Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 559: 197-205, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31627143

RESUMO

Mesoporous silica nanoparticle (MSN) demonstrates great potentials as a loading platform for bactericidal agents, but may be limited by its application form of bulk or powder. Herein, we developed MSN surface-enriched composite membranes with remarkable photodynamic antimicrobial activities via a facile electrospinning method. The mixture of zein and polycaprolactone (PCL) was served as the polymeric matrix, while the methylene blue (MB) loaded MSN was modified by trichloro (1H, 1H, 2H, 2H-heptadecafluorodecyl) silane (THFS) and acted as reactive oxygen species (ROS) generator to exert their antimicrobial performances. Owing to its low surface energy, the fluorinated MSN tended to be enriched on the surface of the nanofiber, hence significantly enhancing the ROS generation. Moreover, benefiting from the surface enrichment of the fluorinated nanoparticles, the composite membrane displayed obvious surface hydrophobicity and exhibited discernible bacterial repellency. Subsequently, upon visible light (660 nm) irradiation, the composite membrane demonstrated remarkable photodynamic antibacterial activities against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) but without essential detrimental impacts on the mammalian cells. We envision that this self-enriched MSN composite membrane may find broad applications in bacterial infection-resistant areas.


Assuntos
Anti-Infecciosos/química , Azul de Metileno/química , Nanopartículas/química , Fotoquimioterapia/métodos , Dióxido de Silício/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fibroblastos/citologia , Flúor/química , Interações Hidrofóbicas e Hidrofílicas , Luz , Camundongos , Poliésteres/química , Porosidade , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Zeína/química
2.
Int J Nanomedicine ; 14: 7461-7473, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31686817

RESUMO

Background: Premature ejaculation (PE) is the most common type of male sexual disorder with important psychological consequences. Dapoxetine (DPX), a recently approved drug for the treatment of PE, suffers from low bioavailability with large variability that ranges from 15-76% (mean 42%) after oral administration. The objective of this study is to optimize the parameters for the preparation of DPX-Zein-alpha lipoic acid (ALA) nanoparticles (NPs) to improve the bioavailability of DPX and consequently decrease therapeutic dose and adverse effect, leading to patient satisfaction and compliance. Methods: We investigated the effect of ALA concentration, PVA concentration and stirring rate on nanoparticle size (Y1), zeta potential (Y2), initial DPX release (Y3) and cumulative DPX release (Y4). In addition, in vivo pharmacokinetic study was performed for the optimized DPX formulation on human healthy volunteers compared with marketed DPX tablet. Results: The optimized DPX-loaded NPs showed Y1, Y2, Y3, and Y4 of 159.24 nm, 19.14 mV, 25.31% and 95.9 %, respectively. A single oral dose of 30 mg of optimized DPX-loaded NPs to human volunteers resulted in 2-fold improvement of AUC (1376.145±339.592 vs 709.178±146.307 in DPX), 4-fold increase in tmax (2.5±0.314 vs 0.583±0.144), prolongation of MRT (7.637±1.373 compared to 6.031±1.826 h), but with reduction in t1/2 (5.283±1.077 vs 8.452±2.813). Conclusion: The clinical findings suggest 194% enhancement of relative bioavailability of the optimized DPX-loaded NPs, potentially leading to a decrease in therapeutic dose and associated side effects in the treatment of PE.


Assuntos
Benzilaminas/administração & dosagem , Benzilaminas/farmacocinética , Nanopartículas/química , Naftalenos/administração & dosagem , Naftalenos/farmacocinética , Ácido Tióctico/química , Zeína/química , Administração Oral , Adulto , Animais , Benzilaminas/sangue , Disponibilidade Biológica , Liberação Controlada de Fármacos , Humanos , Masculino , Nanopartículas/ultraestrutura , Naftalenos/sangue , Tamanho da Partícula , Eletricidade Estática , Comprimidos
3.
J Agric Food Chem ; 67(48): 13228-13236, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31610115

RESUMO

In this study, a novel plant-protein-based nanoparticle delivery system was developed to encapsulate and stabilize curcumin and epigallocatechin gallate (EGCG) with different polarities. The strongly hydrophobic curcumin was embedded within the hydrophobic cores of zein nanoparticles using an antisolvent method, while the weakly hydrophobic EGCG was adsorbed to the region between the zein core and caseinate shell. The physicochemical properties, structure, and stability of the core-shell particles were characterized using dynamic light scattering, particle electrophoresis, fluorescence spectroscopy, and Fourier transform infrared spectroscopy. The bioaccessibility of curcumin in the core-shell nanoparticles was determined using a simulated gastrointestinal tract. Mean particle diameters around 100-200 nm could be produced by modulating the mass ratio of curcumin to zein. The encapsulation efficiency of curcumin in the core-shell nanoparticles was higher (96.2%) in the presence of EGCG than in its absence (77.9%). Moreover, the water dispersibility and 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity of the nanoparticles were significantly improved in the presence of EGCG. The simulated gastrointestinal tract experiments indicated that curcumin had a high bioaccessibility in the optimized core-shell nanoparticles. Overall, our findings suggest that EGCG can be used to improve the functional properties of curcumin-loaded zein-caseinate nanoparticles, which may increase their use in food, cosmetics, and pharmaceutical applications.


Assuntos
Caseínas/química , Catequina/análogos & derivados , Curcumina/química , Zeína/química , Disponibilidade Biológica , Catequina/química , Curcumina/metabolismo , Composição de Medicamentos , Trato Gastrointestinal/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Biológicos , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula
4.
J Agric Food Chem ; 67(43): 11977-11985, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31589424

RESUMO

Lutein is a hydrophobic carotenoid with various beneficial biological activities. Its use as a functional food, however, is currently limited by its low-water solubility, chemical instability, and poor bioavailability. The purpose of this work is to fabricate lutein-loaded nanoparticles to overcome these challenges. Lutein was encapsulated in zein nanoparticles coated with sophorolipid (ZSLNPs). The properties of ZSLNPs were characterized by transmission electron microscopy and dynamic light scattering. The results showed that the ZSLNPs were spheres with particle size around 200 nm and negative surface potentials (ζ = -54 mV). The encapsulation efficiency and loading capacity of the lutein in the ZSLNPs was 90.04% and 0.82%, respectively. Infrared spectroscopy analysis indicated that the dominant driving forces of the ZSLNPs formation mainly included electrostatic, hydrophobic interactions and hydrogen bonding. X-ray analysis showed that the encapsulated lutein was in an amorphous form. Circular dichroism analysis suggested that the incorporation of lutein or sophorolipid led to the change in secondary structure of zein. In addition, the ZSLNPs had good stability, redispersibility, and increased the water solubility of lutein. Furthermore, in vitro studies showed that the ZSLNPs had great biocompatibility and bioaccessibility of lutein. Overall, these findings indicated that the core/shell nanoparticles developed in the work may be suitable for encapsulating this important nutrient in functional foods.


Assuntos
Luteína/química , Nanopartículas/química , Ácidos Oleicos/química , Zeína/química , Disponibilidade Biológica , Portadores de Fármacos/química , Composição de Medicamentos , Ligações de Hidrogênio , Luteína/metabolismo , Tamanho da Partícula , Solubilidade , Difração de Raios X
5.
J Food Sci ; 84(10): 2883-2897, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31553062

RESUMO

Quercetin is a hydrophobic flavonoid with high antioxidant activity. However, for biological applications, the bioavailability of quercetin is low due to physiological barriers. For this reason, an alternative is the protection of quercetin in matrices of biopolymers as zein. The objective of this work was to prepare and characterize quercetin-loaded zein nanoparticles by electrospraying and its study of in vitro bioavailability. The physicochemical parameters such as viscosity, density, and electrical conductivity of zein solutions showed a dependence of the ethanol concentration. In addition, rheological parameters demonstrated that solutions of zein in aqueous ethanol present Newtonian behavior, rebounding in the formation of nanoparticles by electrospraying, providing spherical, homogeneous, and compact morphologies, mainly at a concentration of 80% (v/v) of ethanol and of 5% (w/v) of zein. The size and shape of quercetin-loaded zein nanoparticles were studied by transmission electron microscopy (TEM), observing that it was entrapped, distributed throughout the nanoparticle of zein. Analysis by Fourier transform-infrared (FT-IR) of zein nanoparticles loaded with quercetin revealed interactions via hydrogen bonds. The efficacy of zein nanoparticles to entrap quercetin was particularly high for all quercetin concentration evaluated in this work (87.9 ± 1.5% to 93.0 ± 2.6%). The in vitro gastrointestinal release of trapped quercetin after 240 min was 79.1%, while that for free quercetin was 99.2%. The in vitro bioavailability was higher for trapped quercetin (5.9%) compared to free quercetin (1.9%), than of gastrointestinal digestion. It is concluded, that the electrospraying technique made possible the obtention of quercitin-loaded zein nanoparticles increasing their bioavailability. PRACTICAL APPLICATION: This type of nanosystems can be used in the food and pharmaceutical industry. Quercetin-loaded zein nanoparticles for its improvement compared to free quercetin can be used to decrease the prevalence of chronic degenerative diseases by increasing of the bioavailability of quercetin in the bloodstream. Other application can be as an antioxidant system in functional foods or oils to increase shelf life.


Assuntos
Composição de Medicamentos/métodos , Quercetina/química , Zeína/química , Antioxidantes/química , Antioxidantes/metabolismo , Disponibilidade Biológica , Biopolímeros/química , Linhagem Celular , Portadores de Fármacos/química , Composição de Medicamentos/instrumentação , Humanos , Ligações de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula , Quercetina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
6.
J Agric Food Chem ; 67(35): 9926-9933, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31398027

RESUMO

Vitamins and flavonoids are two kinds of essential trace bioactives which are prone to photodegradation during food processing and storage. In this study, a particle-stabilized water-in-water (W/W) emulsion system composed of soy protein isolate (SPI) and guar gum (GG) was applied in loading riboflavin. Based on the significant binding affinity differences of SPI (Ka = 1.11 × 105 L mol-1) and GG (Ka = 9.00 × 103 L mol-1) to riboflavin, this hydrophilic and light-sensitive bioactive compound was loaded in SPI-rich droplets. Confocal images indicated that a stable microstructure of SPI-rich droplets suspended in GG-rich continuous phase was successfully constructed by manipulating the proportion of the two polymeric components and using zein-based particles (ZPs) as stabilizers. These negatively charged particles modified by pectin with a hydrodynamic diameter of 533 ± 5.7 nm were able to adsorb at the SPI/GG interface and subsequently stabilized the SPI-in-GG emulsion. Fluorescence spectra of riboflavin suggested that the formation of such W/W emulsion could effectively delay the photodegradation of riboflavin during an 8 h ultraviolet irradiation, and its color was maintained to a maximum extent. Therefore, this structured W/W emulsion could be a desired architecture for delivering light-sensitive cargo.


Assuntos
Riboflavina/química , Água/química , Zeína/química , Composição de Medicamentos , Emulsões/química , Excipientes/química , Galactanos/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Mananas/química , Tamanho da Partícula , Fotólise , Gomas Vegetais/química
7.
J Agric Food Chem ; 67(36): 9989-9999, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430135

RESUMO

Zein's prevalent hydrophobic character is one of the major challenges associated with ineffective utilization as an aqueous nanocarrier for pesticides. Herein, we report an effective approach to hydrophilic modification of zein by phosphorylation using nontoxic sodium tripolyphosphate (STP), thereby improving the water-solubility, foliage wettability, and adhesion ability of zein as a nanocarrier for sustained release of pesticides. The procedure relied on zein grafted with STP via N- and O- phosphate bonds and encapsulation of avermectin (AVM) as a hydrophobic model drug using phosphorylated zein (P-Zein), which achieved pH sensitivity to controlled release of AVM in various applicable environments. The chemical interaction between zein and STP was confirmed by Fourier transform infrared, thermogravimetric analysis, and differential scanning calorimetric. Scanning electron microscopy, dynamic light scattering, and zeta potential technique were applied to investigate their structural characteristics and stability, from which it was found that AVM encapsulated in P-Zein (AVM@P-Zein) formed uniform nanoparticles with average sizes in the range of 174-278 nm under different conditions, and had an excellent stability in aqueous solution. Besides, AVM@P-Zein facilitated the wettability on the foliage surface evidenced from contact angle values owing to the amphiphilic character after phosphorylation as well as enhanced the adhesion ability between liquid and leaf, restricting the pesticide runoff. Ultraviolet-visible spectroscopy was employed to explore the anti-UV property and encapsulation as well as release behavior, which revealed that the presence of P-Zein like a shell protects AVM from UV photolysis with encapsulation efficiency of approximately 81.52%, and the release of AVM from P-Zein showed pH-responsive behavior ascribed to protonation and deprotonation of phosphate under various pH conditions fitting to Elovich kinetic model, achieving the relatively more rapid release under acidic conditions. More importantly, AVM@P-Zein retained the toxicity for insecticidal effect.


Assuntos
Preparações de Ação Retardada/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Inseticidas/química , Ivermectina/análogos & derivados , Nanopartículas/química , Zeína/química , Animais , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/efeitos da radiação , Composição de Medicamentos/instrumentação , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Inseticidas/farmacologia , Ivermectina/química , Ivermectina/farmacologia , Cinética , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Nanopartículas/efeitos da radiação , Fosforilação , Polifosfatos/química , Raios Ultravioleta , Zeína/efeitos da radiação
8.
IET Nanobiotechnol ; 13(6): 571-577, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31432788

RESUMO

Bridging strategies are required to repair peripheral nerve injuries that result in gaps >5-8 mm. Limitations such as donor-site morbidity and size mismatches with receptor sites for autografts, together with immunological problems associated with allografts and xenografts, have created an increased interest in the field of manufactured nerve guide conduits. In this study, zein, a plant protein-based polymer, was electrospun to prepare nanofibrous mats. An important challenge with zein mats is the rapid change from fibre to film under aqueous conditions. Tannic acid (TA), which is a polyphenol, was selected to prepare a blend of zein/TA with different weight ratios to investigate its effect on the wetting resistance of nanofibres. The electrospun mats were characterised and evaluated by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). Also, degradation and mechanical properties of the mats were studied. Results showed that TA had a significant effect on the resistance to film formation in nanofibres. Moreover, the degradation and elongation at break of mats were increased with increase in TA concentration. For the investigation of the peripheral nerve regeneration potential, Schwann cells were selected for cytotoxicity evaluation by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay and cell morphology by SEM. Schwann cells had good biocompatibility with zein/TA blends (%) of 90/10 and 80/20.


Assuntos
Nanofibras/química , Regeneração Nervosa , Polifenóis/química , Tecidos Suporte/química , Zeína/química , Animais , Sobrevivência Celular , Células Cultivadas , Masculino , Teste de Materiais , Regeneração Nervosa/efeitos dos fármacos , Polímeros/síntese química , Polímeros/química , Polímeros/farmacologia , Polifenóis/farmacologia , Cultura Primária de Células , Ratos , Ratos Wistar , Nervo Isquiático/citologia , Nervo Isquiático/fisiologia , Engenharia Tecidual/métodos , Zeína/farmacologia
9.
Molecules ; 24(14)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373330

RESUMO

Zein composite particles coated with caseinate-pectin electrostatic complexes (zein-caseinate-pectin particles) were fabricated using an electrostatic deposition and liquid-liquid dispersion method without heating treatment. Compared to zein particles coated only with caseinate, the acidic stability of zein-caseinate-pectin particles was greatly improved, and the particle aggregation was suppressed at pH 3-6, especially at pH values near the isoelectric point of caseinate (pH 4-5). Besides, desirable long-term storage stability and re-dispersibility were observed. Under different zein to curcumin (Cur) feeding ratios (10:1, 20:1, 30:1 and 40:1, w/w), the Cur-loaded zein-caseinate-pectin particles had a spherical shape with an average diameter ranging from 358.37 to 369.20 nm, a narrow size distribution (polydispersity index < 0.2) and a negative surface charge ranging from -18.87 to -19.53 mV. The relatively high encapsulation efficiencies of Cur (81.27% to 94.00%) and desirable re-dispersibility were also achieved. Fluorescence spectroscopy indicated that the encapsulated Cur interacted with carrier materials mainly through hydrophobic interactions. The in-vitro release profile showed a sustained release of Cur from zein-caseinate-pectin particles in acidic aqueous environment (pH 4) up to 24 h, without any burst effect. In addition, the encapsulation retained more ABTS•+ radical scavenging capacity of Cur during 4 weeks of storage. These results suggest that zein-caseinate-pectin particles may be used as a potential delivery system for lipophilic nutrients in acidic beverages.


Assuntos
Caseínas , Curcumina , Nanopartículas/química , Pectinas , Zeína , Cápsulas , Caseínas/farmacocinética , Curcumina/química , Curcumina/farmacocinética , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Pectinas/química , Pectinas/farmacocinética , Eletricidade Estática , Zeína/química , Zeína/farmacocinética
10.
J Agric Food Chem ; 67(30): 8332-8338, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31298538

RESUMO

The excretion, tissue distribution, and metabolic profile of astilbin in rat were studied by HPLC and UPLC-QTOF-MS. Astilbin underwent isomerization in the small intestine, and its four isomers were found in feces. Besides, taxifolin, the aglycone of astilbin, and its further metabolites by gut microbes through hydrogenation, dehydration, and ring-fission were found. The total feces excretion of astilbin was about 14.4% of administration. The forming of zein-caseinate nanoparticles can significantly delay and reduce the feces excretion of astilbin. Astilbin and its isomers were absorbed in their intact form. The main metabolites found in plasma and tissues were the methylated products. Astilbin was rapidly distributed in various tissues including brain and maintained relatively high concentration in heart. Compared with other tissues, significantly higher concentration and longer duration of astilbin were found in the gastrointestinal tract. Astilbin and its isomers were excreted in their intact and methylated form in urine.


Assuntos
Medicamentos de Ervas Chinesas/farmacocinética , Flavonóis/farmacocinética , Maianthemum/química , Nanopartículas/química , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Feminino , Flavonóis/administração & dosagem , Flavonóis/química , Masculino , Espectrometria de Massas , Ratos Sprague-Dawley , Rizoma/química , Distribuição Tecidual , Zeína/química , Zeína/farmacocinética
11.
Int J Pharm ; 568: 118529, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323368

RESUMO

Rapamycin as a novel macrolide immunosuppressive agent has been commonly used in organ transplantation owing to its stronger immunosuppressive effect, non-nephrotoxicity and lower side effect. However its drawbacks of low bioavailability and big individual difference remain to be improved in clinical application. Here rapamycin loaded TPGS-Lecithins-Zein nanoparticles (RTLZ-NPs) with core-shell structure were prepared by the phase separation method. The RTLZ-NPs were approximately 190.3 nm in size, with PDI and zeta potential about 0.256 and -19.71 mV respectively. Drug entrapment and loading achieved were about 86.64 and 25.73% respectively. Meanwhile RTLZ-NPs exhibited favorable enzymolysis resistance abilities in gastrointestinal environments and enhanced uptake in Caco-2 cells. The optimum absorption sites of rapamycin in the intestine were duodenum and jejunum as single-pass intestinal perfusion assay. Upon also considering the results of Caco-2 cell assay, it could be speculated that the transport of rapamycin in vivo involved active transport as well as P-glycoprotein (P-gp) based efflux. Finally, the relative oral bioavailability of RTLZ-NPS was 4.33 fold higher than free rapamycin in SD rat. Altogether the designed nanoparticles can be an efficient oral delivery strategy for rapamycin analogues to prevent the attacks from destructive enzymes, reduce cell efflux, increase cell uptake, and then enhance the oral bioavailability.


Assuntos
Portadores de Fármacos/administração & dosagem , Lecitinas/administração & dosagem , Nanopartículas/administração & dosagem , Sirolimo/administração & dosagem , Vitamina E/administração & dosagem , Zeína/administração & dosagem , Administração Oral , Animais , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/administração & dosagem , Cumarínicos/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Humanos , Absorção Intestinal/efeitos dos fármacos , Lecitinas/química , Lecitinas/farmacocinética , Masculino , Nanopartículas/química , Ratos Sprague-Dawley , Sirolimo/química , Sirolimo/farmacocinética , Tiazóis/administração & dosagem , Tiazóis/química , Vitamina E/química , Vitamina E/farmacocinética , Zeína/química , Zeína/farmacocinética
12.
J Sci Food Agric ; 99(14): 6372-6379, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31278750

RESUMO

BACKGROUND: The kinetics of starch digestion is a key determinant of poultry performance. Research so far has shown that starch digestibility kinetics depends on the molecular structure of starch but also on the properties of the complex matrix in which starch granules are embedded in most feedstuffs. However, the manner in which genotype differences in the same plant affect starch digestibility kinetics has not yet been addressed. The present study explored the extent to which the starch digestibility rate in commercial high-yielding maize hybrids depended on amylose / amylopectin content, starch granule size and shape, and zein in total starch (TS) content. RESULTS: Hybrids differed in all the traits examined, giving the following ranges: amylose content, 165-207 g kg-1 DM; zein in TS content, 70-89 g kg-1 DM; starch granule equivalent diameter, 11.5-12.3 µm, and in vitro starch digestion rate, 1.22-1.44 h-1 . The starch digestion rate correlated negatively with zein in TS content (r = -0.36) and positively with equivalent diameter (r = 0.45). The negative correlation between starch digestion rate and zein in TS suggests that some zein remained after grinding and pepsin incubation and acted as a barrier to amylolytic enzymes. CONCLUSIONS: When starch granules are embedded in a complex protein matrix, zein limits their accessibility to enzymes and affects the starch digestibility rate. Surprisingly, our results suggest that when enzymes reach starch granules, they digest a greater proportion of the starch when the granules are larger. © 2019 Society of Chemical Industry.


Assuntos
Aves Domésticas/metabolismo , Amido/metabolismo , Zea mays/metabolismo , Zeína/metabolismo , Ração Animal , Animais , Digestão , Genótipo , Cinética , Amido/química , Zea mays/química , Zea mays/genética , Zeína/química
13.
Int J Biol Macromol ; 138: 244-251, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31279877

RESUMO

The objective of this study was to develop zein-casein-lysine nanoparticles to modulate the intestinal permeability of ferulic acid (FA), a bioactive compound with proven antioxidant properties. The nanoparticles were obtained by a liquid-liquid dispersion method and were characterized in terms of mean size, polydispersity index, zeta potential, association efficiency (AE), in vitro drug release, x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The in vitro intestinal permeability of nanoparticles was evaluated through Caco-2 and Caco-2/HT29-MTX monoculture and co-culture models, respectively. Nanoparticles presented a mean size of 199 nm and zeta potential of -26 mV. The AE of FA was 23% evaluated by high-performance liquid chromatography (HPLC). XRD showed amorphization of FA after association and FT-IR showed no changes in chemical structures of the compounds after nanoencapsulation. The cytotoxicity assays demonstrated that multicomposite nanoparticles presented a safe profile against Caco-2 and HT29-MTX cells. In the in vitro permeability assay, free FA exhibited higher permeability compared to FA-loaded nanoparticles, possibly due to prolonged FA release from nanoparticles. These new developed zein-casein-lysine nanoparticles may be used for FA sustained delivery by the oral route.


Assuntos
Caseínas/química , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Mucosa Intestinal/metabolismo , Lisina/química , Nanopartículas/química , Zeína/química , Administração Oral , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Ácidos Cumáricos/administração & dosagem , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos
14.
J Agric Food Chem ; 67(29): 8168-8176, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31268318

RESUMO

Protein-based nanoparticles (NPs) with favorable properties including enhanced absorptivity and low toxicity still suffer a major challenge for rapid nutraceutical or drug release after oral administration. Hence, we introduced a secondary encapsulation for unstable factor to attain a controlled-release effect in a gastrointestinal environment. In this work, assembled nanoparticles engineered by nobiletin (NOB), zein, and tannin acid (TA) were first reported for drug delivery systems. The TA added was capable of obtaining further assembly to stabilize nobiletin in comparison with NOB-loaded zein NPs only. Sunflower pollens (SPGs) were selected as carriers for further oral delivery, while zein was chosen as a coating material for capping SPGs absolutely. As a result, the NOB/zein/TA NPs (NZT NPs) obtained had a stable size of 100 nm after 48 h. Besides, they could improve the chemical stability of NOB for at least 120 days at 4 °C compared with zein NPs (ZT NPs). Owing to the secondary capping by SPGs, the final system was able to release selectively via an oral route, that is, achieving no release in a gastric environment and slow release in an intestine environment. Generally, our research proposed a secondary protection model to prevent drug-loaded NPs from resolving after oral administration, which provided a new perspective for nutraceutical or drug encapsulation and controlled-release delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Flavonas/química , Helianthus/química , Pólen/química , Administração Oral , Cápsulas/administração & dosagem , Cápsulas/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Flavonas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Taninos/química , Zeína/química
15.
Int J Biol Macromol ; 138: 135-143, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276720

RESUMO

Konjac glucomannan (KGM)/zein blend films were successfully prepared by solution casting at different drying temperatures (40, 50, 60, 70 and 80°C). The effects of drying temperature on the films' structural, thermomechanical, mechanical and water barrier properties were investigated. Microstructural observations indicated that zein particles were homogeneously dispersed in KGM continuous matrix, and the blend film dried at 60°C showed the most compact and smooth surface. Dynamic mechanical thermal analysis curves showed that with increasing drying temperature from 40 to 60°C, glass transition temperature (Tg) of films increased; however, with further increase in temperature, the Tg decreased, indicating the compatibility of film components was the highest when dried at 60°C. The hydrophobicity of blend film dried at 60°C was significantly stronger than that of other blend films, supported by the highest water contact angle, and the lowest swelling ratio and solubility. Moreover, the film dried at 60°C showed the highest tensile strength, elongation at break, and the lowest water vapor permeability. Therefore 60°C was preferred for KGM/zein blend film preparation. This study indicated that intermolecular interactions among film components were greatly influenced by the drying temperature, and should be carefully noticed for film preparation.


Assuntos
Dessecação , Mananas/química , Fenômenos Mecânicos , Temperatura Ambiente , Zeína/química , Interações Hidrofóbicas e Hidrofílicas , Permeabilidade , Solubilidade , Vapor
16.
Int J Biol Macromol ; 135: 530-543, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31152839

RESUMO

This work investigates the incorporation of the Calendula officinalis (C. officinalis) extract in electrospun fiber scaffolds composed of poly (ε-caprolactone) (PCL), Zein and gum arabic (GA). Three methods of electrospinning were used: suspension electrospinning, in which C. officinalis extract was directly added in the PCL/Zein/GA solution, two-nozzle electrospinning, in which hybrid PCL/Zein/GA and PCL/C. officinalis nanofibrous layers were prepared by two syringes and multilayer electrospinning, in which layer-by-layer scaffold was fabricated of PCL/Zein/GA and PCL/C.officinalis nanofibrous mats. SEM micrographs of fabricated scaffolds depicted beadless nanofibers with interconnected pores. The PCL/Zein/GA/C.officinalis scaffolds possess good hydrophilicity with high porosity (about 80%) and also exhibited desirable mechanical properties and suitable degradability for skin tissue engineering. Multilayer produced scaffold showed more tensile strength than other C. officinalis-loaded PCL/Zein/GA scaffolds. In vitro C.officinalis release exposed gradual and sustained release behavior for fabricated scaffold by multilayer electrospinning. The results of MTT analysis and SEM images confirmed that PCL/Zein/GA/C.officinalis nanocomposite scaffold had favorable proliferation and adhesion against fibroblast cell as compared to PCL/Zein/GA scaffold for regenerating skin. The C. officinalis-loaded PCL/Zein/GA scaffold indicated better antibacterial properties and biocompatibility than PCL/Zein/GA scaffold. The results confirmed that C. officinalis-loaded PCL/Zein/GA nanocomposite scaffolds would be desirable biomaterial for skin regeneration.


Assuntos
Calendula/química , Goma Arábica/química , Nanofibras/química , Poliésteres/química , Pele/citologia , Engenharia Tecidual , Zeína/química , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Eletricidade , Fenômenos Mecânicos , Nanocompostos/química , Extratos Vegetais/química , Propriedades de Superfície , Tecidos Suporte/química
17.
J Food Sci ; 84(7): 1829-1835, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31162872

RESUMO

Rutin-loaded corn protein hydrolysate-carboxymethyl chitosan (CPH-NOCC) Maillard conjugate nanoparticles (NPs) with superior stability under different NaCl concentrations (0-0.25 mol/L) and pH levels (7.0 to 3.0) were investigated. Results showed that the degree of glycosylation of 53.3%, browning index of 0.6, and SDS-PAGE lane of CPH-NOCC conjugates were obtained after dry heating for 48 hr (60 °C, 79% RH). The high encapsulation efficiency (EE, 97.8%-98.8%) and CPH-NOCC-rutin (98.8%) was significantly higher than CPH-rutin (97.8%) and CPH/NOCC-rutin (98.4%) NPs illustrated that hydrolysis was positive for zein encapsulation, and conjugation of NOCC to CPH increased the EE. Hairy carbohydrate protrusions on the surface of CPH-NOCC-rutin NPs produced a stronger steric effect and hampered the formation of salt bridges and the particle aggregation under CPH isoelectric point at pH 4.0. Therefore, the CPH-NOCC conjugate NPs may be suitable carrier for hydrophobic bioactive substances in a board range of business foodstuffs.


Assuntos
Quitosana/análogos & derivados , Nanopartículas/química , Proteínas de Plantas/química , Hidrolisados de Proteína/química , Rutina/química , Zea mays/química , Quitosana/química , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Reação de Maillard , Zeína/química
18.
Food Chem ; 297: 124995, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253267

RESUMO

The possible interactions between α-zein and Ca2+ in nixtamalization process were analyzed from a multidisciplinary approach, considering the effect of these interactions on the thermal properties of the nixtamalized flour. SDS-PAGE under reducing and non-reducing conditions did not reveal differences between patterns of zeins from nixtamalized and control samples. However, analysis from affinity capillary electrophoresis indicated an increment in protein volume when calcium is added to zein extracted from nixtamalized flour. In addition, the binding constant for the zein-calcium interaction was calculated indicating a higher affinity for calcium by zein from nixtamalized samples. Molecular dynamics simulations indicated that the interaction α-zein-Ca2+ through C-ter was more favorable than Glu48. However, in excess of Ca2+ ions, each site could bind one calcium atom at the same time, confirming that aggregation of α-zein through calcium bridges is possible, expanding the technological applications of this protein.


Assuntos
Cálcio/química , Modelos Teóricos , Zeína/química , Sítios de Ligação , Cálcio/metabolismo , Culinária , Eletroforese em Gel de Poliacrilamida , Farinha/análise , Simulação de Dinâmica Molecular , Termodinâmica , Temperatura de Transição , Zea mays/metabolismo , Zeína/metabolismo
19.
Int J Pharm ; 566: 557-564, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31181306

RESUMO

Although zein is a natural protein derived from corn, it has attracted much interest in pharmaceutical and biomedical sciences. Recent remarkable investigations on the use of zein in controlled drug delivery have contributed both important knowledge and potential applications of various products, particularly in the delivery of poorly water-soluble drugs. Zein has also been approved by the Food and Drug Administration for oral delivery. Substantial research has been performed to demonstrate the roles and promise of materials containing zein for pharmaceutical applications. Significant efforts have focused on the biodegradable and hydrophobic properties of zein and on technology using zein as a nanocarrier specifically for nanomedicine. However, important issues concerning the use of zein in technical advances and in the development of poorly water-soluble drugs must be addressed in order to use zein in translational research. This review aims to focus on the classification of potential approaches for using zein in the controlled release of poorly water-soluble drugs and to discuss recommended techniques for creating high-quality products from zein.


Assuntos
Preparações de Ação Retardada/química , Excipientes/química , Zeína/química , Composição de Medicamentos , Microesferas , Nanopartículas/química , Solubilidade , Água/química
20.
J Agric Food Chem ; 67(20): 5746-5753, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31045359

RESUMO

Astilbin-encapsulated zein-caseinate nanoparticles were fabricated through the antisolvent method. The encapsulation and loading efficiency of astilbin in the nanoparticles were determined by high-performance liquid chromatography. The nanoparticles were characterized by particle size, ζ potential, redispersibility, scanning electron microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy, and differential scanning calorimetry (DSC). Under the optimal formulation of astilbin, zein, and sodium caseinate with a mass ratio of 1:1:2, the size and ζ potential of the nanoparticles were 152.9 nm and -40.43 mV, respectively, while the encapsulation and loading efficiency of astilbin were 80.1 and 21.8%, respectively. The nanoparticles had good redispersibility in water without a particle size change after freeze drying. The nanoparticles showed a spherical shape with a smooth surface. XRD and DSC analyses showed that astilbin existed in amorphous form in the nanoparticles. The interactions between astilbin and the protein were found, and astilbin was encapsulated in nanoparticles rather than adsorbed. The diffusion of astilbin from nanoparticles was significantly faster than that of astilbin suspensions in both simulated gastric and intestinal fluids. Astilbin was relatively stable in simulated intestinal fluids, and the encapsulation in the nanoparticles showed a slight stability improvement effect. A pharmacokinetic study showed that the absolute bioavailability of astilbin was improved from 0.32 to 4.40% in rats through nanoparticle fabrication.


Assuntos
Composição de Medicamentos/métodos , Medicamentos de Ervas Chinesas/química , Flavonóis/química , Nanopartículas/química , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Caseínas/administração & dosagem , Caseínas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Flavonóis/administração & dosagem , Flavonóis/farmacocinética , Maianthemum/química , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Difração de Raios X , Zeína/administração & dosagem , Zeína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA