RESUMO
The contamination of mycotoxins poses a serious threat to global food security, hence the urgent need for simultaneous detection of multiple mycotoxins. Herein, two SERS nanoprobes were synthesized by embedded SERS tags (4-mercaptopyridine, 4MPy; 4-mercaptobenzonitrile, TBN) into the Au and Ag core-shell structure, and each was coupled with the aptamers specific to ochratoxin A (OTA) and zearalenone (ZEN). Meanwhile, a rigid enhanced substrate Indium tin oxide glass/AuNPs/Graphene oxide (ITO/AuNPs/GO) was combined with aptamer functionalized Au@AgNPs via π-π stacking interactions between the aptamer and GO to construct a surface-enhanced Raman spectroscopy (SERS) aptasensor, thereby inducing a SERS enhancement effect for the effective and swift simultaneous detection of both OTA and ZEN. The presence of OTA and ZEN caused signal probes dissociation, resulting in an inverse correlation between Raman signal intensity (1005 cm-1 and 2227 cm-1) and the concentrations of OTA and ZEN, respectively. The SERS aptasensor exhibited wide linear detection ranges of 0.001-20 ng/mL for OTA and 0.1-100 ng/mL for ZEN, with low detection limits (LOD) of 0.94 pg/mL for OTA and 59 pg/mL for ZEN. Furthermore, the developed SERS aptasensor demonstrated feasible applicability in the detection of OTA and ZEN in maize, showcasing its substantial potential for practical implementation.
Assuntos
Aptâmeros de Nucleotídeos , Ouro , Grafite , Limite de Detecção , Nanopartículas Metálicas , Ocratoxinas , Prata , Análise Espectral Raman , Zearalenona , Ocratoxinas/análise , Análise Espectral Raman/métodos , Ouro/química , Zearalenona/análise , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Prata/química , Grafite/química , Compostos de Estanho/química , Técnicas Biossensoriais/métodos , Contaminação de Alimentos/análiseRESUMO
Zearalenone (ZEN) is a toxic secondary metabolite produced by the Fusarium fungi, which widely contaminates grains, food, and feed, causing health hazards for humans and animals. Therefore, it is essential to find effective ZEN detoxification methods. Enzymatic degradation of ZEN is believed to be an eco-friendly detoxification strategy, specifically thermostable ZEN degradation enzymes are needed in the food and feed industry. In this study, a novel ZEN lactone hydrolase ZHRnZ from Rosellinia necatrix was discovered using bioinformatic and molecular docking technology. The recombinant ZHRnZ showed the best activity at pH 9.0 and 45 °C with more than 90% degradation for ZEN, α-zearalenol (α-ZOL), ß-zearalenol (ß-ZOL) and α-zearalanol (α-ZAL) after incubation for 15 min. We obtained 10 mutants with improved thermostability by single point mutation technology. Among them, mutants E122Q and E122R showed the best performance, which retained more than 30% of their initial activity at 50 °C for 2 min, and approximately 10% of their initial activity at 60 °C for 1 min. The enzymatic kinetic study showed that the catalytic efficiency of E122R was 1.3 times higher than that of the wild-type (WT). Comprehensive consideration suggests that mutant E122R is a promising hydrolase to detoxify ZEN in food and feed.
Assuntos
Estabilidade Enzimática , Hidrolases , Simulação de Acoplamento Molecular , Zearalenona , Zearalenona/metabolismo , Zearalenona/química , Hidrolases/metabolismo , Hidrolases/química , Hidrolases/genética , Cinética , Concentração de Íons de Hidrogênio , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Lactonas/metabolismo , Temperatura , Hypocreales/enzimologia , Hypocreales/genéticaRESUMO
Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that has been shown to have adverse effects on human and animal health, particularly on the fertility of females. As a saponin derived from the medicinal plant Centella asiatica, asiaticoside (AS) has multiple bioactivities. This study aimed to investigate the protective effects of AS on ZEA-induced uterine injury and the underlying mechanism. In the present study, we demonstrated that AS could rescue ZEA-induced uterine histopathological damage and modulate the secretion of sex hormones, including progesterone (P4), luteinizing hormone (LH), and estradiol (E2), in ZEA-treated mice. Moreover, AS alleviated ZEA-induced damage to endometrial barrier function by upregulating the expression of tight junction proteins (ZO-1, occludin, and claudin-3). Further mechanistic investigations indicated that ZEA reduces the antioxidant capacity of uterine tissues, whereas AS improves the antioxidant capacity through activating the Nrf2 signaling pathway. Most notably, the protective effect of AS was blocked in Nrf2 gene knockout (Nrf2-/-) mice. Moreover, the p38/ERK MAPK pathway has been implicated in regulating ZEA toxicity and the beneficial effect of AS. Additionally, an Nrf2 inhibitor (ML385) weaken the suppressive effect of AS on the oxidative stress and MAPK pathway. AS also inhibits ZEA-induced apoptosis in uterine tissues via the PI3K/Akt signaling pathway. However, when the PI3K small molecule inhibitor LY294002 was co-administered, the ability of AS to suppress the expression of apoptosis-related proteins and inhibit ZEA-induced apoptosis decreased. Collectively, these findings reveal the involvement of multiple pathways and targets in the protective effect of AS against ZEA-induced uterine injury, providing a new perspective for the application of AS and the development of a ZEA antidote.
Assuntos
Apoptose , Endométrio , Estresse Oxidativo , Triterpenos , Útero , Zearalenona , Animais , Feminino , Estresse Oxidativo/efeitos dos fármacos , Triterpenos/farmacologia , Zearalenona/toxicidade , Apoptose/efeitos dos fármacos , Camundongos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Endométrio/patologia , Útero/efeitos dos fármacos , Útero/metabolismo , Útero/patologia , Transdução de Sinais/efeitos dos fármacos , Doenças Uterinas/patologia , Doenças Uterinas/metabolismo , Doenças Uterinas/induzido quimicamente , Doenças Uterinas/prevenção & controle , Doenças Uterinas/genéticaRESUMO
Zearalenone contaminates food and poses a threat to human health. It is vital to develop cost-effective and environmentally-friendly adsorbents for its removal. By screening Sporobolomyces pararoseus (SZ4) and modified yam starch (adsorption capacity (qe) of 1.33 and 0.94 mg/g, respectively), this study prepared a novel composite aerogel adsorbent (P-YSA@SZ410). The compressive strength of P-YSA@SZ410 was 1.35-fold higher than unloaded yeast. It contained several functional groups and three-dimensional interconnected channels, achieving a 0° contact angle within 0.18 s, thereby demonstrating excellent water-absorbent properties. With a qe of 2.96 mg/g at 308 K, the adsorption process of P-YSA@SZ410 was spontaneous, endothermic, and matched pseudo-second-order and Langmuir models. The composite adsorbed zearalenone via electrostatic attraction and hydrogen bonding, maintaining a qe of 2.24 mg/g after five cycles. P-YSA@SZ410 was found to remove zearalenone effectively under various conditions and could be applied to corn silk tea, indicating its great potential as an adsorbent material.
Assuntos
Amido , Zea mays , Zearalenona , Zearalenona/química , Amido/química , Zea mays/química , Adsorção , Dioscorea/química , Contaminação de Alimentos/análise , Porosidade , Basidiomycota/química , Géis/química , CinéticaRESUMO
The aim of this study was to investigate the protective effects of lycopene on renal damage caused by zearalenone (ZEN). Male Kunming mice were treated daily for 4 weeks by intragastric administration with 40 mg/kg ZEN in the presence or absence of lycopene (2.5 or 5 mg/kg). The results showed that lycopene markedly alleviated the damage of renal structure and function in mice induced by ZEN, as indicated by the reduced degree of pathological damage and the decreased levels of urea nitrogen and creatinine. Meanwhile, results of dihydroethidine (DHE) staining and biochemical markers revealed that ZEN exposure notably increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), decreased the level of GSH, and reduced the activities of catalase (CAT) and superoxide dismutase (SOD). Administration of lycopene alleviated the increased oxidative stress induced by ZEN. Moreover, ZEN ingestion notably resulted in apoptosis, increased the protein levels of BCL2 associated X protein (Bax) and cleaved caspase-3, and decreased the protein levels of apoptosis regulator Bcl-2 (Bcl-2), which were reversed by lycopene intervention. Results of immunofluorescence demonstrated that lycopene reversed ZEN-induced the upregulation of NOD-like receptor pyrin domain-containing protein 3 (NLRP3), Caspase-1, and interleukin-1 beta (IL-1ß) in mice kidneys. Lycopene supplementation could alleviate ZEN-induced renal toxicity by inhibiting oxidative stress, apoptosis, and NLRP3 inflammasome activation.
Assuntos
Apoptose , Inflamassomos , Rim , Licopeno , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Zearalenona , Animais , Zearalenona/toxicidade , Licopeno/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Masculino , Apoptose/efeitos dos fármacos , Camundongos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Animais não EndogâmicosRESUMO
Mitogen-activated protein kinase kinases (MAP2Ks) 1, 4, and 7 are potential targets for treating various diseases. Here, we solved the crystal structures of MAP2K1 and MAP2K4 complexed with covalent inhibitor 5Z-7-oxozeaenol (5Z7O). The elucidated structures showed that 5Z7O was non-covalently bound to the ATP binding site of MAP2K4, while it covalently attached to cysteine at the DFG-1 position of the deep ATP site of MAP2K1. In contrast, we previously showed that 5Z7O covalently binds to MAP2K7 via another cysteine on the solvent-accessible edge of the ATP site. Structural analyses and molecular dynamics calculations indicated that the configuration and mobility of conserved gatekeeper methionine located at the central ATP site regulated the binding and access of 5Z7O to the ATP site of MAP2Ks. These structural features provide clues for developing highly potent and selective inhibitors against MAP2Ks. Abbreviations: ATP, adenosine triphosphate; FDA, Food and Drug Administration; MAP2Ks, mitogen-activated protein kinase kinases; MD, molecular dynamics; NSCLC, non-small cell lung cancer; 5Z7O, 5Z-7-oxozeaenol; PDB, protein data bank; RMSD, root-mean-square deviation.
Assuntos
Trifosfato de Adenosina , Metionina , Inibidores de Proteínas Quinases , Zearalenona , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Humanos , Metionina/química , Metionina/metabolismo , Sítios de Ligação , Zearalenona/análogos & derivados , Zearalenona/química , Zearalenona/farmacologia , Zearalenona/metabolismo , Zearalenona/administração & dosagem , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 7 Ativada por Mitógeno/química , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 7/metabolismo , MAP Quinase Quinase 7/antagonistas & inibidores , MAP Quinase Quinase 7/química , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Cristalografia por Raios X , Estrutura Molecular , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Lactonas , Resorcinóis , MAP Quinase Quinase 4RESUMO
Silage has been identified as a source of different microbial toxins, that may impair farm animal health and productivity as human health can also be compromised. In this sense, the aim of this study was to determine the impact of silage additives on the concentrations of deoxynivalenol (DON) and zearalenone (ZEN) mycotoxins and, eventually, to evaluate the hygienic quality of orchardgrass (Dactylis glomerata L.) silage based on the concentration of them compared to control silage. This study evaluated the influence of biological and chemical additives used in six different varieties of orchardgrass silage on DON and ZEN mycotoxin contents for the first time. The content of both fusariotoxins (DON and ZEN) in fresh matter and grass silage were below the threshold stipulated by the European Commission. The concentration of DON ranges from ~21.86 to 37.26 ng/kg, ~10.21 to 15 ng/kg, ~20.72 to 29.14 ng/kg; and ZEN range from ~3.42 to 7.87 ng/kg, ~3.85 to 8.62 ng/kg and ~2.15 to 5.08 ng/kg, in control, biological and chemical silages, respectively. In general, the biological additive was more efficient for preventing DON contamination, whereas the chemical additive was more efficient for preventing ZEN contamination in grass silage. In summary, the results obtained in this work demonstrate that biological and chemical additives can inhibit fungal growth and mycotoxin production on Dactylis glomerata L. silage and whose use could prevent animal and human diseases.
Assuntos
Dactylis , Micotoxinas , Silagem , Tricotecenos , Zearalenona , Silagem/análise , Silagem/microbiologia , Zearalenona/análise , Zearalenona/metabolismo , Tricotecenos/metabolismo , Tricotecenos/análise , Micotoxinas/biossíntese , Micotoxinas/análise , Dactylis/metabolismo , AnimaisRESUMO
Zearalenone (ZEN) is a fungal toxin produced by Fusarium exospore, which poses a significant threat to both animal and human health due to its reproductive toxicity. Removing ZEN through ZEN lactonase is currently the most effective method reported, however, all published ZEN lactonases suffer from the poor thermal stability, losing almost all activity after 10â¯min of treatment at 55â. In this study, we heterologously expressed ZHD11A from Phialophora macrospora and engineered it via semi-rational design. A mutant I160Y-G242S that can retain about 40â¯% residual activity at 55â for 10â¯min was obtained, which is the most heat-tolerant ZEN hydrolase reported to date. Moreover, the specific activity of the I160Y-G242S was also elevated 2-fold compared to ZHD11A from 220â¯U/mg to 450â¯U/mg, which is one of the most active ZEN lactonses reported. Dynamics analysis revealed that the decreased flexibility of the main-chain carbons contributes to increased thermal stability and the improved substrate binding affinity and catalytic turnover contribute to enhanced activity of variant I160Y-G242S. In all, the mutant I160Y-G242S is an excellent candidate for the industrial application of ZEN degradation.
Assuntos
Estabilidade Enzimática , Zearalenona , Zearalenona/metabolismo , Zearalenona/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Cinética , Engenharia de Proteínas , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/química , Lactonas/metabolismo , Lactonas/química , Temperatura Alta , Especificidade por SubstratoRESUMO
Zearalenone (ZEN) is an estrogenic mycotoxin causing reproductive toxicity in livestock. Currently, lactone hydrolases are used in the enzymatic degradation of ZEN. However, most lactone hydrolases suffer from low degradation efficiency and poor thermal stability. ZHD518, as a documented neutral enzyme for ZEN degradation, exhibits high enzymatic activity under neutral conditions. In this study, a multifunctional peptide S1v1-(AEAEAHAH)2 was fused to the N-terminus of ZHD518. Compared with the wild-type enzyme, the peptide fusion significantly enhanced protein expression by 1.28 times, enzyme activity by 9.27 times, thermal stability by 37.08 times after incubation at 45 °C for 10 min and enzyme stability during long-term storage. Moreover, ZEN concentrations in corn bran, corn germ meal, and corn gluten powder decreased from 5.29 ± 0.04, 5.31 ± 0.03, and 5.30 ± 0.01 µg/g to 0.48 ± 0.05, 0.48 ± 0.06, and 0.21 ± 0.04 µg/g, respectively, following a 60 min treatment with S1v1-GS-ZHD518, resulting in degradation rates of 90.98, 91.00, and 95.32%, respectively. In conclusion, the properties of S1v1-GS-ZHD518, such as its efficient degradability, high temperature resistance and storage resistance, offer the possibility of its application in food or feed.
Assuntos
Estabilidade Enzimática , Peptídeos , Zea mays , Zearalenona , Zearalenona/química , Zearalenona/metabolismo , Zea mays/química , Zea mays/metabolismo , Zea mays/genética , Peptídeos/química , Peptídeos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Hidrolases/química , Lactonas/química , Lactonas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genéticaRESUMO
PANoptosis is manifested with simultaneous activation of biomarkers for both pyroptotic, apoptotic and necroptotic signaling via the molecular platform PANoptosome and it is involved in pathologies of various inflammatory diseases including hemophagocytic lymphohistiocytosis (HLH). Scutellarin is a flavonoid isolated from herbal Erigeron breviscapus (Vant.) Hand.-Mazz. and has been shown to possess multiple pharmacological effects, but it is unknown whether scutellarin has any effects on PANoptosis and related inflammatory diseases. In this study, we found that scutellarin inhibited cell death in bone marrow-derived macrophages (BMDMs) and J774A.1 cells treated with TGF-ß-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (OXO) plus lipopolysaccharide (LPS), which has been commonly used to induce PANoptosis. Western blotting showed that scutellarin dose-dependently inhibited the activation biomarkers for pyroptotic (Caspase-1p10 and GSDMD-NT), apoptotic (cleaved Casp3/8/9 and GSDME-NT), and necroptotic (phosphorylated MLKL) signaling. The inhibitory effect of scutellarin was unaffected by NLRP3 or Caspase-1 deletion. Interestingly, scutellarin blocked the assembly of PANoptosome that encompasses ASC, RIPK3, Caspase-8 and ZBP1, suggesting its action on upstream signaling. Consistent with this, scutellarin inhibited mitochondrial damage and mitochondrial reactive oxygen species (mtROS) generation in cells treated with OXO+LPS. Further, mito-TEMPO that can scavenge mtROS significantly inhibited OXO+LPS-induced PANoptotic cell death. In line with the in vitro results, scutellarin markedly alleviated systemic inflammation, multiple organ injury, and activation of PANoptotic biomarkers in mice with HLH. Collectively, our data suggest that scutellarin can inhibit PANoptosis by suppressing mitochondrial damage and mtROS generation and thereby mitigating multiple organ injury in mice with inflammatory disorders.
Assuntos
Apigenina , Glucuronatos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Mitocôndrias , Espécies Reativas de Oxigênio , Apigenina/farmacologia , Apigenina/uso terapêutico , Glucuronatos/farmacologia , Glucuronatos/uso terapêutico , Animais , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos , Linhagem Celular , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Necroptose/efeitos dos fármacos , Masculino , MAP Quinase Quinase Quinases/metabolismo , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Zearalenona/administração & dosagem , Lactonas , ResorcinóisRESUMO
Zearalenone (ZEN) has been shown to cause reproductive damage by inducing oxidative stress. Astaxanthin and L-carnitine are widely used to alleviate oxidative stress and promote sperm maturation. However, it remains uncertain whether they are effective in mitigating spermatogenesis disorders induced by ZEN. This study aimed to investigate the therapeutic efficacy and potential mechanisms of Vigor King (Vig), a compound preparation primarily consisting of astaxanthin and L-carnitine, in alleviating ZEN-induced spermatogenesis disorders. In the experiment, mice received continuous oral gavage of ZEN (80⯵g/kg) for 35 days, accompanied by a rescue strategy with Vig (200â¯mg/kg). The results showed that Vig effectively reduced the negative impact on semen quality and improved the structural and functional abnormalities of the seminiferous epithelium caused by ZEN. Additionally, the accumulation of reactive oxygen species (ROS), DNA double-strand breaks, apoptosis, and autophagy abnormalities were all significantly ameliorated. Intriguingly, the GSK3ß-dependent BTRC-NRF2 signaling pathway was found to play an important role in this process. Furthermore, testing of offspring indicated that Vig could extend its protective effects to the next generation, effectively combating the transgenerational toxic effects of ZEN. In summary, our research suggests that Vig supplementation holds considerable promise in alleviating spermatogenesis disorders induced by zearalenone.
Assuntos
Espermatogênese , Zearalenona , Animais , Zearalenona/toxicidade , Masculino , Espermatogênese/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Carnitina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estrogênios não Esteroides/toxicidade , Feminino , XantofilasRESUMO
Herein, the aptamer-antibody sandwich module was first introduced to accurately recognize a low molecular weight compound (mycotoxin). Impressively, compared with the large steric hindrance of a traditional dual-antibody module, the aptamer-antibody sandwich with low Gibbs free energy and a low dissociation constant has high recognition efficiency; thus, it could reduce false positives and false negatives caused by a dual-antibody module. As a proof of concept, a sensitive electrochemiluminescence (ECL) biosensor was constructed for detecting mycotoxin zearalenone (ZEN) based on an aptamer-antibody sandwich as a biological recognition element and porous ZnO nanosheets (Zn NSs) supported Cu nanoclusters (Cu NCs) as the signal transduction element, in which the antibody was modified on the vertex of a tetrahedral DNA nanostructure (TDN) with a rigid structure to increase the kinetics of target recognition for promoting the detection sensitivity. Moreover, the Cu NCs/Zn NSs exhibited an excellent ECL response that was attributed to the aggregation-induced ECL enhancement through electrostatic interactions. The sensing platform achieved trace detection of ZEN with a low detection limit of 0.31 fg/mL, far beyond that of the enzyme-linked immunosorbent assay (ELISA, the current rapid detection method) and high-performance liquid chromatography (HPLC, the national standard detection method). The strategy has great application potential in food analysis, environmental monitoring, and clinical diagnosis.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Zearalenona , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Zearalenona/análise , Zearalenona/imunologia , Técnicas Eletroquímicas/métodos , Cobre/química , Limite de Detecção , Anticorpos/química , Anticorpos/imunologia , Medições Luminescentes/métodos , Óxido de Zinco/química , Peso MolecularRESUMO
In the current study, a colorimetric sensor array combined with near-infrared (NIR) spectroscopy was used to quantitatively analyze zearalenone in wheat. The portable NIR spectrometer was used to scan the porphyrin reaction points of the wheat colorimetric sensor and collect spectral data. Subsequently, based on all the NIR spectral data, the two models and three feature selection algorithms are compared, and the best performance model and the best feature variable input are selected. Concurrently, the Kernel-based Extreme Learning Machine (KELM) model optimized by the two parameter optimization algorithms was compared, and the best parameter optimization algorithm was selected. Among all evaluation models, the KELM model optimized by the Competitive Adaptive Reweighted Sampling algorithm combined with the rime optimization algorithm has the best prediction effect. The predicted RP2 is 0.9900, and the root mean square error of prediction (RMSEP) is 18.4610 µgâkg-1.
Assuntos
Algoritmos , Espectroscopia de Luz Próxima ao Infravermelho , Triticum , Zearalenona , Triticum/química , Zearalenona/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Quimiometria/métodos , Colorimetria/métodosRESUMO
Zearalenone (ZEN) poses a potential threat on human and animal health partly through the nuclear factor (NF)-κB signaling pathway. In silico study suggested that rutin effective against TLR4 and NF-κB. A wetting test was designed to evaluate the effect and underlying mechanism of rutin in alleviating ZEN-induced inflammation in animals. Twenty-four female mice were randomly divided into 4 groups: control (basal diet), ZEN group (basal diet + ZEN), rutin group (basic diet + rutin), Z + R group (basal diet + rutin + ZEN). Results showed that rutin effectively alleviated ZEN-induced inflammation and damage of liver and jejunum in mice. Rutin addition reduced the content of lipopolysaccharide (LPS) in serum and liver mainly by improving the intestinal barrier function resulted from the production increase of short-chain fatty acids (SCFA). In sum, this study showed that rutin alleviated ZEN-induced liver inflammation and injury by modulating the gut microbiota, increasing the production of SCFA and improving intestinal barrier function, leading to the decrease of LPS in liver and the inhibition of MyD88 independent NF-κB signaling pathway in mice. Specifically, these findings may provide useful insights into the screening of functional natural compounds and its action mechanism to alleviate ZEN induced liver inflammation.
Assuntos
Lipopolissacarídeos , NF-kappa B , Rutina , Transdução de Sinais , Zearalenona , Animais , Zearalenona/toxicidade , Rutina/farmacologia , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Receptor 4 Toll-Like/metabolismoRESUMO
Maize grain samples collected from 129 small-scale farmers' stores in southern and southwestern Ethiopia were analysed by LC-MS/MS for a total of 218 mycotoxins and other fungal metabolites of which 15% were regulated mycotoxins. Mycotoxins produced by Penicillium, Aspergillus, and Fusarium accounted for 31%, 17%, and 12% of the metabolites, respectively. Most of the current samples were contaminated by masked and/or emerging mycotoxins with moniliformin being the most prevalent one, contaminating 93% of the samples. Each sample was co-contaminated by 3 to 114 mycotoxins/fungal metabolites. Zearalenone, fumonisin B1, and deoxynivalenol were the dominant mycotoxins, occurring in 78%, 61%, and 55% of the samples with mean concentrations of 243, 429, and 530 µg/kg, respectively. The widespread co-occurrence of several mycotoxins in the samples may pose serious health risks due to synergistic/additional effects.
Assuntos
Contaminação de Alimentos , Fumonisinas , Micotoxinas , Espectrometria de Massas em Tandem , Zea mays , Zea mays/química , Zea mays/microbiologia , Etiópia , Micotoxinas/análise , Contaminação de Alimentos/análise , Fumonisinas/análise , Humanos , Zearalenona/análise , Fusarium/química , Fusarium/metabolismo , Tricotecenos/análise , Penicillium , Aspergillus , Armazenamento de Alimentos , Cromatografia Líquida/métodos , CiclobutanosRESUMO
This study aimed to develop a novel fluorescent aptasensor for the quantitative detection of zearalenone (ZEN), addressing the limitations of conventional detection techniques in terms of speed, sensitivity, and ease of use. Nitrogen-doped carbon dots (N-CDs) were synthesized via the hydrothermal method, resulting in spherical particles with a diameter of 3.25 nm. These N-CDs demonstrated high water solubility and emitted a bright blue light at 440 nm when excited at 355 nm. The fluorescence of N-CDs was quenched by dispersed gold nanoparticles (AuNPs) through the inner filter effect, while aggregated AuNPs induced by NaCl did not affect the fluorescence of N-CDs. The aptamer could protect AuNPs from NaCl-induced aggregation, but the presence of ZEN weakened this protective effect. Based on this principle, optimal conditions for ZEN detection included 57 mM NaCl, 12.5 nM aptamer concentration, incubation of AuNPs with NaCl for 15 min in Tris-EDTA(TE) buffer, and incubation of aptamer with ZEN and NaCl for 30 min. Under these optimized conditions, the "signal-on" fluorescent aptasensor for ZEN detection showed a linear range of 0.25 to 200 ng/mL with a low detection limit of 0.0875 ng/mL. Furthermore, the developed aptasensor exhibited excellent specificity and could rapidly detect ZEN in corn flour samples or corn oil, achieving satisfactory recovery rates ranging from 84.7% to 108.6%. Therefore, this study presents an economical, convenient, sensitive, and rapid method for accurately quantifying ZEN in cereal products.
Assuntos
Técnicas Biossensoriais , Carbono , Grão Comestível , Ouro , Nanopartículas Metálicas , Nitrogênio , Zearalenona , Carbono/química , Grão Comestível/química , Nitrogênio/química , Nanopartículas Metálicas/química , Ouro/química , Zearalenona/análise , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Pontos Quânticos/química , FluorescênciaRESUMO
Mycotoxins are secondary products produced primarily by fungi and are pathogens of animals and cereals, not only affecting agriculture and the food industry but also causing great economic losses. The development of rapid and sensitive methods for the detection of mycotoxins in food is of great significance for livelihood issues. This study employed an amino-functionalized zirconium luminescent metal-organic framework (LOF) (i.e., UiO-66-NH2). Click chemistry was utilized to assemble UiO-66-NH2 in a controlled manner, generating LOF assemblies to serve as probes for fluorescence-linked immunoassays. The proposed fluoroimmunoassay method for Zearalenone (ZEN) and Fumonisin B1 (FB1) detection based on the UiO-66-NH2 assembled probe (CLICK-FLISA) afforded a linear response range of 1-20 µmol/L for ZEN, 20 µmol/L for FB1, and a very low detection limit (0.048-0.065 µmol/L for ZEN; 0.048-0.065 µmol/L for FB1). These satisfying results demonstrate promising applications for on-site quick testing in practical sample analysis. Moreover, the amino functionalization may also serve as a modification strategy to design luminescent sensors for other food contaminants.
Assuntos
Fumonisinas , Estruturas Metalorgânicas , Zea mays , Zearalenona , Fumonisinas/análise , Zearalenona/análise , Estruturas Metalorgânicas/química , Zea mays/química , Química Click , Fluorimunoensaio/métodos , Técnicas Biossensoriais , Contaminação de Alimentos/análise , Limite de Detecção , Micotoxinas/análiseRESUMO
In this work, a sea urchin gold nanoparticles-zearalenone aptamer- tetramethylrhodamine sensor was constructed. Sea urchin gold nanoparticles, prepared using the seed-mediated growth method, were used as Raman substrates. Nucleic acid aptamers were mainly used as specific recognition molecules. Zearalenone detection in miscellaneous beans was accomplished using the principle of conformational change in aptamer. In addition, we evaluated the linear range, sensitivity, and selectivity of our sensor. We observed that at the displacement of 814 cm-1, for Zearalenone concentrations of 0.01-60 ng/mL, the Raman signal intensity linearly correlated with the zearalenone concentration, with a limit of detection of 0.01 ng/mL, and recoveries of 91.7% to 108.3%. The optimum detection time was 30 min. Thus, our sensor exhibited great potential in zearalenone detection in food products.
Assuntos
Aptâmeros de Nucleotídeos , Contaminação de Alimentos , Ouro , Nanopartículas Metálicas , Ouriços-do-Mar , Análise Espectral Raman , Zearalenona , Animais , Zearalenona/análise , Aptâmeros de Nucleotídeos/química , Análise Espectral Raman/métodos , Contaminação de Alimentos/análise , Ouriços-do-Mar/química , Nanopartículas Metálicas/química , Ouro/química , Fabaceae/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Limite de DetecçãoRESUMO
Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin produced by Fusarium strains that is harmful to the intestinal health of animals and is widely present in contaminated crops. The objective of this study was to investigate the potential therapeutic target of ZEN-induced jejunal damage in weaned gilts. Sixteen weaned gilts either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32-d experiment. The results showed that ZEN at the concentration of 3.0 mg/kg diet activated the inflammatory response and caused oxidative stress of gilts (Pâ <â 0.05). ZEN exposure resulted in the upregulation (Pâ <â 0.05) of the Exchange protein directly activated by the cAMP 1/Ras-related protein1/c-Jun N-terminal kinase (Epac1/Rap1/JNK) signaling pathway in the jejunum of gilts in vivo and in the intestinal porcine epithelial cells in vitro. The cell viability, EdU-positive cells, and the mRNA expression of B-cell lymphoma-2 (Bcl-2) were decreased, whereas the reactive oxygen species production and the mRNA expressions of Bcl-2-associated X (Bax) and Cysteine-aspartic acid protease 3 (Caspase3) were increased (Pâ <â 0.05) by ZEN. However, ZEN increased the mRNA expression of Bcl-2 and decreased the mRNA expressions of Bax and caspase3 (Pâ <â 0.05) after the Epac1 was blocked. These results collectively indicated that a 3.0 mg ZEN /kg diet induced jejunal damage via the Epac1/Rap1/JNK signaling pathway.
Mycotoxins have caused huge economic losses to livestock industry. This study assessed the impact of zearalenone (ZEN) on the jejunum of weaned gilts. Results revealed that significant inflammatory response and oxidative stress were stimulated by 3.0 mg/kg ZEN in the jejunum tissue of weaned gilts. Furthermore, the reactive oxygen species accumulation and apoptosis in the intestinal porcine epithelial cells (IPEC-J2) were triggered, respectively. The negative impact of ZEN on the jejunum was by activation of Epac1/Rap1/JNK signaling pathway in the jejunum and this could be reduced by blocking Epac1. A more comprehensive understanding of the underlying molecular mechanisms will facilitate the development of novel strategies to mitigate the detrimental effect of ZEN on the jejunum of weaned gilts.
Assuntos
Jejuno , Zearalenona , Animais , Zearalenona/toxicidade , Suínos , Feminino , Jejuno/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Transdução de Sinais/efeitos dos fármacos , Dieta/veterinária , Estresse Oxidativo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ração Animal/análise , Estrogênios não Esteroides/farmacologia , Estrogênios não Esteroides/administração & dosagem , DesmameRESUMO
An electrochemical sensor was developed for detecting zearalenone (ZEN) based on the mimic peptide, which was screened from the library and validated by molecular simulation and electrochemical methods. The library of the mimic peptide was constructed according to the structural analysis, molecular docking, molecular dynamics and amino acid mutation. Then, the enhanced electrical signal was attributed to gold nanoparticles (AuNPs) and reduced carboxylated graphene oxide (rGO-COOH). Under the optimal conditions, the detection limit was 0.91 pg·mL-1 (S/N = 3) with a wide linear range from 0.01 ng·mL-1 to 10 ng·mL-1. In grain samples, a good recovery rate of 84% to 105.3% was achieved, while the rate ranged from 82% to 108.8% in the commercial ELISA kits. Additionally, the electrochemical sensor exhibited the remarkable specificity, excellent stability and better reproducibility (RSD = 1.94%). This sensor has great potential for rapidly detecting ZEN in food.