Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.753
Filtrar
1.
Food Chem ; 431: 137143, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604003

RESUMO

As more and more adverse health effects of caffeine are being discovered, decaffeinated drinks are receiving increasing attention. In this work, a magnetic imidazole zeolite backbone compounded with three-dimensional graphene was successfully synthesized as a solid adsorbent using a layer-by-layer self-assembly technique, which can rapidly and effectively adsorb caffeine from tea. Meanwhile, the structure and properties of caffeine in tea were investigated by various physicochemical characterization tools. The analytical data showed that Fe3O4@3DGA@ZIF-8 had a specific surface area of 162.9754 m2/g and an adsorption capacity of up to 19.57 mg/g with a maximum adsorption rate of 96.55%, which could be maintained with good adsorption repeated utilization three times. The adsorption isotherm and the adsorption kinetic better fit with the Langmuir model and the preudo-second order kinetic model, respectively. Therefore, Fe3O4@3DGA@ZIF-8 is a good magnetic adsorbent for the separation and the effective removal of caffeine from tea sample.


Assuntos
Grafite , Zeolitas , Adsorção , Cafeína , Fenômenos Magnéticos , Chá
2.
Pestic Biochem Physiol ; 195: 105544, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666615

RESUMO

The rice weevil, Sitophilus oryzae L., is one of the most widespread and destructive stored-product pests and resistant to a wide range of chemical insecticides. In this research, Artemisia annua L. essential oil (EO) and its encapsulated form by chitosan/TPP (tripolyphosphate) and zeolite were tested against S. oryzae adults. The order of toxicity was chitosan/TPP (LC30: 30.83, LC50: 39.52, and LC90: 72.50 µL/L air) > pure EO (LC30: 35.75, LC50: 46.25, and LC90: 86.76 µL/L air) > EO loaded in the zeolite (LC30: 43.35, LC50: 55.07, and LC90: 98.80 µL/L air). These encapsulated samples were characterized by dynamic light scattering (DLS) and field emission scanning electron microscope (FE-SEM) which revealed the size and morphology of the droplets measuring 255.2 to 272 nm and 245 to 271.8 nm for EO loaded in chitosan and zeolite respectively. The encapsulation efficiency and loading percentages of A. annua EO in chitosan/TPP and zeolite were 40.16% and 6.01%, and 88% and 85%, respectively. Fumigant persistence was increased from 6 days for pure EO then, 20 and 22 days for encapsulated oil in zeolite and chitosan/TPP, respectively. Our results showed that A. annua EO contains (±)-camphor (29.29%), 1,8-cineole (12.56%), ß-caryophyllene (10.29%), α-pinene (8.68%), and artemisia ketone (8.48%) as its major composition. The activity level of glutathione S-transferase increased while general esterase and acetylcholinesterase activity were significantly inhibited in the treated group compared with the control. Antioxidant enzymes, including catalase, peroxidase, and superoxide dismutase were activated in treated adults compared to controls. The current results suggest that encapsulation of A. annua EO by chitosan/TPP and zeolite in addition to safety and environmentally friendly approach could increase its sustainability and therefore enhancing the efficiency in controlling S. oryzae in storage.


Assuntos
Artemisia annua , Quitosana , Óleos Voláteis , Zeolitas , Acetilcolinesterase
3.
ACS Appl Mater Interfaces ; 15(36): 42965-42980, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37656022

RESUMO

Titanium-based implants often lead to premature implant failure due to the lack of antimicrobial, osteogenic, and angiogenic properties. To this end, a new strategy was developed to fabricate CaO2@ZIF-67-HA-ADH coating on titanium surfaces by combining calcium peroxide (CaO2) nanoparticles, zeolite imidazolate framework-67 (ZIF-67), and the chemical coupling hyaluronic acid-adipic acid dihydrazide (HA-ADH). We characterized CaO2@ZIF-67-HA-ADH with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The results demonstrated that CaO2@ZIF-67-HA-ADH was pH-sensitive and decomposed rapidly under acidic conditions, and it released inclusions slowly under neutral conditions. Antibacterial experiments showed that the CaO2@ZIF-67-HA-ADH coating had excellent antibacterial properties and effectively killed methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO-1). Cell experiments revealed that the CaO2@ZIF-67-HA-ADH coating promoted pro-osteoblast adhesion, proliferation, and differentiation and also promoted the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs), exhibiting excellent osteogenic and angiogenic properties. In in vivo animal implantation experiments, the CaO2@ZIF-67-HA-ADH coating exhibited strong antimicrobial activity early after implantation and excellent osseointegration later after implantation. In conclusion, the pH-responsive CaO2@ZIF-67-HA-ADH coating conferred excellent antibacterial, osteogenic, and angiogenic properties to titanium implants, which effectively enhanced osseointegration of the implants and prevented bacterial infection; the coating shows promise for use in the treatment of bone defects.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Zeolitas , Animais , Humanos , Ácido Hialurônico , Titânio/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Concentração de Íons de Hidrogênio
4.
Sci Rep ; 13(1): 14948, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696834

RESUMO

Novel CuO/Ag nanocomposites added zeolite (CAZ) were successfully fabricated, and their effectiveness as an antibacterial on S. aureus and MB removal was evaluated. EDX, XRD, and FTIR confirm the presence of the elemental compositions of CAZ. Friable CuO nanorods (10-70 nm in diameter) existed on the surface of the zeolite. Pure zeolite had a higher band gap (5.433 eV) and lower MB removal efficiency than CAZ. The adsorption method by CAZ was more effective at removing MB than photodegradation. 0.10 CAZ had the highest removal effectiveness (~ 99%) and adsorption capacity (~ 70.4 mg g-1) of MB. The inhibitory zone diameter for 0.005 CAZ against S. aureus was 20 mm, while 0.01 CAZ had a diameter of 17 mm. Azithromycin, ceftriaxone, and erythromycin antibiotics demonstrated lower or no efficacy against S. aureus than CAZ. Significant antibacterial activities and wastewater treatment were achieved by CAZ. The combination of photodegradation and adsorption enhanced pollutant removal. It will be interesting to study further the optimal molar ratio for MB removal (0.10 CAZ) in future investigations.


Assuntos
Nanocompostos , Zeolitas , Staphylococcus aureus , Antibacterianos/farmacologia
5.
Pestic Biochem Physiol ; 194: 105519, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532333

RESUMO

The past few decades have witnessed biodegradation of pesticides as a significant method in remediation of the environment for its specificity, efficiency and biocompatibility. However, the tolerability and recyclability of the enzymes in pesticide degradation and the development of enzymes that biodegrad pesticides are still urgent problems to be solved so far. Herein, a novel hyper-thermostable and chlorpyrifos-hydrolyzing carboxylesterase EstC was immobilized by biomineralization using zeolitic imidazolate framework (ZIF), one of the metal-organic frameworks (MOFs) with highly diverse structure and porosity. Compared with free enzyme, EstC@ZIF with a cruciate flower-like morphology presented scarcely variation in catalytic efficiency and generally improved the tolerance to organic solvents or detergents. Furthermore, there was scarcely decrease in the catalytic efficiency of EstC@ZIF and it also showed good reusability with about 50% residual activity after 12 continuous uses. Notably, EstC@ZIF could be used in actual water environment with an excellent value of degradation rate of 90.27% in 120 min, and the degradation efficiency remained about 50% after 9 repetitions. The present strategy of immobilizing carboxylesterase to treat pesticide-contaminated water broadens the method of immobilized enzymes on MOFs, and envisions its recyclable applicability in globe environmental remediation.


Assuntos
Clorpirifos , Estruturas Metalorgânicas , Praguicidas , Zeolitas , Carboxilesterase , Zeolitas/química , Água , Estruturas Metalorgânicas/química
6.
Biosens Bioelectron ; 239: 115631, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639886

RESUMO

The nonchiral sensor concept based on a sodalite (SOD) zeolite loaded CuxS (CuxS@SOD) catalyst is proposed as a sensing platform for chiral cysteine (Cys) determination. Chiral Cys is analyzed by the difference of binding capacity between CuxS catalysts. The observed current in amperometric i-t curve (A i-t C) is always positive for the L-cysteine (L-Cys), while it is negative for the D-cysteine (D-Cys). Under differential pulse voltammetry (DPV) method, the characteristic current peak for the CuxS@SOD moves to right (positive potential position) with the addition of L-Cys while it moves to left (negative potential direction) with the addition of D-Cys, respectively. Cyclic voltammetry (CV) is consistent with DPV and discusses the diffusion control mechanism. In this work, the ultra-trace determination of cysteine enantiomers reaches the limit of detection (LOD) of 0.70 fM and 0.60 fM by the highly efficient CuxS catalyst restrained in the nanosized SOD zeolite cages of the opening window pores, respectively. The sensor opens up a novel potential prospect for achiral composite in the field of chiral recognition through electrochemical methods with extra-low concentration.


Assuntos
Técnicas Biossensoriais , Zeolitas , Cisteína , Difusão , Técnicas Eletroquímicas
7.
Chemosphere ; 339: 139784, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567278

RESUMO

Globally increasing concern related to municipal solid waste generation is encouraging research efforts on developing alternative routes to valorize mixed refused wastes. In this way, catalytic pyrolysis is emerging as an interesting and efficient technology due to its great flexibility in terms of feedstock. In the current work, upgrading of a Solid Recovered Fuel (SRF) has been investigated by catalytic pyrolysis over nanocrystalline ZSM-5 zeolite (n-ZSM-5), paying special attention to dechlorination effects due to the high Cl content of the raw waste. Thus, pretreatment of the SRF by water washing and mild thermal processing allows for a significant reduction of the Cl concentration. Regarding the catalytic pyrolysis step, the best conditions correspond with a temperature of 400 °C in the catalyst bed and 0.50 catalyst/SRF mass ratio, which lead to ca. 30 wt% oil yield (rich in aromatic hydrocarbons) together with about 40 wt% gas yield (rich in C3-C4 olefins). Accordingly, these products could find use as raw chemicals or for the production of advanced fuels. In addition, zeolite reutilization has been tested for several cycles, denoting a progressive modification of the products distribution because of coke deposition. However, an almost total recovery of the n-ZSM-5 zeolite catalytic performance is achieved after regeneration by air calcination, affording the production of an oil fraction with a Cl content as low as 40 ppm.


Assuntos
Hidrocarbonetos Aromáticos , Zeolitas , Zeolitas/química , Pirólise , Temperatura , Catálise , Temperatura Alta
8.
Anal Chim Acta ; 1276: 341641, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573119

RESUMO

Accurate monitoring of trace pesticides in complex matrix remains a challenge in food safety supervision. Herein, we designed a facile zeolitic imidazolate framework (ZIF)-8/aptamer-based assay for the sensitive detection of acetamiprid. ZIF-8 efficiently adsorbs 6-carboxyfluorescein-labeled complementary DNA (cDNA-FAM) via electrostatic interaction, hydrogen bonding and Zn2+ coordination, which contributed to resistance to cDNA-FAM displacement by biological ligands. ZIF-8 serves as an "ion pump" that contains lots of Zn2+ who boosts cDNA-FAM adsorption and triggers the photoinduced electron transfer (PET) effect from FAM to ZIF-8, improving the sensing sensitivity. Acetamiprid could trigger the change in the adsorption state of cDNA-FAM, further tuning the PET effect and causing fluorescence conversion. The fluorescence assay showed a high sensitivity for monitoring acetamiprid with a detection limit of 0.05 ng mL-1 in the apple sample. This ZIF/DNA-based analytical platform provides a powerful tool for facile and low-cost screening of pesticide residues, with promising applications in food safety monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Zeolitas , DNA Complementar , Fluorescência , Zeolitas/química , Aptâmeros de Nucleotídeos/química
9.
Braz J Biol ; 83: e274763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610948

RESUMO

In scientific and economic experience, the effect of zeolite-chlorella top dressing (CCP) from 28-29% zeolite, 1.5-2% Chlorella vulgaris powder and 75-76% cake on the productive effect of feed and digestion metabolism of dairy cows has been studied. Tetra-edric frame-hollow zeolite crystals have selectively adsorbing and ion-filtering properties, and chlorella enriches with amino acids and vitamins. The introduction of CCP into the diet of cows of the experimental group increased the mineral-vitamin balance and positively affected the metabolism of cicatricial digestion. The pH shift from 6.14 to 6.17 activated the ecosystem of the rumen microflora, increased the synthesis of LVH 0.79 mmol/100ml, due to an increase in the volume of acetates from 54.1±3.0 to 57.2±2.2 mmol/100ml, increased the number of infusoria by 41.1 thousand/ml more than the control group. An increase in the amylolytic activity of the rumen chyme by 2.8 mg/starch, and cellulolytic activity by 2.8% increased scar digestion. This increased the consumption of the dry matter of the diet by cows of the experimental group by 0.48 ± 0.06 kg/head. /day. and daily milk yields by 1.06 ± 0.03 kg against the control. An increase in protein and fat in milk with a decrease in somatic cells, and in the blood of erythrocytes and hemoglobin increased biosynthesis, which increased the conversion rate of feed from 0.68 to 0.72, and protein from 17.0% to 18.9%.


Assuntos
Chlorella vulgaris , Zeolitas , Feminino , Bovinos , Animais , Cicatriz , Zeolitas/farmacologia , Ecossistema , Bandagens , Vitaminas
10.
Colloids Surf B Biointerfaces ; 229: 113447, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536166

RESUMO

Acute kidney injury (AKI), a prevalent and fatal adverse event, seriously affects cancer patients undergoing chemotherapy. The most important pathological mechanism of AKI is oxidative stress from reactive oxygen species (ROS). Currently, ROS scavenging is a promising strategy to manage the risk of chemotherapy-induced AKI. Herein, we successfully synthesized SOD@ZIF-8 nanoparticles by biomimetic mineralization, which were taken up by cells and could improve cell viability by limiting oxidative stress damage, as found in in vitro studies. Moreover, SOD@ZIF-8 nanoparticles exhibit broad-spectrum antioxidant properties in addition to significant renal accumulation in AKI mice, preventing clinically related cisplatin-induced AKI in murine models. AKI alleviation in the model was validated by measuring blood serum, staining kidney tissue, and related biomarkers. SOD@ZIF-8 nanoparticle therapeutic efficiency exceeds NAC, a small molecular antioxidant functioning through free radical scavenging. The results suggest SOD@ZIF-8 nanoparticles as a potential therapeutic option for AKI and other ROS-related disorders.


Assuntos
Injúria Renal Aguda , Zeolitas , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Imidazóis/farmacologia , Rim/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Zeolitas/toxicidade
11.
Carbohydr Polym ; 319: 121184, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567695

RESUMO

Multilayer intelligent freshness labels based on bacterial nanocellulose (BNC), poly(vinyl alcohol) (PVA), and anthocyanins doped zeolitic imidazolate framework-8 (A-ZIF-8) nanocrystals were developed in this study. First, optical, structural, thermal, and surface characterizations of A-ZIF-8 nanocrystals were performed, and the successful incorporation of anthocyanins into ZIF-8 nanocrystals was demonstrated. Next, A-ZIF-8 was added into PVA, and multilayer films were fabricated by spin-coating PVA/A-ZIF-8 layers onto BNC. The effect of the number of deposition cycles on the barrier, mechanical, thermal, morphological, and colorimetric properties of multilayer labels was investigated. The ammonia sensing, mechanical, and barrier properties of the films were shown to be tuned by the number of the PVA/A-ZIF-8 layers on the BNC. Among the developed films, BNC-2PVA/A-ZIF-8 films with the best colorimetric sensitivity toward volatile ammonia were used to monitor the freshness of skinless chicken breasts. The changes in the ΔE and a* values of BNC-2PVA/A-ZIF-8 film demonstrated a good correlation with the microbial and TVB-N levels in samples over 10 days of storage at 4 °C.


Assuntos
Antocianinas , Zeolitas , Álcool de Polivinil , Amônia , Embalagem de Alimentos , Concentração de Íons de Hidrogênio
12.
J Chromatogr A ; 1707: 464326, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37639846

RESUMO

Preconcentration for on-site detection or subsequent determination is a promising technique for selective sensing explosive markers at low concentrations. Here, we report divinylbenzene monolithic polymer in its blank form (neat-DVB) and as a composite incorporated with sodalite topology zeolite-like metal-organic frameworks (3-ZMOF@DVB), as a sensitive, selective, and cost-effective porous preconcentrator for aliphatic nitroalkanes in the vapor phase as explosive markers at infinite dilution. The developed materials were fabricated as 18 cm gas chromatography (GC) monolithic capillary columns to study their separation performance of nitroalkane mixture and the subsequent physicochemical study of adsorption using the inverse gas chromatography (IGC) technique. A strong preconcentration effect was indicated by a specific retention volume adsorption/desorption ratio equal to 3 for nitromethane on the neat-DVB monolith host-guest interaction, and a 14% higher ratio was observed using the 3-ZMOF@DVB monolithic composite despite the low percentage of 0.7 wt.% of sod-ZMOF added. Furthermore, Incorporating ZMOF resulted in a higher percentage of micropores, increasing the degree of freedom more than bringing stronger adsorption and entropic-driven interaction more than enthalpic. The specific free energy of adsorption (ΔGS) values increased for polar probes and nitroalkanes, denoting that adding ZMOFs earned the DVB monolithic matrix a more specific character. Afterward, Lewis acid-base properties were calculated, estimating the electron acceptor (KA) and electron donor (KB) constants. The neat-DVB was found to have a Lewis basic character with KB/KA = 7.71, and the 3-ZMOF@DVB had a less Lewis basic character with KB/KA = 3.82. An increased electron-accepting nature can be directly related to incorporating sod-ZMOF into the DVB monolithic matrix. This work considers the initial step in presenting a portable explosives detector or preconcentrating explosive markers trace prior to more sophisticated analysis. Additionally, the IGC technique allows for understanding the factors that led to the superior adsorption of nitroalkanes for the developed materials.


Assuntos
Substâncias Explosivas , Estruturas Metalorgânicas , Zeolitas , Polímeros , Alcanos , Bases de Lewis
13.
Bioresour Technol ; 387: 129671, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37579862

RESUMO

Integration of zeolite-based ammonia adsorption and algae-yeast consortia was developed to remediate piggery wastewater (PW) containing high concentrations of total ammonia nitrogen (TAN) and total organic carbon (TOC). After optimizing the conditions of ammonia adsorption in the PW. Zeolite addition mitigated ammonia toxicity, allowing zeolites to gradually release ammonia while effectively attenuating algal oxidative stress caused by high TAN concentration. Coupling zeolite-based adsorption and yeast co-incubation further increased TOC degradation and available C/N ratio, thus improving biomass (4.51 g/L), oil yield (2.11 g/L), and nutrient removal (84.18%-99.14%). The integrated microalgae-based PW treatment exhibited higher carbon migration into biomass (46.14%) and reduced treatment costs than conventional approaches. Simultaneously, the lowest carbon migration to wastewater also meant the smallest carbon emission into water bodies. These findings demonstrate that this novel strategy can remove nutrients in raw PW effectively and produce high oil-rich biomass in a sustainable and environmentally-friendly manner.


Assuntos
Microalgas , Zeolitas , Águas Residuárias , Amônia/metabolismo , Saccharomyces cerevisiae/metabolismo , Nitrogênio/metabolismo , Carbono , Biomassa , Microalgas/metabolismo
14.
ACS Nano ; 17(17): 16573-16586, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37578444

RESUMO

An essential challenge in diabetic periodontal regeneration is achieving the transition from a hyperglycemic inflammatory microenvironment to a regenerative one. Here, we describe a polydopamine (PDA)-mediated ultralong silk microfiber (PDA-mSF) and metformin (Met)-loaded zeolitic imidazolate framework (ZIF) incorporated into a silk fibroin/gelatin (SG) patch to promote periodontal soft and hard tissue regeneration by regulating the immunomodulatory microenvironment. The PDA-mSF endows the patch with a reactive oxygen species (ROS)-scavenging ability and anti-inflammatory activity, reducing the inflammatory response by suppressing M1 macrophage polarization. Moreover, PDA improves periodontal ligament reconstruction via its cell affinity. Sustained release of Met from the Met-ZIF system confers the patch with antiaging and immunomodulatory abilities by activating M2 macrophage polarization to secrete osteogenesis-related cytokines, while release of Zn2+ also promotes bone regeneration. Consequently, the Met-ZIF system creates a favorable microenvironment for periodontal tissue regeneration. These features synergistically accelerate diabetic periodontal bone and ligament regeneration. Thus, our findings offer a potential therapeutic strategy for hard and soft tissue regeneration in diabetic periodontitis.


Assuntos
Diabetes Mellitus , Metformina , Zeolitas , Metformina/farmacologia , Diferenciação Celular/fisiologia , Periodonto , Osteogênese/fisiologia
15.
ACS Biomater Sci Eng ; 9(9): 5322-5331, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37540564

RESUMO

Epigallocatechin gallate (EGCG) is a compound with very high therapeutic potential in the treatment of osteoporosis and cancer. The disadvantages of this compound are its low stability and low bioavailability. Therefore, carriers for EGCG are sought to increase its use. In this work, new carriers are proposed, i.e., zeolites containing divalent ions of magnesium, calcium, strontium, and zinc in their structure. EGCG is retained on the carrier surface by strong interactions with divalent ions. Due to the presence of strong interactions, EGCG is released in a controlled manner from the carrier-ion-EGCG drug delivery system. The results obtained in this work confirm the effectiveness of the preparation of new carriers. EGCG is released from the carriers depending on the pH; hence, it can be used both in osteoporosis and in the treatment of cancer. The divalent ion used affects the sorption and release of the drug. The obtained results indicate the great potential of the proposed carriers and their advantage over the carriers described in the literature.


Assuntos
Catequina , Zeolitas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Catequina/uso terapêutico , Catequina/química
16.
J Environ Manage ; 344: 118628, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536237

RESUMO

Organic and inorganic soil amendments are used to increase crop yields and fertilizer efficiency, as well as to improve the physical and biological properties of soil, increase carbon sequestration, and restore contaminated and saline soils. The present study aimed to evaluate the effect of various zeolite composites mixed with either lignite or leonardite on the biomass production of spring wheat and rapeseed and their root morphology. A pot experiment involved the application of the following treatments: zeolite-carbon, zeolite-vermiculite composites, both mixed with lignite or leonardite, and a control treatment with no amendments. Inorganic composites were applied in a dose of 3% and 6%. The study also included an analysis of the root morphometric parameters and aboveground biomass of spring wheat and rapeseed. The lowest productivity was observed when both crops were not enriched with fertilizers or other amendments, 24.92 g per pot and 29.83 g per pot for spring wheat and rapeseed, respectively. The application of mineral fertilizers in combination with zeolite-carbon composite gave the highest aboveground biomass of spring wheat, 110.11 g per pot. Both zeolite-carbon and zeolite-vermiculite composites modified the morphological parameters of roots, with the control treatment showing the lowest root length and dry matter. Although mineral fertilization was found to have a positive impact root development in relation to untreated control, the treatment amended with zeolite-carbon composite and leonardite exhibited the highest root length and biomass of spring wheat. No other soil amendments improved the properties of rapeseed roots.


Assuntos
Brassica napus , Zeolitas , Solo , Triticum , Biomassa , Fertilizantes/análise , Carbono
17.
Environ Sci Technol ; 57(33): 12465-12475, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556316

RESUMO

The low-temperature mechanism of chabazite-type small-pore Cu-SSZ-13 zeolite, a state-of-the-art catalyst for ammonia-assisted selective reduction (NH3-SCR) of toxic NOx pollutants from heavy-duty vehicles, remains a debate and needs to be clarified for further improvement of NH3-SCR performance. In this study, we established experimental protocols to follow the dynamic redox cycling (i.e., CuII ↔ CuI) of Cu sites in Cu-SSZ-13 during low-temperature NH3-SCR catalysis by in situ ultraviolet-visible spectroscopy and in situ infrared spectroscopy. Further integrating the in situ spectroscopic observations with time-dependent density functional theory calculations allows us to identify two cage-confined transient states, namely, the O2-bridged Cu dimers (i.e., µ-η2:η2-peroxodiamino dicopper) and the proximately paired, chemically nonbonded CuI(NH3)2 sites, and to confirm the CuI(NH3)2 pair as a precursor to the O2-bridged Cu dimer. Comparative transient experiments reveal a particularly high reactivity of the CuI(NH3)2 pairs for NO-to-N2 reduction at low temperatures. Our study demonstrates direct experimental evidence for the transient formation and high reactivity of proximately paired CuI sites under zeolite confinement and provides new insights into the monomeric-to-dimeric Cu transformation for completing the Cu redox cycle in low-temperature NH3-SCR catalysis over Cu-SSZ-13.


Assuntos
Zeolitas , Teoria da Densidade Funcional , Zeolitas/química , Oxirredução , Espectrofotometria Infravermelho , Catálise , Amônia/química
18.
Dalton Trans ; 52(36): 12909-12917, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37646201

RESUMO

Metal-organic frameworks (MOFs) have shown significant potential for drug delivery applications. However, there remains a scarcity of comprehensive research addressing the influence of surface properties of MOFs on drug release kinetics and drug solubility. This study focuses on examining the influence of MOFs hydrophilicity and hydrophobicity on the controlled release and solubility of drugs. To achieve this, we prepared drug-loaded nanoparticles through in situ synthesis and created a drug-MOF co-amorphous system using the ball milling technique. Under neutral conditions, the hydrophilic MOF-based drug delivery system demonstrated a comparatively slower drug release profile than its hydrophobic counterpart. This observation suggests that the hydrophilic system holds promise in mitigating drug side effects by enabling improved control over drug release. The implementation of hydrophobic MOFs in co-amorphous systems yields a more pronounced effect on enhancing solubility compared to hydrophilic MOFs. This study offers valuable insights for achieving optimal drug release kinetics and solubility by delicately manipulating surface properties of MOFs.


Assuntos
Estruturas Metalorgânicas , Zeolitas , Liberação Controlada de Fármacos , Solubilidade , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas
19.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511078

RESUMO

This study presents the synthesis of zeolites derived from coal fly ash (CFA) using the fusion-assisted alkaline hydrothermal method. The zeolites were synthesized by combining CFA and NaOH at a molar ratio of 1:1.2 under fusion temperatures of 500, 600, and 700 °C. Subsequently, the obtained zeolites were subjected to further modifications through the incorporation of magnetic (Fe3O4) and silver (Ag0) nanoparticles (NPs). The Fe3O4 NPs were introduced through co-precipitation of Fe(NO3)2 and FeCl3 at a molar ratio of 1:1, followed by thermal curing at 120 °C. On the other hand, the Ag0 NPs were incorporated via ion exchange of Na+ with Ag+ and subsequent reduction using NaBH4. The synthesized porous materials exhibited the formation of zeolites, specifically analcime and sodalite, as confirmed by X-ray diffraction (XRD) analysis. Additionally, the presence of Fe3O4 and Ag0 NPs was also confirmed by XRD analysis. The elemental composition analysis of the synthesized nanocomposites further validated the successful formation of Fe3O4 and Ag0 NPs. Nitrogen porosimetric analysis revealed the formation of a microporous structure, with the BET surface area of the zeolites and nanocomposites ranging from 48.6 to 128.7 m2/g and pore sizes ranging from 0.6 to 4.8 nm. The porosimetric characteristics of the zeolites exhibited noticeable changes after the modification process, which can be attributed to the impregnation of Fe3O4 and Ag0 NPs. The findings of this research demonstrate the effectiveness of the fusion-assisted method in producing synthetic zeolites and nanocomposites derived from CFA. The resulting composites were evaluated for their potential application in the removal of mercury ions from aqueous solutions. Among the samples tested, the composite containing Ag0 NPs exhibited the highest adsorption capacity, reaching 107.4 mg of Hg2+ per gram of composite. The composites modified with Fe3O4 NPs and Ag/Fe3O4 nanocomposites displayed adsorption capacities of 68.4 mg/g and 71.4 mg/g, respectively.


Assuntos
Mercúrio , Nanocompostos , Zeolitas , Zeolitas/química , Adsorção , Mercúrio/química , Cinza de Carvão/química , Nanocompostos/química
20.
Anal Chim Acta ; 1275: 341591, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37524477

RESUMO

Sensitive and accurate detection of multiplex foodborne pathogens is crucial for food safety. In this work, a dual-mode and dual-target biosensor regulated by a Tesla valve was established for simultaneously determining Escherichia coli O157:H7 (E. coli) and Salmonella typhimurium (S. T). Two zeolitic imidazolate framework (ZIF-8) signal probes decorated with electroactive materials (ferrocene or methylene blue), DNAzyme, and different phages were synthesized to specifically recognize the targets and generate fluorescent/electrochemical dual-mode signals. In the presence of bacteria, they were captured and enriched on two individual working electrodes through the modified 4-mercaptophenylboric acid. The encoded signal probes added on different working electrodes could be conjugated with the corresponding target bacteria depending on the specificity of phages. Under the acidic condition, the DNAzyme could catalyze click chemistry for fluorescent signals. Simultaneously, the released ferrocene and methylene blue from ZIF-8 could generate electrochemical signals at different potentials. Benefiting from the flow regulation feature of the Tesla valve, the triggered fluorescent and electrochemical signals in the two individual electrodes would not influence each other, achieving simultaneous dual-mode and dual-target determination of foodborne pathogens. It depicted good linearity ranged 10-107 CFU mL-1. And the corresponding detection of limits were 5 CFU mL-1 and 8 CFU mL-1 for two bacteria, respectively. A low false positive was realized through the dual-mode strategy. The proposed biosensor can not only on-site, specifically, and sensitively determine E. coli and S. T, but also provide the wide prospect in rapid screening of other foodborne pathogens.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , DNA Catalítico , Zeolitas , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Metalocenos , Escherichia coli , Azul de Metileno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...