Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.527
Filtrar
1.
GM Crops Food ; 12(1): 71-83, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32997586

RESUMO

This study assessed the farm-level economic and environmental impacts from the use of genetically modified (GM) corn in Vietnam (resistant to Lepidopteran pests of corn and tolerant to the herbicide glyphosate). It was largely based on a farmer survey conducted in 2018-19. The GM varieties out-performed conventional varieties in terms of yield by +30.4% (+15.2% if the yield comparison is with only the nearest performing equivalent conventional varieties) and reduced the cost of production by between US $26.47 per ha and US $31.30 per ha. For every extra US $1 spent on GM seed relative to conventional seed, farmers gained between an additional US $6.84 and US $12.55 in extra income. The GM maize technology also reduced insecticide and herbicide use. The average amount of herbicide active ingredient applied to the GM crop area was 26% lower (1.66 kg per ha) than the average value for the conventional corn area (2.26 kg/ai per ha) and in terms of the associated environmental impact of the herbicide use, as measured by the Environmental Impact Quotient (EIQ) indicator, it was lower by 36% than the average value applicable to the conventional corn area. Insecticides were used on a significantly lower GM crop area and, when used, in smaller amounts. The average amount of insecticide applied to the GM corn crop was significantly lower by 78% (0.08 kg/ai per ha) than the average value for the conventional corn area (0.36 kg/ai per ha) and in terms of the associated environmental impact of the insecticide use, as measured by the EIQ indicator, it was also lower by 77% than the average value for conventional corn (14.06 per ha).


Assuntos
Produtos Agrícolas/genética , Zea mays/genética , Fazendas , Plantas Geneticamente Modificadas/genética , Inquéritos e Questionários , Vietnã
2.
Plant Genome ; 13(1): e20008, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016632

RESUMO

Sweet corn (Zea mays L.) is highly consumed in the United States, but does not make major contributions to the daily intake of carotenoids (provitamin A carotenoids, lutein and zeaxanthin) that would help in the prevention of health complications. A genome-wide association study of seven kernel carotenoids and twelve derivative traits was conducted in a sweet corn inbred line association panel ranging from light to dark yellow in endosperm color to elucidate the genetic basis of carotenoid levels in fresh kernels. In agreement with earlier studies of maize kernels at maturity, we detected an association of ß-carotene hydroxylase (crtRB1) with ß-carotene concentration and lycopene epsilon cyclase (lcyE) with the ratio of flux between the α- and ß-carotene branches in the carotenoid biosynthetic pathway. Additionally, we found that 5% or less of the evaluated inbred lines possessing the shrunken2 (sh2) endosperm mutation had the most favorable lycE allele or crtRB1 haplotype for elevating ß-branch carotenoids (ß-carotene and zeaxanthin) or ß-carotene, respectively. Genomic prediction models with genome-wide markers obtained moderately high predictive abilities for the carotenoid traits, especially lutein, and outperformed models with less markers that targeted candidate genes implicated in the synthesis, retention, and/or genetic control of kernel carotenoids. Taken together, our results constitute an important step toward increasing carotenoids in fresh sweet corn kernels.


Assuntos
Carotenoides , Zea mays , Estudo de Associação Genômica Ampla , Fenótipo , Zea mays/genética , beta Caroteno
3.
Plant Genome ; 13(1): e20003, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016634

RESUMO

Root anatomical phenes have important roles in soil resource capture and plant performance; however, their phenotypic plasticity and genetic architecture is poorly understood. We hypothesized that (a) the responses of root anatomical phenes to water deficit (stress plasticity) and different environmental conditions (environmental plasticity) are genetically controlled and (b) stress and environmental plasticity are associated with different genetic loci than those controlling the expression of phenes under water-stress and well-watered conditions. Root anatomy was phenotyped in a large maize (Zea mays L.) association panel in the field with and without water deficit stress in Arizona and without water deficit stress in South Africa. Anatomical phenes displayed stress and environmental plasticity; many phenotypic responses to water deficit were adaptive, and the magnitude of response varied by genotype. We identified 57 candidate genes associated with stress and environmental plasticity and 64 candidate genes associated with phenes under well-watered and water-stress conditions in Arizona and under well-watered conditions in South Africa. Four candidate genes co-localized between plasticity groups or for phenes expressed under each condition. The genetic architecture of phenotypic plasticity is highly quantitative, and many distinct genes control plasticity in response to water deficit and different environments, which poses a challenge for breeding programs.


Assuntos
Raízes de Plantas , Zea mays , Regulação da Expressão Gênica , Raízes de Plantas/genética , Solo , Água , Zea mays/genética
4.
Plant Genome ; 13(1): e20014, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016635

RESUMO

Genomic prediction (GP) might be an efficient way to improve haploid induction rate (HIR) and to reduce the laborious and time-consuming task of phenotypic selection for HIR in maize (Zea mays L.). In this study, we evaluated GP accuracies for HIR and other agronomic traits of importance to inducers by independent and cross-validation. We propose the use of GP for cross prediction and parental selection in the development of new inducer breeding populations. A panel of 159 inducers from Iowa State University (ISU set) was genotyped and phenotyped for HIR and several agronomic traits. The data of an independent set of 53 inducers evaluated by the University of Hohenheim (UOH set) was used for independent validation. The HIR ranged from 0.61 to 20.74% and exhibited high heritability (0.90). High cross-validation prediction accuracy was observed for HIR (r = 0.82), whereas for other traits it ranged from 0.36 (self-induction rate) to 0.74 (days to anthesis). Prediction accuracies across different sets were higher when the larger panel (ISU set) was used as a training population (r = 0.54). The average HIR of the 12,561 superior predicted progenies (µSP ) ranged from 1.00-18.36% and was closely related to the corresponding midparent genomic estimated breeding value (GEBV). A predicted genetic variance (VG ) of reduced magnitude was observed in the twenty crosses with highest midparent GEBV or µSP for HIR. Our results indicate that although GP is a useful tool for parental selection, decisions about which cross combinations should be pursued need to be based on optimal trade-offs between maximizing both µSP and VG .


Assuntos
Modelos Genéticos , Zea mays , Genoma , Genômica , Haploidia , Zea mays/genética
5.
Nat Commun ; 11(1): 4954, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009396

RESUMO

Genetic variation is of crucial importance for crop improvement. Landraces are valuable sources of diversity, but for quantitative traits efficient strategies for their targeted utilization are lacking. Here, we map haplotype-trait associations at high resolution in ~1000 doubled-haploid lines derived from three maize landraces to make their native diversity for early development traits accessible for elite germplasm improvement. A comparative genomic analysis of the discovered haplotypes in the landrace-derived lines and a panel of 65 breeding lines, both genotyped with 600k SNPs, points to untapped beneficial variation for target traits in the landraces. The superior phenotypic performance of lines carrying favorable landrace haplotypes as compared to breeding lines with alternative haplotypes confirms these findings. Stability of haplotype effects across populations and environments as well as their limited effects on undesired traits indicate that our strategy has high potential for harnessing beneficial haplotype variation for quantitative traits from genetic resources.


Assuntos
Haplótipos/genética , Característica Quantitativa Herdável , Zea mays/genética , Biblioteca Gênica , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Haploidia , Melhoramento Vegetal , Análise de Componente Principal , Zea mays/crescimento & desenvolvimento
6.
Wei Sheng Yan Jiu ; 49(4): 569-573, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32928347

RESUMO

OBJECTIVE: To evaluate the effects of genetically modified maize with Cry1Ab and epsps genes on immune function in F3 rats. METHODS: A total of 180 weaning SD rats for F0 generation were randomly divided into three groups, which were treated with AIN-93 G feed control diet, parental maize diet and genetically modified maize diet respectively. After three generations of breeding, antibody producing cells determination, concanavalin A(ConA)-induced lymphocyte transformation test, natural killer(NK)cells activities assay, whole blood lymphocyte subtype detection, delayed type hypersensitivity test and immunity organ index were performed. RESULTS: There were no significant differences between parental maize diet and genetically modified maize diet in terms of the number of antibody-producing cells, ConA-induced spleen lymphocyte proliferation, NK cell activity, whole blood lymphocyte subsets, delayed type hypersensitivity and thymus index(P>0. 05). CONCLUSION: Under the conditions of this experiment, no significant effects were found on immune function of F3 SD rats through the three generation development study of genetically modified maize with CrylAb and epsps genes.


Assuntos
Alimentos Geneticamente Modificados , Zea mays/genética , Animais , Proteínas de Bactérias/genética , Endotoxinas , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas , Ratos , Ratos Sprague-Dawley
7.
Medicine (Baltimore) ; 99(31): e21326, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32756117

RESUMO

Northern corn leaf blight (NCLB), a corn disease infected by Exserohilum turcicum, can cause loss of harvest and economy. Identification or evaluation of NCLB-resistant quantitative trait loci (QTL) and genes could improve maize breeds. This study aimed to identify novel QTLs for NCLB-resistance.Two maize strains (BB and BC) were utilized to generate B73 × B97 and B73 × CML322 and constructed the genetic linkage using high-throughput single nucleotide polymorphism (SNP) linkage map analysis of 170 (BB) and 163(BC) recombinant inbred line (RIL) genomic DNA samples. NCLB-resistant QTL was associated with phenotypic data from the field trial of 170 BB and 163 BC strains over two years using these 1100 SNPs to identify high-density NCLB-resistant QTLs.In BB, QTL of the NCLB resistance was on chromosome 1 and 3 (LOD scores between 2.74 and 5.44); in BC, QTL of NCLB resistance was on chromosome 1, 2, 4, 8, and 9 (LOD scores between 2.52 and 8.53). A number of genes or genetic information related to NCLB resistance in both BB and BC were identified with the maximum number of genes/NCLB resistance-related QTL on chromosome 3 for BB and on chromosome 1 for BC.This study successfully mapped and identified NCLB-resistant QTL and genes for these 2 different maize strains, which provides insightful information for future study of NCLB-resistance and selection of NCLB-resistant maize variants.


Assuntos
Doenças das Plantas/genética , Zea mays/genética , Marcadores Genéticos , Imunidade Inata , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas
8.
PLoS One ; 15(8): e0236668, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756571

RESUMO

While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportunity to save on reagent costs is offset by the increased costs of labor, materials, and risk-of-error caused by increasingly complex pooling strategies. This paper compares one-dimensional (1D), two-dimensional (2D), and Shifted Transversal Design (STD) pooling to study whether pooling affects assay accuracy and experimental cost and to provide guidance for when a human experimentalist might benefit from pooling. We approximated mycotoxin contamination in single corn kernels by fitting statistical distributions to experimental data (432 kernels for aflatoxin and 528 kernels for fumonisin) and used experimentally-validated Monte-Carlo simulation (10,000 iterations) to evaluate assay sensitivity, specificity, reagent cost, and pipetting cost. Based on the validated simulation results, assay sensitivity remains 100% for all four pooling strategies while specificity decreases as prevalence level rises. Reagent cost could be reduced by 70% and 80% in 48- and 96-well plates, with 1D and STD pooling being most reagent-saving respectively. Such a reagent-saving effect is only valid when prevalence level is < 21% for 48-well plates and < 13%-21% for 96-well plates. Pipetting cost will rise by 1.3-3.3 fold for 48-well plates and 1.2-4.3 fold for 96-well plates, with 1D pooling by row requiring the least pipetting. Thus, it is advisable to employ pooling when the expected prevalence level is below 21% and when the likely savings of up to 80% on reagent cost outweighs the increased materials and labor costs of up to 4 fold increases in pipetting.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Programas de Rastreamento/métodos , Micotoxinas/isolamento & purificação , Humanos , Método de Monte Carlo , Micotoxinas/química , Micotoxinas/genética , Zea mays/genética , Zea mays/microbiologia
9.
PLoS One ; 15(7): e0237094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735582

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of corn in the United States. Transgenic corn expressing insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt) is an important tool used to manage rootworm populations. However, field-evolved resistance to Bt threatens this technology. In areas where resistance is present, resistant individuals may travel from one field to a neighboring field, spreading resistance alleles. An important question that remains to be answered is the extent to which greater-than-expected root injury (i.e., >1 node of injury) to Cry3Bb1 corn from western corn rootworm is associated with rootworm abundance, root injury, and levels of resistance in neighboring fields. To address this question, fields with a history of greater-than-expected injury to Cry3Bb1 corn (focal fields) and surrounding fields (< 2.2 km from focal fields) were examined to quantify rootworm abundance, root injury, and resistance to Cry3Bb1 corn. Additionally, use of Bt corn and soil insecticide use for the previous six years were quantified for each field. Resistance to Cry3Bb1 was present in all fields assayed, even though focal fields had grown more Cry3 corn and less non-Bt corn than surrounding fields. This finding implies that some movement of resistance alleles had occurred between focal fields and surrounding fields. Overall, our data suggest that resistance to Cry3Bb1 in the landscape has been influenced by both local rootworm movement and field-level management tactics.


Assuntos
Endotoxinas/genética , Resistência a Inseticidas/genética , Zea mays/genética , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Besouros/crescimento & desenvolvimento , Produtos Agrícolas/genética , Genes Bacterianos , Larva/crescimento & desenvolvimento , Controle Biológico de Vetores , Raízes de Plantas , Plantas Geneticamente Modificadas
10.
PLoS One ; 15(8): e0237715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822374

RESUMO

Transcriptomic responses of plants to weed presence gives insight on the physiological and molecular mechanisms involved in the stress response. This study evaluated transcriptomic and morphological responses of two teosinte (Zea mays ssp parviglumis) (an ancestor of domesticated maize) lines (Ames 21812 and Ames 21789) to weed presence and absence during two growing seasons. Responses were compared after 6 weeks of growth in Aurora, South Dakota, USA. Plant heights between treatments were similar in Ames 21812, whereas branch number decreased when weeds were present. Ames 21789 was 45% shorter in weedy vs weed-free plots, but branch numbers were similar between treatments. Season-long biomass was reduced in response to weed stress in both lines. Common down-regulated subnetworks in weed-stressed plants were related to light, photosynthesis, and carbon cycles. Several unique response networks (e.g. aging, response to chitin) and gene sets were present in each line. Comparing transcriptomic responses of maize (determined in an adjacent study) and teosinte lines indicated three common gene ontologies up-regulated when weed-stressed: jasmonic acid response/signaling, UDP-glucosyl and glucuronyltransferases, and quercetin glucosyltransferase (3-O and 7-O). Overall, morphologic and transcriptomic differences suggest a greater varietal (rather than a conserved) response to weed stress, and implies multiple responses are possible. These findings offer insights into opportunities to define and manipulate gene expression of several different pathways of modern maize varieties to improve performance under weedy conditions.


Assuntos
Plantas Daninhas , Transcriptoma , Zea mays/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Luz , Fotossíntese , Plantas Daninhas/fisiologia , Estresse Fisiológico , Zea mays/genética , Zea mays/fisiologia
11.
Gene ; 757: 144928, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32622989

RESUMO

Tassel branch number (TBN) is the principal component of tassel inflorescence architecture in the maize plant. TBN is believed to be controlled by a set of quantitative trait loci (QTLs). However, it is necessary to identify and genetically evaluate these QTLs before the TBN can be improved upon using a molecular breeding approach. Therefore, in this study, we developed the chromosome segment introgression line (CSIL) TBN1 with the Zong31 (Z31) background and a higher TBN, and then we utilized the CSIL-TBN1-derived populations and identified a major QTL, qTBN6a, by linkage analysis. Fine mapping of the qTBN6a QTL was validated using a set of sub-CSILs and located in a 240-kb genomic region (Bin6.07) in B73RefGen_v4. One allele included in the introgression fragment had a positive effect, noticeably increasing the TBN and demonstrating the potential to improve the TBN of Z31. Afterward, in the qTBN6a interval, gene expression, sequence alignment, functional analysis, and the analysis of motifs in the 5' UTR suggested that candidate genes of qTBN6a are important functional genes at the early stage of immature infected tassel development. Among these candidate genes, a long W22::Mu-insertion/deletion in exon one and an 11-bp insertion/deletion in the promoter region may affect the variation of the qTBN6a QTL observed between Z31 and TBN1. In addition, the candidate genes of qTBN6a were found to encode a pentatricopeptide repeat (PPR)-containing protein and a histone deacetylase (HDA), which are known to be closely associated with RNA editing and stability and chromatin state activity for the transcription of gene expression, respectively. Finally, a model of qTBN6a based on the synergistic regulation of PPR and HDA for the maintenance of inflorescence meristem (IM) identity and its differentiation to the branch meristem (BM) in TBN1 was suggested. Collectively, our results provide an available locus for the molecular improvement of TBN and the isolation of functional genes underlying this QTL.


Assuntos
Meristema/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays/genética , Genoma de Planta , Histona Desacetilases/genética , Meristema/crescimento & desenvolvimento , Proteínas de Plantas/genética , Zea mays/crescimento & desenvolvimento
12.
PLoS Genet ; 16(7): e1008882, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32673315

RESUMO

Expansion of the maize growing area was central for food security in temperate regions. In addition to the suppression of the short-day requirement for floral induction, it required breeding for a large range of flowering time that compensates the effect of South-North gradients of temperatures. Here we show the role of a novel florigen gene, ZCN12, in the latter adaptation in cooperation with ZCN8. Strong eQTLs of ZCN8 and ZCN12, measured in 327 maize lines, accounted for most of the genetic variance of flowering time in platform and field experiments. ZCN12 had a strong effect on flowering time of transgenic Arabidopsis thaliana plants; a path analysis showed that it directly affected maize flowering time together with ZCN8. The allelic composition at ZCN QTLs showed clear signs of selection by breeders. This suggests that florigens played a central role in ensuring a large range of flowering time, necessary for adaptation to temperate areas.


Assuntos
Adaptação Fisiológica/genética , Florígeno/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Aclimatação/genética , Temperatura Baixa , Flores/genética , Flores/crescimento & desenvolvimento , Humanos , Fotoperíodo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Zea mays/crescimento & desenvolvimento
13.
BMC Evol Biol ; 20(1): 91, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727363

RESUMO

BACKGROUND: The SIAMESE (SIM) locus is a cell-cycle kinase inhibitor (CKI) gene that has to date been identified only in plants; it encodes a protein that promotes transformation from mitosis to endoreplication. Members of the SIAMESE-RELATED (SMR) family have similar functions, and some are related to cell-cycle responses and abiotic stresses. However, the functions of SMRs are poorly understood in maize (Zea mays L.). RESULTS: In the present study, 12 putative SMRs were identified throughout the entire genome of maize, and these were clustered into six groups together with the SMRs from seven other plant species. Members of the ZmSMR family were divided into four groups according to their protein sequences. Various cis-acting elements in the upstream sequences of ZmSMRs responded to abiotic stresses. Expression analyses revealed that all ZmSMRs were upregulated at 5, 20, 25, and 35 days after pollination. In addition, we found that ZmSMR9/11/12 may have regulated the initiation of endoreplication in endosperm central cells. Additionally, ZmSMR2/10 may have been primarily responsible for the endoreplication regulation of outer endosperm or aleurone cells. The relatively high expression levels of almost all ZmSMRs in the ears and tassels also implied that these genes may function in seed development. The effects of treatments with ABA, heat, cold, salt, and drought on maize seedlings and expression of ZmSMR genes suggested that ZmSMRs were strongly associated with response to abiotic stresses. CONCLUSION: The present study is the first to conduct a genome-wide analysis of members of the ZmSMR family by investigating their locations in chromosomes, identifying regulatory elements in their promoter regions, and examining motifs in their protein sequences. Expression analysis of different endosperm developmental periods, tissues, abiotic stresses, and hormonal treatments suggests that ZmSMR genes may function in endoreplication and regulate the development of reproductive organs. These results may provide valuable information for future studies of the functions of the SMR family in maize.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Zea mays/genética , Sequência de Aminoácidos , Sequência de Bases , Cromossomos de Plantas/genética , Sequência Conservada/genética , Endosperma/genética , Duplicação Gênica , Genes de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Análise de Regressão , Especificidade da Espécie , Estresse Fisiológico/efeitos dos fármacos , Sintenia/genética
14.
PLoS One ; 15(7): e0236571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730284

RESUMO

The occurrence of genotype by environment interaction (G x E), which is defined as the differential response of genotypes to environmental variation, is frequently reported in maize cultures, making it challenging to recommend cultivars. Methods allowing to study the potential nonlinear pattern of genotype responses to environmental variation allied to prior beliefs on unknown parameters are interesting to evaluate the phenotypic adaptability and stability of genotypes. In this context, the present study aimed to assess the adaptability and stability of maize hybrids, by using the Bayesian segmented regression model, and evaluate the efficacy of using informative and minimally informative prior distributions for the selection of cultivars. Randomized complete-block design experiments were carried out to study the yield (kg/ha) of 25 maize hybrids, in 22 different environments, in Northeastern Brazil. The Bayesian segmented regression model fitted using informative prior distributions presented lower credibility intervals and Deviance Criterium of Information values, compared to those obtained by fitting using minimally informative distributions. Therefore, the model using informative prior distributions was considered for the adaptability and stability evaluation of maize genotypes. Once most northeastern farmers in Brazil have limited capital, the genotype P4285HX should be considered for planting, due to its high yield performance and adaptability to unfavorable environments.


Assuntos
Modelos Genéticos , Zea mays/genética , Adaptação Fisiológica/genética , Teorema de Bayes , Interação Gene-Ambiente , Genótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(31): 18385-18392, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690686

RESUMO

Transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt) can suppress pests and reduce insecticide sprays, but their efficacy is reduced when pests evolve resistance. Although farmers plant refuges of non-Bt host plants to delay pest resistance, this tactic has not been sufficient against the western corn rootworm, Diabrotica virgifera virgifera In the United States, some populations of this devastating pest have rapidly evolved practical resistance to Cry3 toxins and Cry34/35Ab, the only Bt toxins in commercially available corn that kill rootworms. Here, we analyzed data from 2011 to 2016 on Bt corn fields producing Cry3Bb alone that were severely damaged by this pest in 25 crop-reporting districts of Illinois, Iowa, and Minnesota. The annual mean frequency of these problem fields was 29 fields (range 7 to 70) per million acres of Cry3Bb corn in 2011 to 2013, with a cost of $163 to $227 per damaged acre. The frequency of problem fields declined by 92% in 2014 to 2016 relative to 2011 to 2013 and was negatively associated with rotation of corn with soybean. The effectiveness of corn rotation for mitigating Bt resistance problems did not differ significantly between crop-reporting districts with versus without prevalent rotation-resistant rootworm populations. In some analyses, the frequency of problem fields was positively associated with planting of Cry3 corn and negatively associated with planting of Bt corn producing both a Cry3 toxin and Cry34/35Ab. The results highlight the central role of crop rotation for mitigating impacts of D. v. virgifera resistance to Bt corn.


Assuntos
Besouros/fisiologia , Produção Agrícola/métodos , Endotoxinas/farmacologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/imunologia , Zea mays/imunologia , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Besouros/efeitos dos fármacos , Produção Agrícola/economia , Endotoxinas/genética , Endotoxinas/metabolismo , Resistência a Inseticidas , Iowa , Controle Biológico de Vetores/economia , Doenças das Plantas/economia , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Soja/crescimento & desenvolvimento , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/parasitologia
16.
PLoS One ; 15(6): e0233911, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479550

RESUMO

Promoters are very important for transcriptional regulation and gene expression, and have become invaluable tools for genetic engineering. Owing to the characteristics of obligate biotrophs, molecular research into obligate biotrophic fungi is seriously lagging behind, and very few of their endogenous promoters have been developed. In this study, a WY7 fragment was predicted in the genome of Oidium heveae Steinmann using PromoterScan. Its promoter function was verified with transient transformations (Agrobacterium tumefaciens-mediated transformation, ATMT) in Nicotiana tabacum cv. Xanthi nc. The analysis of the transcription range showed that WY7 could regulate GUS expression in both monocots (Zea mays Linn and Oryza sativa L. spp. Japonica cv. Nipponbare) and dicots (N. tabacum and Hylocereus undulates Britt). The results of the quantitative detection showed that the GUS transient expression levels when regulated by WY7 was more than 11.7 times that of the CaMV 35S promoter in dicots (N. tabacum) and 5.13 times that of the ACT1 promoter in monocots (O. sativa). GUS staining was not detected in the T1 generation of the WY7-GUS transgenic N. tabacum. This showed that WY7 is an inducible promoter. The cis elements of WY7 were predicted using PlantCARE, and further experiments indicated that WY7 was a low temperature- and salt-inducible promoter. Soluble proteins produced by WY7-hpa1Xoo transgenic tobacco elicited hypersensitive responses (HR) in N. tabacum leaves. N. tabacum transformed with pBI121-WY7-hpa1Xoo exhibited enhanced resistance to the tobacco mosaic virus (TMV). The WY7 promoter has a lot of potential as a tool for plant genetic engineering. Further in-depth studies will help to better understand the transcriptional regulation mechanisms of O. heveae.


Assuntos
Fungos/genética , Regulação Fúngica da Expressão Gênica , Engenharia Genética/métodos , Doenças das Plantas/prevenção & controle , Regiões Promotoras Genéticas , Fungos/patogenicidade , Genoma Fúngico , Hevea/genética , Hevea/microbiologia , Interações Hospedeiro-Patógeno/genética , Magnoliopsida/genética , Magnoliopsida/microbiologia , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Tabaco/genética , Tabaco/microbiologia , Transformação Genética , Zea mays/genética , Zea mays/microbiologia
17.
PLoS One ; 15(6): e0232633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555651

RESUMO

Maize, a main crop worldwide, establishes a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi providing nutrients to the roots from soil volumes which are normally not in reach of the non-colonized root. The mycorrhizal phosphate uptake pathway (MPU) spans from extraradical hyphae to root cortex cells housing fungal arbuscules and promotes the supply of phosphate to the mycorrhizal host in exchange for photosynthetic carbon. This symbiotic association with the mycobiont has been shown to affect plant host nutritional status and growth performance. However, whether and how the MPU affects the root microbial community associated with mycorrhizal hosts in association with neighboring plants, remains to be demonstrated. Here the maize germinal Mu transposon insertion mutant pht1;6, defective in mycorrhiza-specific Pi transporter PHT1;6 gene, and wild type B73 (wt) plants were grown in mono- and mixed culture and examined under greenhouse and field conditions. Disruption of the MPU in pht1;6 resulted in strongly diminished growth performance, in reduced P allocation to photosynthetic source leaves, and in imbalances in leaf elemental composition beyond P. At the microbial community level a loss of MPU activity had a minor effect on the root-associated fungal microbiome which was almost fully restricted to AM fungi of the Glomeromycotina. Moreover, while wt grew better in presence of pht1;6, pht1;6 accumulated little biomass irrespective of whether it was grown in mono- or mixed culture and despite of an enhanced fungal colonization of its roots in co-culture with wt. This suggested that a functional MPU is prerequisite to maintain maize growth and that neighboring plants competed for AM fungal Pi in low P soil. Thus future strategies towards improving yield in maize populations on soils with low inputs of P fertilizer could be realized by enhancing MPU at the individual plant level while leaving the root-associated fungal community largely unaffected.


Assuntos
Micorrizas/metabolismo , Fosfatos/metabolismo , Zea mays/microbiologia , Zea mays/fisiologia , Biomassa , Mutação com Perda de Função , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Solo/química , Simbiose/fisiologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento
18.
PLoS One ; 15(6): e0234335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32516348

RESUMO

Shoot fly (Atherigona naqvii) is one of the major insects affecting spring maize in North India and can cause yield loss up to 60 per cent. The genetics of insect resistance is complex as influenced by genotypic background, insect population and climatic conditions. Therefore, quantitative trait loci (QTL) mapping is a highly effective approach for studying genetically complex forms of insect resistance. The objective of the present study was to dissect the genetic basis of resistance and identification of genomic regions associated with shoot fly resistance. A total of 107 F2 population derived from the cross CM143 (resistant) x CM144 (susceptible) was genotyped with 120 SSR markers. Phenotypic data were recorded on replicated F2:3 progenies for various component traits imparting resistance to shoot fly at different time intervals. Resistance to shoot fly was observed to be under polygenic control as evidenced by the identification of 19 putative QTLs governed by overdominance to partial dominance and additive gene actions. The major QTLs conditioning shoot fly resistance viz., qDH9.1 (deadheart) and qEC9.1 (oviposition) explaining 15.03 and 18.89 per cent phenotypic variance, respectively were colocalized on chromosome 9. These QTLs are syntenic to regions of chromosome 10 of sorghum which were also accounted for deadheart and oviposition suggesting that the same gene block may be responsible for shoot fly resistance. The candidate genes such as cysteine protease, subtilisin-chymotrypsin inhibitor, cytochrome P450 involved in synthesis of alleochemicals, receptor kinases, glossy15 and ubiquitin-proteasome degradation pathway were identified within the predicted QTL regions. This is the first reported mapping of QTLs conferring resistance to shoot fly in maize, and the markers identified here will be a valuable resource for developing elite maize cultivars with resistance to shoot fly.


Assuntos
Resistência à Doença/genética , Sorghum/genética , Zea mays/genética , Animais , Mapeamento Cromossômico/métodos , Grão Comestível/genética , Genômica/métodos , Genótipo , Índia , Insetos , Repetições de Microssatélites/genética , Controle Biológico de Vetores/métodos , Fenótipo , Doenças das Plantas/genética , Locos de Características Quantitativas/genética
19.
An Acad Bras Cienc ; 92 Suppl 1: e20180874, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32491135

RESUMO

In plant breeding, the dialelic models univariate have aided the selection of parents for hybridization. Multivariate analyses allow combining and associating the multiple pieces of information of the genetic relationships between traits. Therefore, multivariate analyses might refine the discrimination and selection of the parents with greater potential to meet the goals of a plant breeding program. Here, we propose a method of multivariate analysis used for stablishing mega-traits (MTs) in diallel trials. The proposed model is applied in the evaluation of a multi-environment complete diallel trial with 90 F1's of simple maize hybrids. From a set of 14 traits, we demonstrated how establishing and interpreting MTs with agronomic implication. The diallel analyzes based on mega-traits present an important evolution in statistical procedures since the selection is based on several traits. We believe that the proposed method fills an important gap of plant breeding. In our example, three MTs were established. The first, formed by plant stature-related traits, the second by tassel size-related traits, and the third by grain yield-related traits. Individual and joint diallel analysis using the established MTs allowed identifying the best hybrid combinations for achieving F1's with lower plant stature, tassel size, and higher grain yield.


Assuntos
Hibridização Genética/genética , Melhoramento Vegetal/métodos , Zea mays/genética , Análise Fatorial , Genótipo , Análise Multivariada , Fenótipo , Zea mays/crescimento & desenvolvimento
20.
Nat Commun ; 11(1): 2912, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518237

RESUMO

Small RNAs play important roles during plant development by regulating transcript levels of target mRNAs, maintaining genome integrity, and reinforcing DNA methylation. Dicer-like 5 (Dcl5) is proposed to be responsible for precise slicing in many monocots to generate diverse 24-nt phased, secondary small interfering RNAs (phasiRNAs), which are exceptionally abundant in meiotic anthers of diverse flowering plants. The importance and functions of these phasiRNAs remain unclear. Here, we characterized several mutants of dcl5, including alleles generated by the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system and a transposon-disrupted allele. We report that dcl5 mutants have few or no 24-nt phasiRNAs, develop short anthers with defective tapetal cells, and exhibit temperature-sensitive male fertility. We propose that DCL5 and 24-nt phasiRNAs are critical for fertility under growth regimes for optimal yield.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Proteínas de Plantas/fisiologia , Zea mays/genética , Alelos , Sistemas CRISPR-Cas , Edição de Genes , Mutagênese , Mutação , Proteínas de Plantas/genética , RNA de Plantas/genética , RNA Interferente Pequeno/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA