Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.355
Filtrar
1.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408958

RESUMO

While overproduction of recombinant secretory proteins (rs-Prots) triggers multiple changes in the physiology of the producer cell, exposure to suboptimal growth conditions may further increase that biological response. The environmental conditions may modulate the efficiency of both the rs-Prot gene transcription and translation but also the polypeptide folding. Insights into responses elicited by different environmental stresses on the rs-Prots synthesis and host yeast physiology might contribute to a better understanding of fundamental biology processes, thus providing some clues to further optimise bioprocesses. Herein, a series of batch cultivations of Yarrowia lipolytica strains differentially metabolically burdened by the rs-Prots overproduction have been conducted. Combinations of different stress factors, namely pH (3/7) and oxygen availability (kLa 28/110 h-1), have been considered for their impact on cell growth and morphology, substrate consumption, metabolic activity, genes expression, and secretion of the rs-Prots. Amongst others, our data demonstrate that a highly metabolically burdened cell has a higher demand for the carbon source, although presenting a compromised cell growth. Moreover, the observed decrease in rs-Prot production under adverse environmental conditions rather results from the emergence of a less-producing cell subpopulation than from the decrease of the synthetic capacity of the whole cell population.


Assuntos
Fenômenos Bioquímicos , Yarrowia , Reatores Biológicos , Expressão Gênica , Proteínas Recombinantes/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
2.
Molecules ; 27(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408699

RESUMO

Yarrowia lipolytica, an oleagineous species of yeast, is a carrier of various important nutrients. The biomass of this yeast is an extensive source of protein, exogenous amino acids, bioavailable essenctial trace minerals, and lipid compounds as mainly unsaturated fatty acids. The biomass also contains B vitamins, including vitamin B12, and many other bioactive components. Therefore, Y. lipolytica biomass can be used in food supplements for humans as safe and nutritional additives for maintaining the homeostasis of the organism, including for vegans and vegetarians, athletes, people after recovery, and people at risk of B vitamin deficiencies.


Assuntos
Yarrowia , Biomassa , Humanos , Yarrowia/metabolismo
3.
Mar Drugs ; 20(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35447937

RESUMO

Projections show that the cultivation of microalgae will extend to the production of bio-based compounds, such as biofuels, cosmetics, and medicines. This will generate co-products or residues that will need to be valorized to reduce the environmental impact and the cost of the process. This study explored the ability of lipid-extracted Chlorella vulgaris residue as a sole carbon and nitrogen source for growing oleaginous yeasts without any pretreatment. Both wild-type Yarrowia lipolytica W29 and mutant JMY3501 (which was designed to accumulate more lipids without their remobilization or degradation) showed a similar growth rate of 0.28 h-1 at different pH levels (3.5, 5.5, and 7.5). However, the W29 cell growth had the best cell number on microalgal residue at a pH of 7.5, while three times fewer cells were produced at all pH levels when JMY3501 was grown on microalgal residue. The JMY3501 growth curves were similar at pH 3.5, 5.5, and 7.5, while the fatty-acid composition differed significantly, with an accumulation of α-linolenic acid on microalgal residue at a pH of 7.5. Our results demonstrate the potential valorization of Chlorella vulgaris residue for Yarrowia lipolytica growth and the positive effect of a pH of 7.5 on the fatty acid profile.


Assuntos
Chlorella vulgaris , Microalgas , Yarrowia , Biocombustíveis , Biomassa , Chlorella vulgaris/metabolismo , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos , Microalgas/metabolismo
4.
Sheng Wu Gong Cheng Xue Bao ; 38(4): 1360-1372, 2022 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-35470612

RESUMO

Yarrowia lipolytica is a non-conventional yeast with unique physiological and metabolic characteristics. It is suitable for production of various products due to its natural ability to utilize a variety of inexpensive carbon sources, excellent tolerance to low pH, and strong ability to secrete metabolites. Currently, Y. lipolytica has been demonstrated to produce a wide range of carboxylic acids with high efficiency. This article summarized the progress in engineering Y. lipolytica to produce various carboxylic acids by using metabolic engineering and synthetic biology approaches. The current bottlenecks and solutions for high-level production of carboxylic acids by engineered Y. lipolytica were also discussed, with the aim to provide useful information for relevant studies in this field.


Assuntos
Yarrowia , Ácidos Carboxílicos/metabolismo , Engenharia Metabólica , Biologia Sintética , Yarrowia/genética , Yarrowia/metabolismo
5.
Appl Microbiol Biotechnol ; 106(8): 2869-2881, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35394162

RESUMO

Microbial lipids-derived biodiesel is garnering much attention owing to its potential to substitute diesel fuel. In this study, lipid accumulation by Yarrowia lipolytica from volatile fatty acids (VFAs) was studied in a lab-scale stirred tank bioreactor. In batch cultures, Y. lipolytica NCYC 2904 was able to grow in 18 g·L-1 of VFAs (acetate, propionate, and butyrate), and the addition of a co-substrate (glucose) led to a fivefold improvement in lipid concentration. Furthermore, the two-stage batch culture (growth phase in glucose (1st stage) followed by a lipogenic phase in VFAs (2nd stage)) was the best strategy to obtain the highest lipid content in the cells (37%, w/w), with aeration conditions that kept dissolved oxygen concentration between 40% and 50% of saturation during the lipogenic phase. The estimated fuel properties of biodiesel produced from Y. lipolytica NCYC 2904 lipids are comparable with those of the biodiesel produced from vegetable oils and are in accordance with the international standards (EN 14214 and ASTM D6751). The cultivation strategies herein devised enable a sustainable, eco-friendly, and economical production of microbial lipids, based on feedstocks such as VFAs that can be derived from the acidogenic fermentation of organic wastes. KEY POINTS: • Addition of glucose to VFAs enhances lipids in Y. lipolytica in batch cultures • Two-stage batch culture - growth in glucose followed by VFAs pulse - rises lipids • Dissolved oxygen of 40-50% of saturation is crucial at the lipogenic phase.


Assuntos
Yarrowia , Técnicas de Cultura Celular por Lotes , Biocombustíveis , Ácidos Graxos/química , Ácidos Graxos Voláteis/química , Glucose , Lipídeos , Oxigênio , Óleos Vegetais , Polifenóis
6.
World J Microbiol Biotechnol ; 38(5): 91, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35426523

RESUMO

Squalene is a triterpene hydrocarbon, a biochemical precursor for all steroids in plants and animals. It is a principal component of human surface lipids, in particular of sebum. Squalene has several applications in the food, pharmaceutical, and medical sectors. It is essentially used as a dietary supplement, vaccine adjuvant, moisturizer, cardio-protective agent, anti-tumor agent and natural antioxidant. With the increased demand for squalene along with regulations on shark-derived squalene, there is a need to find alternatives for squalene production which are low-cost as well as sustainable. Microbial platforms are being considered as a potential option to meet such challenges. Considerable progress has been made using both wild-type and engineered microbial strains for improved productivity and yields of squalene. Native strains for squalene production are usually limited by low growth rates and lesser titers. Metabolic engineering, which is a rational strain engineering tool, has enabled the development of microbial strains such as Saccharomyces cerevisiae and Yarrowia lipolytica, to overproduce the squalene in high titers. This review focuses on key strain engineering strategies involving both in-silico and in-vitro techniques. Emphasis is made on gene manipulations for improved precursor pool, enzyme modifications, cofactor regeneration, up-regulation of limiting reactions, and downregulation of competing reactions during squalene production. Process strategies and challenges related to both upstream and downstream during mass cultivation are detailed.


Assuntos
Esqualeno , Yarrowia , Animais , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esqualeno/metabolismo , Yarrowia/genética
7.
Sheng Wu Gong Cheng Xue Bao ; 38(2): 478-505, 2022 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-35234377

RESUMO

Yarrowia lipolytica, as an important oleaginous yeast, has been widely used in metabolic engineering. Y. lipolytica is considered as an ideal host for the production of natural products such as terpenes, polyketides and flavonoids, due to its ability to utilize a variety of hydrophobic substrates, high stress tolerance to acid and salt, high flux of tricarboxylic acid cycle and the ability in providing abundant the common precursor acetyl-CoA. Recently, more and more tools for genetic editing, gene expression and regulation has been developed in Y. lipolytica, which facilitate the metabolic engineering of Y. lipolytica for bio-manufacturing. In this review, we summarized the recent progresses in developing gene expression and natural product synthesis in Y. lipolytica, and also discussed the challenges and possible solutions in heterologous synthesis of natural products in this yeast.


Assuntos
Produtos Biológicos , Policetídeos , Yarrowia , Produtos Biológicos/metabolismo , Edição de Genes , Engenharia Metabólica , Policetídeos/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
8.
Food Res Int ; 154: 111019, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337592

RESUMO

The aim of the present study was to obtain information on the occurrence of bacteria and eumycetes in ready-to-eat fermented liver sausages manufactured by 20 artisan producers located in the Marche Region (Italy). To this end, culture-dependent analyses and metataxonomic sequencing were carried out. Physico-chemical parameters and volatilome of the fermented liver sausages were also studied. Finally, the presence of hepatitis E virus (HEV) was also assessed via real-time-RT-(q)PCR assays. Active microbial populations mainly represented by lactic acid bacteria, enterococci, coagulase-negative cocci, and eumycetes were detected. Enterobacteriaceae, Pseudomonadaceae, and sulfite-reducing anaerobes were not detected in most of the samples. Latilactobacillus sakei dominated in all the analyzed samples, reaching abundances up to 80%. Staphylococcus xylosus and Staphylococcus equorum were also detected. Among minority bacterial taxa, Weissella spp., Leuconostoc spp., Macrococcus caseolyticus, Brochothrix thermosphacta, Staphylococcus succinus, Lactobacillus coryniformis, Lactiplantibacillus plantarum, Lactococcus garviae, Psychrobacter spp., and Carnobacterium viridans were detected. The mycobiota was mainly composed by Debaryomyces hansenii that was present in all samples at the highest frequency. Among minority fungal taxa, Aspergillus spp., Penicillium spp., Kurtzmaniella zeylanoides, Candida spp., Yamadazyma spp., Scopulariopsis spp., Yarrowia spp., and Starmerella spp. were detected. Interestingly, associations between some taxa and some physico-chemical parameters were also discovered. The absence of HEV in all the samples attested a high level of safety. Finally, most of the VOCs detected in the analyzed fermented liver sausages belonged to six classes as: terpenoids, aldehydes, ketones, alcohols, esters, and acids. Nitrogen compounds, sulfur compounds, phenols, hydrocarbons, lactones, furans, and aromatic hydrocarbons were also identified. Several significant relationships were observed between mycobiota and VOCs.


Assuntos
Produtos da Carne , Compostos Orgânicos Voláteis , Yarrowia , Fermentação , Fígado/química , Produtos da Carne/análise , Compostos Orgânicos Voláteis/análise
9.
FEMS Yeast Res ; 22(1)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35274684

RESUMO

Abscisic acid (ABA) is a phytohormone with applications in agriculture and human health. ABA can be produced by Botrytis cinerea, a plant pathogenic filamentous fungus. However, the cultivation process is lengthy and strain improvement by genetic engineering is difficult. Therefore, we engineered the oleaginous yeast Yarrowia lipolytica as an alternative host for ABA production. First, we expressed five B. cinerea genes involved in ABA biosynthesis (BcABA1,BcABA2,BcABA3,BcABA4 and BcCPR1) in a Y. lipolytica chassis with optimized mevalonate flux. The strain produced 59.2 mg/L of ABA in small-scale cultivation. Next, we expressed an additional copy of each gene in the strain, but only expression of additional copy of BcABA1 gene increased the ABA titer to 168.5 mg/L. We then integrated additional copies of the mevalonate pathway and ABA biosynthesis encoding genes, and we expressed plant ABA transporters resulting in an improved strain producing 263.5 mg/L and 9.1 mg/g dry cell weight (DCW) ABA. Bioreactor cultivation resulted in a specific yield of 12.8 mg/g DCW ABA; however, surprisingly, the biomass level obtained in bioreactors was only 10.5 g DCW/L, with a lower ABA titer of 133.6 mg/L. While further optimization is needed, this study confirms Y. lipolytica as a potential alternative host for the ABA production.


Assuntos
Yarrowia , Ácido Abscísico/metabolismo , Reatores Biológicos , Humanos , Engenharia Metabólica/métodos , Ácido Mevalônico/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
10.
Bioresour Technol ; 351: 127053, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35337991

RESUMO

A co-fermentation process involving Yarrowia lipolytica and Trichoderma reesei was studied, using distillers grains (DGS) as feedstocks for erythritol production. DGS can be effectively hydrolyzed by cellulase in the single-strain culture of T. reesei. One-pot solid state fermentation for erythritol production was then established by co-cultivating Y. lipolytica M53-S with the 12 h delay inoculated T. reesei Rut C-30, in which efficient saccharification of DGS and improved production of erythritol were simultaneously achieved. The 10:1 inoculation proportion of Y. lipolytica and T. reesei contributed to the maximum erythritol production of 267.1 mg/gds under the optimal conditions including initial moisture of 55%, pH of 5.0, NaCl addition of 0.02 g/gds and DGS mass of 200 g in 144 h co-cultivation. Being compared with the attempts to produce erythritol from other raw materials, the one-pot SSF with DGS is proposed to be a potential strategy for efficient and economical erythritol production.


Assuntos
Celulase , Hypocreales , Trichoderma , Yarrowia , Eritritol , Fermentação
11.
ACS Synth Biol ; 11(4): 1542-1554, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35311250

RESUMO

Oleic acid is widely applied in the chemical, material, nutritional, and pharmaceutical industries. However, the current production of oleic acid via high oleic plant oils is limited by the long growth cycle and climatic constraints. Moreover, the global demand for high oleic plant oils, especially the palm oil, has emerged as the driver of tropical deforestation causing tropical rainforest destruction, climate change, and biodiversity loss. In the present study, an alternative and sustainable strategy for high oleic oil production was established by reprogramming the metabolism of the oleaginous yeast Yarrowia lipolytica using a two-layer "push-pull-block" strategy. Specifically, the fatty acid synthesis pathway was first engineered to increase oleic acid proportion by altering the fatty acid profiles. Then, the content of storage oils containing oleic acid was boosted by engineering the synthesis and degradation pathways of triacylglycerides. The strain resulting from this two-layer engineering strategy produced the highest titer of high oleic microbial oil reaching 56 g/L with 84% oleic acid in fed-batch fermentation, representing a remarkable improvement of a 110-fold oil titer and 2.24-fold oleic acid proportion compared with the starting strain. This alternative and sustainable method for high oleic oil production shows the potential of substitute planting.


Assuntos
Yarrowia , Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos , Ácido Oleico/metabolismo , Óleos Vegetais/metabolismo , Yarrowia/metabolismo
12.
Microb Cell Fact ; 21(1): 25, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183179

RESUMO

BACKGROUND: Demand for Cocoa butter is steadily increasing, but the supply of cocoa beans is naturally limited and under threat from global warming. One route to meeting the future demand for cocoa butter equivalent (CBE) could be to utilize microbial cell factories such as the oleaginous yeast Yarrowia lipolytica. RESULTS: The main goal was to achieve triacyl-glycerol (TAG) storage lipids in Y. lipolytica mimicking cocoa butter. This was accomplished by replacing the native Δ9 fatty acid desaturase (Ole1p) with homologs from other species and changing the expression of both Ole1p and the Δ12 fatty acid desaturase (Fad2p). We thereby abolished the palmitoleic acid and reduced the linoleic acid content in TAG, while the oleic acid content was reduced to approximately 40 percent of the total fatty acids. The proportion of fatty acids in TAG changed dramatically over time during growth, and the fatty acid composition of TAG, free fatty acids and phospholipids was found to be very different. CONCLUSIONS: We show that the fatty acid profile in the TAG of Y. lipolytica can be altered to mimic cocoa butter. We also demonstrate that a wide range of fatty acid profiles can be achieved while maintaining good growth and high lipid accumulation, which, together with the ability of Y. lipolytica to utilize a wide variety of carbon sources, opens up the path toward sustainable production of CBE and other food oils.


Assuntos
Gorduras na Dieta , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/análise , Engenharia Metabólica , Estearoil-CoA Dessaturase/genética , Yarrowia/química , Yarrowia/genética , Basidiomycota/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Monoinsaturados/análise , Expressão Gênica , Metabolismo dos Lipídeos , Ácido Oleico/análise , Regiões Promotoras Genéticas , Rhodotorula/genética , Saccharomycetales/genética , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/análise , Triglicerídeos/química , Yarrowia/enzimologia , Yarrowia/crescimento & desenvolvimento
13.
Biotechnol Lett ; 44(2): 193-202, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35119573

RESUMO

Nervonic acid (cis-15-tetracosenoic acid, 24:1Δ15) is a long chain monounsaturated fatty acid, mainly exists in white matt er of the human brains. It plays an important role in the development of nervous system and curing neurological diseases. The limited natural sources and high price are considered limiting factors for the extensive application of nervonic acid. Yarrowia lipolytica is a high lipid producing yeast and engineered strain which can produce nervonic acid. The biosynthesis of nervonic acid has yet to be investigated, although the metabolism has been examined for couple of years. Normally, oleic acid is considered the origin of nervonic acid synthesis through fatty acid prolongation, where malonyl-CoA and acyl-CoA are initially concise by 3-ketoacyl-CoA synthase (KCS). To meet the high requirement of industrial production, the optimization of fermentation and bioreactors configurations are necessary tools to be carried out. This review article summarizes the research literature on advancements and recent trends about the production, synthesis and properties of nervonic acid.


Assuntos
Yarrowia , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Fermentação , Humanos , Yarrowia/genética , Yarrowia/metabolismo
14.
Nat Commun ; 13(1): 572, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102143

RESUMO

Substrate inhibition of enzymes can be a major obstacle to the production of valuable chemicals in engineered microorganisms. Here, we show substrate inhibition of lycopene cyclase as the main limitation in carotenoid biosynthesis in Yarrowia lipolytica. To overcome this bottleneck, we exploit two independent approaches. Structure-guided protein engineering yields a variant, Y27R, characterized by complete loss of substrate inhibition without reduction of enzymatic activity. Alternatively, establishing a geranylgeranyl pyrophosphate synthase-mediated flux flow restrictor also prevents the onset of substrate inhibition by diverting metabolic flux away from the inhibitory metabolite while maintaining sufficient flux towards product formation. Both approaches result in high levels of near-exclusive ß-carotene production. Ultimately, we construct strains capable of producing 39.5 g/L ß-carotene at a productivity of 0.165 g/L/h in bioreactor fermentations (a 1441-fold improvement over the initial strain). Our findings provide effective approaches for removing substrate inhibition in engineering pathways for efficient synthesis of natural products.


Assuntos
Licopeno/metabolismo , Yarrowia/metabolismo , Acetilcoenzima A/metabolismo , Reatores Biológicos , Carbono/metabolismo , Citosol/metabolismo , Farnesiltranstransferase/metabolismo , Fermentação , Glucose/deficiência , Liases Intramoleculares/metabolismo , Metabolismo dos Lipídeos , Lipídeos/biossíntese , Licopeno/química , Análise do Fluxo Metabólico , Engenharia de Proteínas , Especificidade por Substrato , Terpenos/metabolismo
15.
World J Microbiol Biotechnol ; 38(4): 57, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35174424

RESUMO

The past decade has witnessed the rapid progress in development of synthetic biology, and advances in construction of yeast cell factories open vast opportunities for green and sustainable production of chemicals. Focusing on the progress in yeast engineering for production of plant natural products in the last 5 years, this review introduces different yeast chassis used for cell factory construction, including Saccharomyces cerevisiae, Yarrowia lipolytica and Komagataella phaffii, together with the emerging genome editing tools. The metabolic regulation strategies developed for yeast engineering are highlighted, such as subcellular pathway localization dynamic regulation, and transporter engineering. C1-based chemical bioproduction by engineered yeast is also covered. Finally, the existing challenges and future prospects in creating efficient yeast cell factories are summarized.


Assuntos
Saccharomyces cerevisiae , Yarrowia , Edição de Genes , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia Sintética , Yarrowia/genética , Yarrowia/metabolismo
16.
J Agric Food Chem ; 70(8): 2673-2683, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35191700

RESUMO

Astaxanthin is a highly value-added keto-carotenoid compound. The astaxanthin 3S,3'S-isomer is more desirable for food additives, cosmetics, and pharmaceuticals due to health concerns about chemically synthesized counterparts with a mixture of three isomers. Biosynthesis of 3S,3'S-astaxanthin suffers from limited content and productivity. We engineered Yarrowia lipolytica to produce high levels of 3S,3'S-astaxanthin. We first assessed various ß-carotene ketolases (CrtW) and ß-carotene hydroxylases (CrtZ) from two algae and a plant. HpCrtW and HpCrtZ from Haematococcus pluvialis exhibited the strongest activity in converting ß-carotene into astaxanthin in Y. lipolytica. We then fine-tuned the HpCrtW and HpCrtZ transcriptional expression by increasing the rounds of gene integration into the genome and applied a modular enzyme assembly of HpCrtW and HpCrtZ simultaneously. Next, we rescued leucine biosynthesis in the engineered Y. lipolytica, leading to a five-fold increase in biomass. The astaxanthin production achieved from these strategies was 3.3 g/L or 41.3 mg/g dry cell weight under fed-batch conditions, which is the highest level reported in microbial chassis to date. This study provides the potential for industrial production of 3S,3'S-astaxanthin, and this strategy empowers us to build a sustainable biorefinery platform for generating other value-added carotenoids in the future.


Assuntos
Engenharia Metabólica , Yarrowia , Xantofilas/química , Yarrowia/genética , Yarrowia/metabolismo , beta Caroteno/metabolismo
17.
FEMS Yeast Res ; 22(1)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134922

RESUMO

The dimorphic yeast Yarrowia lipolytica has an ability to assimilate n-alkanes as carbon and energy sources. In this study, the roles of orthologs of Saccharomyces cerevisiae SEC14 family gene SFH2, which we named SFH21, SFH22, SFH23 and SFH24, of Y. lipolytica were investigated. The transcript levels of SFH21, SFH22 and SFH23, determined by RNA-seq analysis, qRT-PCR analysis and northern blot analysis, were found to increase in the presence of n-alkanes. The deletion mutant of SFH21, but not that of SFH22, SFH23 or SFH24, showed defects in growth in the media containing n-alkanes and in filamentous growth on the solid media containing n-alkanes. Additional deletions of SFH22 and SFH23 significantly exaggerated the defect in filamentous growth of the deletion mutant of SFH21, and expression of SFH22 or SFH24 using the SFH21 promoter partially suppressed the growth defect of the deletion mutant of SFH21 on n-alkanes. These results suggest that SFH2 orthologs are involved in the utilization of n-alkanes and filamentous growth in response to n-alkanes in Y. lipolytica.


Assuntos
Proteínas de Saccharomyces cerevisiae , Yarrowia , Alcanos , Proteínas Fúngicas/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Yarrowia/metabolismo
18.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162970

RESUMO

Yarrowia lipolytica yeast is a model species of the group of oleaginous microorganisms capable of intracellular lipids accumulation in an amount exceeding 20% of the dry mass. Single cell oil biosynthesis can follow one of two biochemical pathways-de novo accumulation of cellular lipids in medium containing non-lipid carbon sources (including saccharides, glycerol) and ex novo microbial oil synthesis which involves fatty acids uptake from the environment. The mRNA expression of selected genes of de novo and ex novo lipid synthesis pathways was analyzed and correlated with the phenotypically observed features. It was proved that the accumulation yield of storage lipids via ex novo pathway was to some extent dependent on the limitation of the nitrogen source in the medium. It was also proposed that the synthesis of intracellular lipids in lipid-rich medium proceeded mainly via ex novo pathway, although the activity of genes encoding the enzymes of the de novo pathway were not completely inhibited at the stage of transcription by fatty acids present in the medium (e.g., ATP-citrate lyase). Molecular markers of two biosynthesis routes has been outlined and a hypothetical connection point between de novo and ex novo route were indicated.


Assuntos
Meios de Cultura/química , Proteínas Fúngicas/genética , Yarrowia/crescimento & desenvolvimento , Técnicas Bacteriológicas , Técnicas de Cultura Celular por Lotes , Vias Biossintéticas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Metabolismo dos Lipídeos , Nitrogênio/química , Yarrowia/genética , Yarrowia/metabolismo
19.
Nat Commun ; 13(1): 922, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177617

RESUMO

Genome-wide functional genetic screens have been successful in discovering genotype-phenotype relationships and in engineering new phenotypes. While broadly applied in mammalian cell lines and in E. coli, use in non-conventional microorganisms has been limited, in part, due to the inability to accurately design high activity CRISPR guides in such species. Here, we develop an experimental-computational approach to sgRNA design that is specific to an organism of choice, in this case the oleaginous yeast Yarrowia lipolytica. A negative selection screen in the absence of non-homologous end-joining, the dominant DNA repair mechanism, was used to generate single guide RNA (sgRNA) activity profiles for both SpCas9 and LbCas12a. This genome-wide data served as input to a deep learning algorithm, DeepGuide, that is able to accurately predict guide activity. DeepGuide uses unsupervised learning to obtain a compressed representation of the genome, followed by supervised learning to map sgRNA sequence, genomic context, and epigenetic features with guide activity. Experimental validation, both genome-wide and with a subset of selected genes, confirms DeepGuide's ability to accurately predict high activity sgRNAs. DeepGuide provides an organism specific predictor of CRISPR guide activity that with retraining could be applied to other fungal species, prokaryotes, and other non-conventional organisms.


Assuntos
Edição de Genes/métodos , Modelos Genéticos , RNA Guia/metabolismo , Yarrowia/genética , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Aprendizado Profundo , Endodesoxirribonucleases/genética , Genoma Fúngico , RNA Guia/genética
20.
J Environ Manage ; 307: 114421, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35093754

RESUMO

Dyed effluents from textile industry are toxic and difficult to treat by conventional methods and biotechnological approaches are generally considered more environmentally friendly. In this work, yeast strains Candida parapsilosis, Yarrowia lipolytica and Candida pseudoglaebosa, isolated from wastewater treatment plants, were tested for their ability to decolorize textile dyes. Both commercial textile synthetic dyes (reactive, disperse, direct, acid and basic) and simulated textile effluents (a total of 32 solutions) were added to a Normal Decolorization Medium along with the yeast (single strains and consortia) and the decolorization was evaluated spectrophotometrically for 48-72 h. Yeasts were able to perform decolorization through adsorption and biodegradation for 28 of the dyes and simulated effluents by more than 50%. Y. lipolytica and C. pseudoglaebosa presented the best results with a true decolorization of reactive dyes, above 90% at 100 mg l-1, and simulated effluents at 5 g l-1 of concentration. Enzyme production was evaluated: oxidoreductase was found in the three yeasts, whereas tyrosinase was only found in Y. lipolytica and C. pseudoglaebosa. Y. lipolytica and C. pseudoglaebosa are a potential biotechnological tool for dye degradation in textile wastewaters, especially those containing reactive dyes and a promising tool to integrate in bioremediation solutions, contributing to circular economy and eco sustainability in the water sector since the treated water could possibly be reused for irrigation.


Assuntos
Corantes , Yarrowia , Compostos Azo , Biodegradação Ambiental , Candida , Indústria Têxtil , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...