Vesículas Extracelulares/metabolismo , Integrina beta3/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Endocitose , Feminino , Quinase 1 de Adesão Focal/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos , Camundongos Nus , Modelos Biológicos , Metástase Neoplásica/patologia , Transplante de Neoplasias
11.
Nat Commun ; 11(1): 4323, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859895

RESUMO

Medulloblastoma (MB) is defined by four molecular subgroups (Wnt, Shh, Group 3, Group 4) with Wnt MB having the most favorable prognosis. Since prior reports have illustrated the antitumorigenic role of Wnt activation in Shh MB, we aimed to assess the effects of activated canonical Wnt signaling in Group 3 and 4 MBs. By using primary patient-derived MB brain tumor-initiating cell (BTIC) lines, we characterize differences in the tumor-initiating capacity of Wnt, Group 3, and Group 4 MB. With single cell RNA-seq technology, we demonstrate the presence of rare Wnt-active cells in non-Wnt MBs, which functionally retain the impaired tumorigenic potential of Wnt MB. In treating MB xenografts with a Wnt agonist, we provide a rational therapeutic option in which the protective effects of Wnt-driven MBs may be augmented in Group 3 and 4 MB and thereby support emerging data for a context-dependent tumor suppressive role for Wnt/ß-catenin signaling.


Assuntos
Neoplasias Cerebelares/terapia , Meduloblastoma/terapia , Proteínas Wnt/farmacologia , Proteínas Wnt/uso terapêutico , Animais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Células-Tronco , Proteínas Wnt/genética , Via de Sinalização Wnt , beta Catenina/uso terapêutico
14.
PLoS One ; 15(7): e0237106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735605

RESUMO

Animal models are vital to the study of transfusion and development of new blood products. Post-transfusion recovery of human blood components can be studied in mice, however, there is a need to identify strains that can best tolerate xenogeneic transfusions, as well as to optimize such protocols. Specifically, the importance of using immunodeficient mice, such as NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice, to study human transfusion has been questioned. In this study, strains of wild-type and NSG mice were compared as hosts for human transfusions with outcomes quantified by flow cytometric analyses of CD235a+ erythrocytes, CD45+ leukocytes, and CD41+CD42b+ platelets. Complete blood counts were evaluated as well as serum cytokines by multiplexing methods. Circulating human blood cells were maintained better in NSG than in wild-type mice. Lethargy and hemoglobinuria were observed in the first hours in wild-type mice along with increased pro-inflammatory cytokines/chemokines such as monocyte chemoattractant protein-1, tumor necrosis factor α, keratinocyte-derived chemokine (KC or CXCL1), and interleukin-6, whereas NSG mice were less severely affected. Whole blood transfusion resulted in rapid sequestration and then release of human cells back into the circulation within several hours. This rebound effect diminished when only erythrocytes were transfused. Nonetheless, human erythrocytes were found in excess of mouse erythrocytes in the liver and lungs and had a shorter half-life in circulation. Variables affecting the outcomes of transfused erythrocytes were cell dose and mouse weight; recipient sex did not affect outcomes. The sensitivity and utility of this xenogeneic model were shown by measuring the effects of erythrocyte damage due to exposure to the oxidizer diamide on post-transfusion recovery. Overall, immunodeficient mice are superior models for xenotransfusion as they maintain improved post-transfusion recovery with negligible immune-associated side effects.


Assuntos
Transfusão de Componentes Sanguíneos/métodos , Modelos Animais , Animais , Transfusão de Eritrócitos , Xenoenxertos , Humanos , Transfusão de Leucócitos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transfusão de Plaquetas
16.
Nat Commun ; 11(1): 3904, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764536

RESUMO

A major challenge in chemotherapy is chemotherapy resistance in cells lacking p53. Here we demonstrate that NIP30, an inhibitor of the oncogenic REGγ-proteasome, attenuates cancer cell growth and sensitizes p53-compromised cells to chemotherapeutic agents. NIP30 acts by binding to REGγ via an evolutionarily-conserved serine-rich domain with 4-serine phosphorylation. We find the cyclin-dependent phosphatase CDC25A is a key regulator for NIP30 phosphorylation and modulation of REGγ activity during the cell cycle or after DNA damage. We validate CDC25A-NIP30-REGγ mediated regulation of the REGγ target protein p21 in vivo using p53-/- and p53/REGγ double-deficient mice. Moreover, Phosphor-NIP30 mimetics significantly increase the growth inhibitory effect of chemotherapeutic agents in vitro and in vivo. Given that NIP30 is frequently mutated in the TCGA cancer database, our results provide insight into the regulatory pathway controlling the REGγ-proteasome in carcinogenesis and offer a novel approach to drug-resistant cancer therapy.


Assuntos
Autoantígenos/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/metabolismo , Proteína Supressora de Tumor p53/deficiência , Animais , Autoantígenos/genética , Ciclo Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/deficiência , Complexo de Endopeptidases do Proteassoma/genética , Proteína Supressora de Tumor p53/genética , Fosfatases cdc25/metabolismo
17.
Transplantation ; 104(8): 1566-1573, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32732833

RESUMO

BACKGROUND: Xenogeneic organ transplantation has been proposed as a potential approach to fundamentally solve organ shortage problem. Xenogeneic immune responses across species is one of the major obstacles for clinic application of xeno-organ transplantation. The generation of glycoprotein galactosyltransferase α 1, 3 (GGTA1) knockout pigs has greatly contributed to the reduction of hyperacute xenograft rejection. However, severe xenograft rejection can still be induced by xenoimmune responses to the porcine major histocompatibility complex antigens swine leukocyte antigen class I and class II. METHODS: We simultaneously depleted GGTA1, ß2-microglobulin (ß2M), and major histocompatibility complex class II transactivator (CIITA) genes using clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins technology in Bamma pig fibroblast cells, which were further used to generate GGTA1ß2MCIITA triple knockout (GBC-3KO) pigs by nuclear transfer. RESULTS: The genotype of GBC-3KO pigs was confirmed by polymerase chain reaction and Sanger sequencing, and the loss of expression of α-1,3-galactose, SLA-I, and SLA-II was demonstrated by flow cytometric analysis using fluorescent-conjugated lectin from bandeiraea simplicifolia, anti-ß2-microglobulin, and swine leukocyte antigen class II DR antibodies. Furthermore, mixed lymphocyte reaction assay revealed that peripheral blood mononuclear cells from GBC-3KO pigs were significantly less effective than (WT) pig peripheral blood mononuclear cells in inducing human CD3CD4 and CD3CD8 T-cell activation and proliferation. In addition, GBC-3KO pig skin grafts showed a significantly prolonged survival in immunocompetent C57BL/6 mice, when compared with wild-type pig skin grafts. CONCLUSIONS: Taken together, these results demonstrate that elimination of GGTA1, ß2M, and CIITA genes in pigs can effectively alleviate xenogeneic immune responses and prolong pig organ survival in xenogenesis. We believe that this work will facilitate future research in xenotransplantation.


Assuntos
Rejeição de Enxerto/prevenção & controle , Xenoenxertos/imunologia , Transplante de Órgãos/métodos , Transplante Heterólogo/métodos , Aloenxertos/provisão & distribução , Animais , Animais Geneticamente Modificados/imunologia , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Feminino , Galactosiltransferases/genética , Galactosiltransferases/imunologia , Técnicas de Inativação de Genes/métodos , Genes MHC da Classe II/genética , Genes MHC da Classe II/imunologia , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Xenoenxertos/transplante , Humanos , Masculino , Camundongos , Transplante de Órgãos/efeitos adversos , Suínos/genética , Suínos/imunologia , Transplante Heterólogo/efeitos adversos , Microglobulina beta-2/genética , Microglobulina beta-2/imunologia
18.
Cell Transplant ; 29: 963689720939120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32830546

RESUMO

A study was recently published that sought to develop an in vivo model of facioscapulohumeral muscular dystrophy by transplanting muscle precursor cells from a patient into immunodeficient mice. The study largely applied the methodology used by our team in a study published more than two decades ago with a similar objective, albeit for another muscular dystrophy. However, our study is not cited, leaving the wrong idea that the concept, methodology, and part of the results are original to this recent study. Although the recent study is of interest, the omission of our publication, as well as other relevant references, deprives it of an adequate scientific context. We, therefore, want to point out the importance of a careful bibliographic search in any scientific work.


Assuntos
Distrofia Muscular Facioescapuloumeral , Animais , Xenoenxertos , Humanos , Camundongos , Músculo Esquelético
19.
Cancer Sci ; 111(9): 3292-3302, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32644283

RESUMO

EphA10 (erythropoietin-producing hepatocellular carcinoma receptor A10) is a catalytically defective receptor protein tyrosine kinase in the ephrin receptor family. Although EphA10 is involved in the malignancy of some types of cancer, its role as an oncogene has not been extensively studied. Here, we investigated the influence of EphA10 on the tumorigenic potential of pancreatic cancer cells. Analysis of expression profiles from The Cancer Genome Atlas confirmed that EphA10 was elevated and higher in tumor tissues than in normal tissues in some cancer types, including pancreatic cancer. EphA10 silencing reduced the proliferation, migration, and adhesion of MIA PaCa-2 and AsPC-1 pancreatic cancer cells. These effects were reversed by overexpression of EphA10 in MIA PaCa-2 cells. Importantly, overexpression and silencing of EphA10 respectively increased and decreased the weight, volume, and number of Ki-67-positive proliferating cells in MIA PaCa-2 xenograft tumors. Further, EphA10 expression was positively correlated with invasion and gelatin degradation in MIA PaCa-2 cells. Moreover, overexpression of EphA10 enhanced the expression and secretion of MMP-9 in MIA PaCa-2 cells and increased the expression of MMP-9 and the vascular density in xenograft tumors. Finally, expression of EphA10 increased the phosphorylation of ERK, JNK, AKT, FAK, and NF-κB, which are important for cell proliferation, survival, adhesion, migration, and invasion. Therefore, we suggest that EphA10 plays a pivotal role in the tumorigenesis of pancreatic epithelial cells and is a novel therapeutic target for pancreatic cancer.


Assuntos
Carcinogênese/genética , Carcinogênese/metabolismo , Suscetibilidade a Doenças , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Neoplasias Pancreáticas/patologia , Transdução de Sinais
20.
Mol Cell ; 79(3): 376-389.e8, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640193

RESUMO

Activation of dual-specificity tyrosine-phosphorylation-regulated kinases 1A and 1B (DYRK1A and DYRK1B) requires prolyl hydroxylation by PHD1 prolyl hydroxylase. Prolyl hydroxylation of DYRK1 initiates a cascade of events leading to the release of molecular constraints on von Hippel-Lindau (VHL) ubiquitin ligase tumor suppressor function. However, the proline residue of DYRK1 targeted by hydroxylation and the role of prolyl hydroxylation in tyrosine autophosphorylation of DYRK1 are unknown. We found that a highly conserved proline in the CMGC insert of the DYRK1 kinase domain is hydroxylated by PHD1, and this event precedes tyrosine autophosphorylation. Mutation of the hydroxylation acceptor proline precludes tyrosine autophosphorylation and folding of DYRK1, resulting in a kinase unable to preserve VHL function and lacking glioma suppression activity. The consensus proline sequence is shared by most CMGC kinases, and prolyl hydroxylation is essential for catalytic activation. Thus, formation of prolyl-hydroxylated intermediates is a novel mechanism of kinase maturation and likely a general mechanism of regulation of CMGC kinases in eukaryotes.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Isoenzimas/genética , Prolina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Xenoenxertos , Humanos , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Camundongos , Camundongos Nus , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Mutação , Neuroglia/metabolismo , Neuroglia/patologia , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA