RESUMO
The DM9-containing proteins have been identified as pattern recognition receptors (PRRs) to recognize invading pathogens and subsequently mediate downstream signal pathways, playing essential roles in innate immune responses of molluscs. In the present study, a novel DM9-containing protein (named as CgDM9CP-7) was identified from Pacific oyster Crassostrea gigas, which contained two tandem DM9 repeats similar to the previously identified CgDM9CPs. The mRNA transcripts of CgDM9CP-7 were found to be constitutively expressed in all the tested tissues including haemolymph, gill, hepatopancreas, mantle, adductor muscle and labial palp. The expression level of CgDM9CP-7 mRNA in haemocytes significantly up-regulated at 3 and 6 h after Vibrio splendidus stimulation, which was 5.67-fold (p < 0.01) and 4.71-fold (p < 0.05) of that in the control group, respectively, and it also increased significantly at 6 h (3.08-fold, p < 0.01) post lipopolysaccharide (LPS) stimulation. The protein of CgDM9CP-7 was mainly detected in membrane and cytoplasm of oyster haemocytes after V. splendidus stimulation. The recombinant CgDM9CP-7 protein (rCgDM9CP-7) displayed binding activities to MAN, LPS, PGN, Poly (I:C) as well as gram-negative bacteria (V. splendidus and Escherichia coli), gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus) and fungi (Pichia pastoris and Yarrowia lipolytica). rCgDM9CP-7 was able to agglutinate Bacillus subtilis, V. splendidus, E. coli and S. aureus, inhibit their growth, and bind the recombinant protein CgMyd88-2 (KD = 5.98 × 10-6 M) and CgMyd88s (KD = 8.5 × 10-7 M) in vitro as well. The transcripts of CgIL17-1 (0.45-fold of the control group, p < 0.01), CgIL17-2 (0.19-fold, p < 0.05), CgIL17-3 (0.54-fold, p < 0.05), CgIL17-5 (0.36-fold, p < 0.05) and CgIL17-6 (0.24-fold, p < 0.01) in CgDM9CP-7-siRNA oysters decreased significantly at 6 h after V. splendidus stimulation. These results collectively indicated that CgDM9CP-7 was involved in the regulation of CgMyD88 and CgIL-17 expression in the immune response of oyster.
Assuntos
Crassostrea , Yarrowia , Humanos , Animais , Lipopolissacarídeos , Staphylococcus aureus , Escherichia coli/genética , Imunidade Inata/genética , Proteínas Recombinantes/metabolismo , RNA Mensageiro/genética , HemócitosRESUMO
In recent times, there has been a growing interest in exploring microbial strains that exhibit enhanced erythritol productivity. Nonetheless, the lack of advanced synthetic biology tools has limited rapid strain development. In this study, the CRISPR/Cas9 system was employed to genetically modify Yarrowia lipolytica at the chromosomal level, which could improve the production of erythritol while saving the time required to markers recovery, and realizing the rapid construction of high-erythritol strains. Firstly, the basic strain E004 was generated by increasing the efficiency of homologous recombination and regulating the erythritol degradation pathway. Secondly, eleven key gene targets and a strong promoter 8UAS1BXPR2-PTEFin was obtained by target screening and promoter engineering. Finally, based on modular pathway engineering and morphological engineering, the high production of erythritol was achieved successfully. The best-engineered strain E326 produced 256 g/L erythritol in a 5-L bioreactor, which is the highest production level reported so far in Y. lipolytica.
Assuntos
Engenharia Metabólica , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Eritritol/metabolismo , Reatores Biológicos , Regiões Promotoras GenéticasRESUMO
There is an increasing demand for bio-based dicarboxylic acids (DCA) as an eco-friendly alternatives to chemically synthesized DCA. Adipic acid, which is not naturally produced by microorganisms, is an essential DCA with significant industrial importance. This study aimed to develop a platform strain using Yarrowia lipolytica for efficient bioconversion of renewable resources into adipic acid. To prevent the complete oxidation of adipic acid, peroxisomal ß-oxidation was engineered by selectively disrupting acyl-CoA oxidases. Furthermore, ω-oxidation activity was improved via introducing an additional copy of cytochrome P450 monooxygenase (ALK5) and reductase (CPR1) with fatty alcohol oxidase (FAO1). The production phase used SP92D medium in a two-stage bioconversion process, during which the engineered strain exhibited the highest production level, achieving a remarkable 9.7-fold increase compared to that of the parental strain. To our knowledge, this is the first report demonstrating that engineered Y. lipolytica can produce adipic acid from fatty acid methyl esters.
Assuntos
Yarrowia , Yarrowia/genética , Oxirredução , Oxirredutases , Adipatos , Ácidos Dicarboxílicos , Ácidos Graxos , Engenharia MetabólicaRESUMO
Nervonic acid benefits the treatment of neurological diseases and the health of brain. In this study, we employed the oleaginous yeast Yarrowia lipolytica to overproduce nervonic acid oil by systematic metabolic engineering. First, the production of nervonic acid was dramatically improved by iterative expression of the genes ecoding ß-ketoacyl-CoA synthase CgKCS, fatty acid elongase gELOVL6 and desaturase MaOLE2. Second, the biosynthesis of both nervonic acid and lipids were further enhanced by expression of glycerol-3-phosphate acyltransferases and diacylglycerol acyltransferases from Malania oleifera in endoplasmic reticulum (ER). Third, overexpression of a newly identified ER structure regulator gene YlINO2 led to a 39.3% increase in lipid production. Fourth, disruption of the AMP-activated S/T protein kinase gene SNF1 increased the ratio of nervonic acid to lignoceric acid by 61.6%. Next, pilot-scale fermentation using the strain YLNA9 exhibited a lipid titer of 96.7 g/L and a nervonic acid titer of 17.3 g/L (17.9% of total fatty acids), the highest reported titer to date. Finally, a proof-of-concept purification and separation of nervonic acid were performed and the purity of it reached 98.7%. This study suggested that oleaginous yeasts are attractive hosts for the cost-efficient production of nervonic acid and possibly other very long-chain fatty acids (VLCFAs).
Assuntos
Yarrowia , Yarrowia/genética , Engenharia Metabólica , Ácidos Graxos/metabolismo , Aciltransferases/metabolismoRESUMO
Cutaneotrichosporon curvatum and Yarrowia lipolytica can accumulate microbial oils using short-chain fatty acids (SCFA) as carbon sources. SCFAs-rich media often contain significant amounts of nitrogen that prevent high carbon:nitrogen (C:N) ratios necessary to boost lipid production. This work assessed the intrinsic ability of C. curvatum and Y. lipolytica to produce high amounts of microbial oils from these unusual carbon sources. Results demonstrated that minor differences in SCFA concentration (only 2 g/L) had a significant effect on yeast growth and lipid production. A C:N of 80 promoted yeast growth at all SCFA concentrations and favored SCFA consumption at 19 g/L SCFAs. The different SCFA uptake preferences in C. curvatum and Y. lipolytica highlighted the importance of considering the SCFA profile to select a suitable yeast strain for microbial oils production. At the most challenging SCFA concentration (19 g/L), 57.2% ±1.6% (w/w) and 78.4 ± 0.6% (w/w) lipid content were obtained in C. curvatum and Y. lipolytica, respectively. These values are among the highest reported for wild-type strains. To circumvent the challenges associated with media with high nitrogen content, this report also proved struvite precipitation as an effective method for increasing lipid production (from 17.9 ± 3.9% (w/w) to 41.9 ± 2.6% (w/w)) after nitrogen removal in food waste-derived media.
Slight variations in SCFA concentrations have a relevant effect on yeast lipid productionHigh nitrogen availability is crucial to promote cell growth at very high SCFA concentrationsC:N effect on cell growth and lipid production is specie-specific and may depend on yeast robustnessYeast strains have diverse SCFA preferences and differently metabolize these acidsStruvite precipitation effectively removes nitrogen from real digestates increasing C:N.
Assuntos
Eliminação de Resíduos , Yarrowia , Alimentos , Óleos , Ácidos Graxos Voláteis , Ácidos Carboxílicos , Carbono , NitrogênioRESUMO
Engineering the yeast Yarrowia lipolytica as an efficient host to produce recombinant proteins remains a longstanding goal for applied biocatalysis. During the protein overproduction, the accumulation of unfolded and misfolded proteins causes ER stress and cell dysfunction in Y. lipolytica. In this study, we evaluated the effects of several potential ER chaperones and translocation components on relieving ER stress by debottlenecking the protein synthetic machinery during the production of the endogenous lipase 2 and the E. coli ß-galactosidase. Our results showed that improving the activities of the non-dominant translocation pathway (SRP-independent) boosted the production of the two proteins. While the impact of ER chaperones is protein dependent, the nucleotide exchange factor Sls1p for protein folding catalyst Kar2p is recognized as a common contributor enhancing the secretion of the two enzymes. With the identified protein translocation components and ER chaperones, we then exemplified how these components can act synergistically with Hac1p to enhance recombinant protein production and relieve the ER stress on cell growth. Specifically, the yeast overexpressing Sls1p and cytosolic heat shock protein Ssa8p and Ssb1p yielded a two-fold increase in Lip2p secretion compared with the control, while co-overexpressing Ssa6p, Ssb1p, Sls1p and Hac1p resulted in a 90% increase in extracellular ß-galp activity. More importantly, the cells sustained a maximum specific growth rate (µmax) of 0.38 h-1 and a biomass yield of 0.95 g-DCW/g-glucose, only slightly lower than that was obtained by the wild type strain. This work demonstrated engineering ER chaperones and translocation as useful strategies to facilitate the development of Y. lipolytica as an efficient protein-manufacturing platform.
Assuntos
Yarrowia , Via Secretória , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Engenharia Metabólica/métodosRESUMO
Synthetic food colourants are widely used in the food industry, but consumer concerns about safety and sustainability are driving a need for natural food-colour alternatives. Betanin, which is extracted from red beetroots, is a commonly used natural red food colour. However, the betanin content of beetroot is very low (~0.2% wet weight), which means that the extraction of betanin is incredibly wasteful in terms of land use, processing costs and vegetable waste. Here we developed a sustainability-driven biotechnological process for producing red beet betalains, namely, betanin and its isomer isobetanin, by engineering the oleaginous yeast Yarrowia lipolytica. Metabolic engineering and fermentation optimization enabled production of 1,271 ± 141 mg l-1 betanin and 55 ± 7 mg l-1 isobetanin in 51 h using glucose as carbon source in controlled fed-batch fermentations. According to a life cycle assessment, at industrial scale (550 t yr-1), our fermentation process would require significantly less land, energy and resources compared with the traditional extraction of betanin from beetroot crops. Finally, we apply techno-economic assessment to show that betanin production by fermentation could be economically feasible in the existing market conditions.
Assuntos
Beta vulgaris , Corantes de Alimentos , Yarrowia , Betacianinas/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Corantes de Alimentos/metabolismoRESUMO
Combined mutagenesis is widely applied for the breeding of robust Yarrowia lipolytica used in the production of erythritol. However, the changes of genome after mutagenesis remains unclear. This study aimed to unravel the mechanism involved in the improved erythritol synthesis of CA20 and the evolutionary relationship between different Y. lipolytica by comparative genomics analysis. The results showed that the genome size of Y. lipolytica CA20 was 20,420,510 bp, with a GC content of 48.97%. There were 6330 CDS and 649 ncRNA (non-coding RNA) in CA20 genome. Average nucleotide identity (ANI) analysis showed that CA20 genome possessed high similarity (ANI > 99.50%) with other Y. lipolytica strains, while phylogenetic analysis displayed that CA20 was classified together with Y. lipolytica IBT 446 and Y. lipolytica H222. CA20 shared 5342 core orthologous genes with the 8 strains while harbored 65 specific genes that mainly participated in the substrate and protein transport processes. CA20 contained 166 genes coding for carbohydrate-active enzymes (CAZymes), which was more than that found in other strains (108ï¼137). Notably, 4, 2, and 13 different enzymes belonging to glycoside hydrolases (GHs), glycosyltransferases (GTs), and carbohydrate esterases (CEs), respectively, were only found in CA20. The enzymes involved in the metabolic pathway of erythritol were highly conserved in Y. lipolytica, except for transaldolase (TAL1). In addition, the titer and productivity of erythritol by CA20 were 190.97 g/L and 1.33 g/L/h, respectively, which were significantly higher than that of WT5 wherein 128.61 g/L and 0.92 g/L/h were obtained (P< 0.001). Five frameshift mutation genes and 15 genes harboring nonsynonymous mutation were found in CA20 compared with that of WT5. Most of these genes were involved in the cell division, cell wall synthesis, protein synthesis, and protein homeostasis maintenance. These findings suggested that the genome of Y. lipolytica is conserved during evolution, and the variance of living environment is one important factor leading to genome divergence. The varied number of CAZymes existed in Y. lipolytica is one factor that contributes to the performance difference. The increased synthesis of erythritol by Y. lipolytica CA20 is correlated with the improvement of the stability of cell structure and internal environment. The results of this study provide a basis for the directional breeding of robust strains used in erythritol production.
Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Eritritol/metabolismo , Filogenia , Glicerol/metabolismo , Melhoramento Vegetal , GenômicaRESUMO
In recent years, the production of plasma-treated water (PTW) by low-temperature low-pressure glow plasma (LPGP) has been increasingly gaining in popularity. LPGP-treated water changes its physical and physiochemical properties compared to standard distilled water. In this study, a non-conventional lipolytic yeast species Yarrowia lipolytica was cultivated in culture media based on Nantes plasma water with heightened singlet oxygen content (Nantes PW) or in water treated with low-temperature, low-pressure glow plasma while in contact with air (PWTA) or nitrogen (PWTN). The research aimed to assess the influence of culture conditions on castor oil biotransformation to gamma-decalactone (GDL) and other secondary metabolites in media based on nanowater. The Nantes plasma water-based medium attained the highest concentration of gamma-decalactone (4.81 ± 0.51 g/L at 144 h of culture), maximum biomass concentration and biomass yield from the substrate. The amplified activity of lipases in the nanowater-based medium, in comparison to the control medium, is encouraging from the perspective of GDL biosynthesis, relying on the biotransformation of ricinoleic acid, which is the primary component of castor oil. Although lipid hydrolysis was enhanced, this step seemed not crucial for GDL concentration. Interestingly, the study validates the significance of oxygen in ß-oxidation enzymes and its role in the bioconversion of ricinoleic acid to GDL and other lactones. Specifically, media with higher oxygen content (WPTA) and Nantes plasma water resulted in remarkably high concentrations of four lactones: gamma-decalactone, 3-hydroxy-gamma-decalactone, dec-2-en-4-olide and dec-3-en-4-olide.
Assuntos
Yarrowia , Óleo de Rícino/metabolismo , Água/metabolismo , Lactonas/química , Oxigênio/metabolismoRESUMO
An engineered Yarrowia lipolytica strain was successfully employed to produce ß-carotene and lipids from acetic acid, a product of syngas fermentation by Clostridium aceticum. The strain showed acetic acid tolerance up to concentrations of 20 g/L. Flask experiments yielded a peak lipid content of 33.7 % and ß-carotene concentration of 13.6 mg/g under specific nutrient conditions. The study also investigated pH effects on production in bioreactors, revealing optimal lipid and ß-carotene contents at pH 6.0, reaching 22.9 % and 44 mg/g, respectively. Lipid profiles were consistent across experiments, with C18:1 being the dominant compound at approximately 50 %. This research underscores a green revolution in bioprocessing, showing how biocatalysts can convert syngas, a potentially polluting byproduct, into valuable ß-carotene and lipids with a Y. lipolytica strain.
Assuntos
Yarrowia , Fermentação , Yarrowia/genética , beta Caroteno , Lipídeos , AcetatosRESUMO
Background: The unconventional yeast species Yarrowia lipolytica is a valuable source of protein and many other nutrients. It can be used to produce hydrolytic enzymes and metabolites, including kynurenic acid (KYNA), an endogenous metabolite of tryptophan with a multidirectional effect on the body. The administration of Y. lipolytica with an increased content of KYNA in the diet may have a beneficial effect on metabolism, which was evaluated in a nutritional experiment on mice. Methods: In the dry biomass of Y. lipolytica S12 enriched in KYNA (high-KYNA yeast) and low-KYNA (control) yeast, the content of KYNA was determined by high-performance liquid chromatography. Then, proximate and amino acid composition and selected indicators of antioxidant status were compared. The effect of 5% high-KYNA yeast content in the diet on the growth, hematological and biochemical indices of blood and the redox status of the liver was determined in a 7-week experiment on adult male mice from an outbred colony derived from A/St, BALB/c, BN/a and C57BL/6J inbred strains. Results: High-KYNA yeast was characterized by a greater concentration of KYNA than low-KYNA yeast (0.80 ± 0.08 vs. 0.29 ± 0.01 g/kg dry matter), lower content of crude protein with a less favorable amino acid composition and minerals, higher level of crude fiber and fat and lower ferric-reducing antioxidant power, concentration of phenols and glutathione. Consumption of the high-KYNA yeast diet did not affect the cumulative body weight gain per cage, cumulative food intake per cage and protein efficiency ratio compared to the control diet. A trend towards lower mean corpuscular volume and hematocrit, higher mean corpuscular hemoglobin concentration and lower serum total protein and globulins was observed, increased serum total cholesterol and urea were noted. Its ingestion resulted in a trend towards greater ferric-reducing antioxidant power in the liver and did not affect the degree of liver lipid and protein oxidation. Conclusions: The improvement of the quality of Y. lipolytica yeast biomass with increased content of KYNA, including its antioxidant potential, would be affected by the preserved level of protein and unchanged amino acid profile. It will be worth investigating the effect of such optimized yeast on model animals, including animals with metabolic diseases.
Assuntos
Yarrowia , Masculino , Animais , Camundongos , Antioxidantes/metabolismo , Ácido Cinurênico/metabolismo , Biomassa , Camundongos Endogâmicos C57BL , Aminoácidos/metabolismoRESUMO
Yarrowia lipolytica naturally saves excess carbon as storage lipids. Engineering efforts allow redirecting the high precursor flux required for lipid synthesis toward added-value chemicals such as polyketides, flavonoids, and terpenoids. To redirect precursor flux from storage lipids to other products, four genes involved in triacylglycerol and sterol ester synthesis (DGA1, DGA2, LRO1, and ARE1) can be deleted. To elucidate the effect of the deletions on cell physiology and regulation, we performed chemostat cultivations under carbon and nitrogen limitations, followed by transcriptome analysis. We found that storage lipid-free cells show an enrichment of the unfolded protein response, and several biological processes related to protein refolding and degradation are enriched. Additionally, storage lipid-free cells show an altered lipid class distribution with an abundance of potentially cytotoxic free fatty acids under nitrogen limitation. Our findings not only highlight the importance of lipid metabolism on cell physiology and proteostasis, but can also aid the development of improved chassy strains of Y. lipolytica for commodity chemical production.
Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metabolismo dos Lipídeos , Triglicerídeos/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismoRESUMO
Yarrowia lipolytica is an industrial host with a high fatty acid flux. Even though CRISPR-based tools have accelerated its metabolic engineering, there remains a need to develop tools for rapid multiplexed strain engineering to accelerate the design-build-test-learn cycle. Base editors have the potential to perform high-efficiency multiplexed gene editing because they do not depend upon double-stranded DNA breaks. Here, we identified that base editors are less toxic than CRISPR-Cas9 for multiplexed gene editing. We increased the editing efficiency by removing the extra nucleotides between tRNA and gRNA and increasing the base editor and gRNA copy number in a Ku70 deficient strain. We achieved five multiplexed gene editing in the ΔKu70 strain at 42% efficiency. Initially, we were unsuccessful at performing multiplexed base editing in NHEJ competent strain; however, we increased the editing efficiency by using a co-selection approach to enrich base editing events. Base editor-mediated canavanine gene (CAN1) knockout provided resistance to the import of canavanine, which enriched the base editing in other unrelated genetic loci. We performed multiplexed editing of up to three genes at 40% efficiency in the Po1f strain through the CAN1 co-selection approach. Finally, we demonstrated the application of multiplexed cytosine base editor for rapid multigene knockout to increase naringenin production by 2-fold from glucose or glycerol as a carbon source.
Assuntos
Sistemas CRISPR-Cas , Yarrowia , Sistemas CRISPR-Cas/genética , Yarrowia/genética , Yarrowia/metabolismo , Citosina/metabolismo , Canavanina/genética , Canavanina/metabolismo , Edição de GenesRESUMO
Beta-elemene, a class of sesquiterpene derived from the Chinese medicinal herb Curcuma wenyujin, is widely used in clinical medicine due to its broad-spectrum antitumor activity. However, the unsustainable plant extraction prompted the search for environmentally friendly strategies for ß-elemene production. In this study, we designed a Yarrowia lipolytica cell factory that can continuously produce germacrene A, which is further converted into ß-elemene with 100% yield through a Cope rearrangement reaction by shifting the temperature to 250°C. First, the productivity of four plant-derived germacrene A synthases was evaluated. After that, the metabolic flux of the precursor to germacrene A was maximized by optimizing the endogenous mevalonate pathway, inhibiting the competing squalene pathway, and expressing germacrene A synthase gene in multiple copies. Finally, the most promising strain achieved the highest ß-elemene titer reported to date with 5.08 g/L. This sustainable and green method has the potential for industrial ß-elemene production.
Assuntos
Sesquiterpenos , Yarrowia , Extratos Vegetais , Sesquiterpenos/metabolismo , Sesquiterpenos de Germacrano/metabolismo , Yarrowia/metabolismo , Engenharia MetabólicaRESUMO
BACKGROUND: Natural and anthropogenic activities, such as weathering of rocks and industrial processes, result in the release of toxic oxyanions such as selenium (Se) and tellurium (Te) into the environment. Due to the high toxicity of these compounds, their removal from the environment is vital. RESULTS: In this study, two yeast strains, Yarrowia lipolytica and Trichosporon cutaneum, were selected as the superior strains for the bioremediation of tellurium and selenium. The reduction analyses showed that exposure to selenite induced more detrimental effects on the strains compared to tellurite. In addition, co-reduction of pollutants displayed almost the same results in selenite reduction and more than ~ 20% higher tellurite reduction in 50 h, which shows that selenite triggered higher tellurite reduction in both strains. The selenite and tellurite kinetics of removal were consistent with the first-order model because of their inhibitory behavior. The result of several characterization experiments, such as FE-SEM (Field emission scanning electron microscopy), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), and dispersive X-ray (EDX) on Te-Se nanoparticles (NPs) revealed that the separated Te-Se NPs were needle-like, spherical, and amorphous, consisted of Te-Se NPs ranging from 25 to 171 nm in size, and their surface was covered with different biomolecules. CONCLUSIONS: Remarkably, this work shows, for the first time, the simultaneous bioreduction of tellurite and selenite and the production of Te-Se NPs using yeast strains, indicating their potential in this area, which may be applied to the nanotechnology industry and environmental remediation.
Assuntos
Nanopartículas , Selênio , Yarrowia , Telúrio , Técnicas de CoculturaRESUMO
BACKGROUND: In the recombinant protein market with broad economic value, the rapid development of synthetic biology has made it necessary to construct an efficient exocrine expression system for the different heterologous proteins. Yarrowia lipolytica possesses unique advantages in nascent protein transport and glycosylation modification, so it can serve as a potential protein expression platform. Although the Po1 series derived from W29 is often used for the expression of the various heterologous proteins, the ability of W29 to secrete proteins has not been verified and the Po1 series has been found to be not convenient for further gene editing. RESULTS: A total of 246 Y. lipolytica strains were evaluated for their secretory capacity through performing high-throughput screening in 48-well plate. Thereafter, following two rounds of shake flask re-screening, a high-secreting protein starting strain DBVPG 5851 was obtained. Subsequently, combined with the extracellular protein types and relative abundance information provided by the secretome of the starting strain, available chassis cell for heterologous protein expression were preliminarily constructed, and it was observed that the most potential signal peptide was derived from YALI0D20680g. CONCLUSIONS: This study offers a novel perspective on the diversification of Y. lipolytica host cells for the heterologous protein expression and provides significant basis for expanding the selection space of signal peptide tools in the future research.
Assuntos
Yarrowia , Yarrowia/genética , Secretoma , Ensaios de Triagem em Larga Escala , Glicosilação , Proteínas Recombinantes/genéticaRESUMO
BACKGROUND: Long-chain polyunsaturated fatty acids (LC-PUFAs), such as docosahexaenoic acid (DHA), are essential for human health and have been widely used in the food and pharmaceutical industries. However, the limited availability of natural sources, such as oily fish, has led to the pursuit of microbial production as a promising alternative. Yarrowia lipolytica can produce various PUFAs via genetic modification. A recent study upgraded Y. lipolytica for DHA production by expressing a four-gene cluster encoding a myxobacterial PKS-like PUFA synthase, reducing the demand for redox power. However, the genetic architecture of gene expression in Y. lipolytica is complex and involves various control elements, offering space for additional improvement of DHA production. This study was designed to optimize the expression of the PUFA cluster using a modular cloning approach. RESULTS: Expression of the monocistronic cluster with each gene under the control of the constitutive TEF promoter led to low-level DHA production. By using the minLEU2 promoter instead and incorporating additional upstream activating UAS1B4 sequences, 5' promoter introns, and intergenic spacers, DHA production was increased by 16-fold. The producers remained stable over 185 h of cultivation. Beneficially, the different genetic control elements acted synergistically: UAS1B elements generally increased expression, while the intron caused gene-specific effects. Mutants with UAS1B16 sequences within 2-8 kb distance, however, were found to be genetically unstable, which limited production performance over time, suggesting the avoidance of long repetitive sequence blocks in synthetic multigene clusters and careful monitoring of genetic stability in producing strains. CONCLUSIONS: Overall, the results demonstrate the effectiveness of synthetic heterologous gene clusters to drive DHA production in Y. lipolytica. The combinatorial exploration of different genetic control elements allowed the optimization of DHA production. These findings have important implications for developing Y. lipolytica strains for the industrial-scale production of valuable polyunsaturated fatty acids.
Assuntos
Policetídeos , Yarrowia , Humanos , Ácidos Docosa-Hexaenoicos/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Policetídeos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Família Multigênica , Engenharia Metabólica/métodosRESUMO
DHA is a marine PUFA of commercial value, given its multiple health benefits. The worldwide emerging shortage in DHA supply has increased interest in microbial cell factories that can provide the compound de novo. In this regard, the present work aimed to improve DHA production in the oleaginous yeast strain Y. lipolytica Af4, which synthetized the PUFA via a heterologous myxobacterial polyketide synthase (PKS)-like gene cluster. As starting point, we used transcriptomics, metabolomics, and 13C-based metabolic pathway profiling to study the cellular dynamics of Y. lipolytica Af4. The shift from the growth to the stationary DHA-production phase was associated with fundamental changes in carbon core metabolism, including a strong upregulation of the PUFA gene cluster, as well as an increase in citrate and fatty acid degradation. At the same time, the intracellular levels of the two DHA precursors acetyl-CoA and malonyl-CoA dropped by up to 98% into the picomolar range. Interestingly, the degradation pathways for the ketogenic amino acids l-lysine, l-leucine, and l-isoleucine were transcriptionally activated, presumably to provide extra acetyl-CoA. Supplementation with small amounts of these amino acids at the beginning of the DHA production phase beneficially increased the intracellular CoA-ester pools and boosted the DHA titer by almost 40%. Isotopic 13C-tracer studies revealed that the supplements were efficiently directed toward intracellular CoA-esters and DHA. Hereby, l-lysine was found to be most efficient, as it enabled long-term activation, due to storage within the vacuole and continuous breakdown. The novel strategy enabled DHA production in Y. lipolytica at the gram scale for the first time. DHA was produced at a high selectivity (27% of total fatty acids) and free of the structurally similar PUFA DPA, which facilitates purification for high-value medical applications that require API-grade DHA. The assembled multi-omics picture of the central metabolism of Y. lipolytica provides valuable insights into this important yeast. Beyond our work, the enhanced catabolism of ketogenic amino acids seems promising for the overproduction of other compounds in Y. lipolytica, whose synthesis is limited by the availability of CoA ester precursors.
Assuntos
Policetídeos , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Policetídeo Sintases/metabolismo , Acetilcoenzima A/metabolismo , Lisina/genética , Multiômica , Ésteres/metabolismo , Policetídeos/metabolismo , Engenharia MetabólicaRESUMO
As lipogenic yeasts are becoming increasingly harnessed as biofactories of oleochemicals, the availability of efficient protocols for the determination and optimization of lipid titers in these organisms is necessary. In this study, we optimized a quick, reliable, and high-throughput Nile red-based lipid fluorometry protocol adapted for oleaginous yeasts and validated it using different approaches, the most important of which is using gas chromatography coupled to flame ionization detection and mass spectrometry. This protocol was applied in the optimization of the concentrations of ammonium chloride and glycerol for attaining highest lipid titers in Rhodotorula toruloides NRRL Y-6987 and Yarrowia lipolytica W29 using response surface central composite design (CCD). Results of this optimization showed that the optimal concentration of ammonium chloride and glycerol is 4 and 123 g/L achieving a C/N ratio of 57 for R. toruloides, whereas for Y. lipolytica, concentrations are 4 and 139 g/L with a C/N ratio of 61 for Y. lipolytica. Outside the C/N of 33 to 74 and 45 to 75, respectively, for R. toruloides and Y. lipolytica, lipid productions decrease by more than 10%. The developed regression models and response surface plots show the importance of the careful selection of C/N ratio to attain maximal lipid production. KEY POINTS: ⢠Nile red (NR)-based lipid fluorometry is efficient, rapid, cheap, high-throughput. ⢠NR-based lipid fluorometry can be well used for large-scale experiments like DoE. ⢠Optimal molar C/N ratio for maximum lipid production in lipogenic yeasts is ~60.
Assuntos
Lipídeos , Yarrowia , Glicerol , Cloreto de Amônio , Biomassa , Cromatografia Gasosa-Espectrometria de Massas , Leveduras/químicaRESUMO
R-(+)-Perillic acid, a promising anticancer and immunomodulatory agent, is the major product from the biotransformation of R-(+)-limonene-rich orange essential oil by the yeast Yarrowia lipolytica. Due to the abundance and low cost of orange essential oil, which is a byproduct of the citrus industry, we attempted to improve the biotransformation process by optimizing yeast cell mass production. Then, the whole process was transposed and adapted to a 2-L instrumented bioreactor. Cell mass production was optimized in shaker flasks using a statistical experimental design. The optimized medium (g·L-1: 22.9 glucose, 7.7 peptone, 4.1 yeast extract and 1.0 malt extract) resulted in a 13.0 g·L-1 final cell concentration and 0.18 g cell·L-1·h-1 productivity. A further increase to 18.0 g·L-1 was achieved in a 2-L bioreactor upon fed-batch culture. High-purity limonene bioconversion was performed in the same bioreactor utilizing top aeration to diminish terpene volatilization; as a result, 839.6 mg·L-1 perillic acid accumulated after 48 h. Under the same conditions, industrial orange essential oil afforded 806.4 mg·L-1 perillic acid. The yeast growth medium optimization resulted in a twofold increase in biomass accumulation and a reduction in growth medium nitrogen sources, which lowered the catalytic biomass production cost. Compared with conventional bottom aeration, the bioreactor top aeration strategy resulted in higher bioconversion rates. The conditions developed for high-purity limonene bioconversion were successfully applied to low-cost orange essential oil, showing the robustness of Y. lipolytica yeast.