Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.505
Filtrar
1.
Rev. bioét. derecho ; (50): 19-35, nov. 2020.
Artigo em Espanhol | IBECS | ID: ibc-191344

RESUMO

La pandemia de COVID-19 tiene un origen zoonótico: fue transmitida de los animales a los humanos. Lo mismo ha sucedido con otras epidemias recientes (como las causadas por los virus SARS-CoV-1 y H7N9, entre otros). Estas epidemias surgieron en un contexto de explotación animal: el comercio de animales silvestres. Mucha gente ha pedido la prohibición total de la venta de animales silvestres en mercados. Sin embargo, la prohibición puede ser contraproducente y tener peores consecuencias tanto para los animales como para la salud pública. Este artículo argumenta en contra de una prohibición total y a favor de una regulación progresiva que tome en cuenta el bienestar de los animales, pero que tenga como finalidad última la desaparición del comercio de animales silvestres


The COVID-19 pandemic has a zoonotic origin: it was transmitted from animals to humans. The same has happened with other recent epidemics (such as those caused by the virus SARS-CoV-1 and H7N9, among others). These epidemics arose in a context of animal exploitation: the trade in wildlife. Many people have asked for a blanket ban of wildlife trade in wet markets. However, a blanket ban may be counterproductive and have worse consequences both for the animals and for public health. This paper argues against a blanket ban and argues for a progressive regulation that takes into account the welfare of animals, but that has as its final goal the disappearance of trade in wildlife


La pandèmia de la COVID-19 té un origen zoonòtic: es va transmetre dels animals als humans. El mateix ha passat amb altres epidèmies recents (com les causades pels virus SARS-CoV-1 I H7N9, entre d'altres). Aquestes epidèmies van sorgir en un context d'explotació animal: el comerç d'animals silvestres. Molta gent ha demanat la prohibició total de la venda d'animals silvestres en mercats. No obstant això, la prohibició pot ser contraproduent I tenir pitjors conseqüències tant per als animals com per a la salut pública. Aquest article argumenta en contra d'una prohibició total I a favor d'una regulació progressiva que tingui en compte el benestar dels animals, però que tingui com a finalitat última la desaparició del comerç d'animals silvestres


Assuntos
Humanos , Animais , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Pandemias , Zoonoses/epidemiologia , Animais Selvagens/virologia , Comércio/legislação & jurisprudência
2.
JMIR Public Health Surveill ; 6(4): e22117, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33001837

RESUMO

The COVID-19 pandemic has affected all sectors of society, from health and economics to socialization and travel. The level and extent of this impact are unprecedented. Although the cause of COVID-19 was quickly identified to be a new coronavirus (SARS-CoV-2), the world was poorly prepared for preventing its spread. One important pillar of preparedness is surveillance of the sources of emerging pathogens and responding appropriately to prevent their spread in the human population. The ever-increasing interaction between humans and animals is one leading factor in facilitating the emergence of new pathogens. In this viewpoint, we discuss the possibility of the zoonotic origin of SARS-CoV-2, highlight the importance of understanding human-animal interaction to improve preparedness for future outbreaks, and outline recommendations for prevention.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Surtos de Doenças , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Zoonoses , Animais , Humanos , Pandemias
3.
Rev Sci Tech ; 39(2): 461-470, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33046929

RESUMO

In recent times, there has been an increased focus on animal health and zoonotic diseases that have the potential to trigger epidemics or pandemics that disproportionately affect the poor and most vulnerable. The recent Ebola, Zika and COVID-19 outbreaks demonstrate the devastating human, social and economic impacts of such diseases if they are not prevented or controlled, ideally at source. The risk drivers for zoonoses, which are complex and often interdependent, include climate change and related disasters, antimicrobial resistance, and anthropogenic drivers such as land-use changes and animal production practices. Understanding these drivers requires a better understanding of the ecology of zoonotic diseases at the human-animal-environment interface. Biosecurity and biosafety are critical for reducing the risk of accidental or deliberate release and should be included in risk management strategies. International frameworks for sustainable development, climate change, and disaster risk reduction have all integrated health as one of the core areas of work, calling for better preparedness and response to biological hazards and increased health system resilience. To improve their ability to prevent, prepare for, and respond to emerging and re-emerging threats, countries should address these risk drivers, taking a multidisciplinary One Health approach that involves the animal and human health and environment sectors. Cross-border cooperation is also vital, as diseases know no boundaries.


Assuntos
Infecções por Coronavirus , Desastres , Pandemias , Pneumonia Viral , Infecção por Zika virus , Zika virus , Animais , Betacoronavirus , Mudança Climática , Emergências/veterinária , Humanos , Gestão de Riscos , Infecção por Zika virus/veterinária , Zoonoses/epidemiologia
4.
Infect Dis Poverty ; 9(1): 140, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028426

RESUMO

Most human pathogens originate from non-human hosts and certain pathogens persist in animal reservoirs. The transmission of such pathogens to humans may lead to self-sustaining chains of transmission. These pathogens represent the highest risk for future pandemics. For their prevention, the transmission over the species barrier - although rare - should, by all means, be avoided. In the current COVID-19 pandemic, surprisingly though, most of the current research concentrates on the control by drugs and vaccines, while comparatively little scientific inquiry focuses on future prevention. Already in 2012, the World Bank recommended to engage in a systemic One Health approach for zoonoses control, considering integrated surveillance-response and control of human and animal diseases for primarily economic reasons. First examples, like integrated West Nile virus surveillance in mosquitos, wild birds, horses and humans in Italy show evidence of financial savings from a closer cooperation of human and animal health sectors. Provided a zoonotic origin can be ascertained for the COVID-19 pandemic, integrated wildlife, domestic animal and humans disease surveillance-response may contribute to prevent future outbreaks. In conclusion, the earlier a zoonotic pathogen can be detected in the environment, in wildlife or in domestic animals; and the better human, animal and environmental surveillance communicate with each other to prevent an outbreak, the lower are the cumulative costs.


Assuntos
Doenças Transmissíveis Emergentes/prevenção & controle , Pandemias/prevenção & controle , Zoonoses/prevenção & controle , Doenças dos Animais/epidemiologia , Doenças dos Animais/prevenção & controle , Doenças dos Animais/transmissão , Animais , Betacoronavirus , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Monitoramento Epidemiológico/veterinária , Humanos , Itália/epidemiologia , Saúde Única , Pandemias/economia , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Zoonoses/epidemiologia , Zoonoses/transmissão
5.
Cell Host Microbe ; 28(4): 506-508, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33031768

RESUMO

The features that permit or prevent a virus from becoming a zoonotic threat is an ongoing area of investigation. In this issue of Cell Host & Microbe, Herfst et al. and Henritzi et al. help define the molecular and host determinants of influenza virus spillover from animal to human populations.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Humanos , Sus scrofa , Suínos , Zoonoses
6.
Virol J ; 17(1): 143, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008410

RESUMO

On 11 March 2020, the World Health Organization (WHO) announced Corona Virus Disease (COVID-19), a disease caused by a pathogen called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a pandemic. This ongoing pandemic has now been reported in 215 countries with more than 23 million confirmed cases and more than 803 thousand deaths worldwide as of August 22, 2020. Although efforts are undergoing, there is no approved vaccine or any specific antiretroviral drug to treat COVID-19 so far. It is now known that SARS-CoV-2 can affect not only humans but also pets and other domestic and wild animals, making it a one health global problem. Several published scientific evidence has shown that bats are the initial reservoir hosts of SARS-CoV-2, and pangolins are suggested as an intermediate hosts. So far, little is known concerning the role of pets and other animals in the transmission of COVID-19. Therefore, updated knowledge about the potential role of pets in the current outbreak will be of paramount importance for effective prevention and control of the disease. This review summarized the current evidence about the role of pets and other animals in the transmission of COVID-19.


Assuntos
Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Animais de Estimação/virologia , Pneumonia Viral/transmissão , Pneumonia Viral/veterinária , Zoonoses/transmissão , Animais , Animais Domésticos/virologia , Animais Selvagens/virologia , Betacoronavirus/isolamento & purificação , Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Saúde Global , Humanos , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Zoonoses/virologia
7.
PLoS One ; 15(8): e0228366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866142

RESUMO

The role of questing ticks in the epidemiology of tick-borne diseases in Kenya's Maasai Mara National Reserve (MMNR), an ecosystem with intensified human-wildlife-livestock interactions, remains poorly understood. We surveyed the diversity of questing ticks, their blood-meal hosts, and tick-borne pathogens to understand potential effects on human and livestock health. By flagging and hand-picking from vegetation in 25 localities, we collected 1,465 host-seeking ticks, mostly Rhipicephalus and Amblyomma species identified by morphology and molecular analysis. We used PCR with high-resolution melting (HRM) analysis and sequencing to identify Anaplasma, Babesia, Coxiella, Ehrlichia, Rickettsia, and Theileria pathogens and blood-meal remnants in 231 tick pools. We detected blood-meals from humans, wildebeest, and African buffalo in Rh. appendiculatus, goat in Rh. evertsi, sheep in Am. gemma, and cattle in Am. variegatum. Rickettsia africae was detected in Am. gemma (MIR = 3.10) that had fed on sheep and in Am. variegatum (MIR = 250) that had fed on cattle. We found Rickettsia spp. in Am. gemma (MIR = 9.29) and Rh. evertsi (MIR = 200), Anaplasma ovis in Rh. appendiculatus (MIR = 0.89) and Rh. evertsi (MIR = 200), Anaplasma bovis in Rh. appendiculatus (MIR = 0.89), and Theileria parva in Rh. appendiculatus (MIR = 24). No Babesia, Ehrlichia, or Coxiella pathogens were detected. Unexpectedly, species-specific Coxiella sp. endosymbionts were detected in all tick genera (174/231 pools), which may affect tick physiology and vector competence. These findings show that ticks from the MMNR are infected with zoonotic R. africae and unclassified Rickettsia spp., demonstrating risk of African tick-bite fever and other spotted-fever group rickettsioses to locals and visitors. The protozoan pathogens identified may also pose risk to livestock production. The diverse vertebrate blood-meals of questing ticks in this ecosystem including humans, wildlife, and domestic animals, may amplify transmission of tick-borne zoonoses and livestock diseases.


Assuntos
Infestações por Carrapato/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos/patogenicidade , Animais , Animais Selvagens , Babesia , Bovinos , Doenças dos Bovinos/microbiologia , Coxiella , Ecossistema , Ehrlichia , Humanos , Ixodidae/microbiologia , Quênia/epidemiologia , Rhipicephalus , Rickettsia , Ovinos , Theileria , Infestações por Carrapato/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/parasitologia , Zoonoses
8.
BMC Infect Dis ; 20(1): 654, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894070

RESUMO

BACKGROUND: Brucellosis is a zoonotic disease caused by brucella. It has been an increasing trend in recent years (Wang H, Xu WM, Zhu KJ, Zhu SJ, Zhang HF, Wang J, Yang Y, Shao FY, Jiang NM, Tao ZY, Jin HY, Tang Y, Huo LL, Dong F, Li ZJ, Ding H, Liu ZG, Emerg Microbes Infect 9:889-99, 2020). Brucellosis is capable to invade multiple systems throughout the body, lacking in typical clinical manifestations, and easily misdiagnosed and mistreated. CASE PRESENTATION: We report a case of a male, 5-year-and-11-month old child without relevant medical history, who was admitted to hospital for 20 days of fever. When admitted to the hospital, we found that he was enervated, irritable and sleepy, accompanied with red eyes phenomenon. After anti-infection treatment with meropenem, no improvement observed. Lumbar puncture revealed normal CSF protein, normal cells, and negative culture. Later, doppler echocardiography suggested coronary aneurysms, and incomplete Kawasaki Disease with coronary aneurysms was proposed. The next day, brucellosis agglutination test was positive. Metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid suggested B.melitensis, which was confirmed again by blood culture. The child was finally diagnosed as brucellosis with meningocephalitis, coronary aneurysm and keratitis. According to our preliminary research and review, such case has never been reported in detail before. After diagnosis confirmation, the child was treated with rifampicin, compound sulfamethoxazole, and ceftriaxone for cocktail anti-infection therapy. Aspirin and dipyridamole were also applied for anticoagulant therapy. After medical treatment, body temperature of the child has reached normal level, eye symptoms alleviated, and mental condition gradually turned normal. Re-examination of the doppler echocardiographic indicated that the coronary aneurysm was aggravated, so warfarin was added for amplification of anticoagulation treatment. At present, 3 months of follow-up, the coronary artery dilatation gradually assuaged, and the condition is continued to alleviate. CONCLUSION: Brucellosis can invade nervous system, coronary artery, and cornea. Brucellosis lacks specific signs for clinical diagnosis. The traditional agglutination test and the new mNGS are convenient and effective, which can provide the reference for clinical diagnosis.


Assuntos
Brucella melitensis/isolamento & purificação , Brucelose/complicações , Brucelose/diagnóstico , Aneurisma Coronário/complicações , Aneurisma Coronário/diagnóstico , Ceratite/complicações , Ceratite/diagnóstico , Meningoencefalite/complicações , Meningoencefalite/diagnóstico , Testes de Aglutinação , Animais , Anti-Infecciosos/uso terapêutico , Anticoagulantes/uso terapêutico , Brucelose/tratamento farmacológico , Ceftriaxona/uso terapêutico , Pré-Escolar , Erros de Diagnóstico , Febre/tratamento farmacológico , Humanos , Ceratite/tratamento farmacológico , Masculino , Meningoencefalite/tratamento farmacológico , Rifampina/uso terapêutico , Sulfametoxazol/uso terapêutico , Resultado do Tratamento , Zoonoses/diagnóstico , Zoonoses/tratamento farmacológico
9.
Ann Agric Environ Med ; 27(3): 485-488, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32955234

RESUMO

INTRODUCTION AND OBJECTIVES: The parasite Cryptosporidium spp. is an intracellular protozoa which has a broad range of hosts and zoonotic potential. It presents a serious health risk for agricultural workers and veterinarians. The aim of the study was to identify the species and subtypes of Cryptosporidium occurring in a veterinary student who came into contact with calves on a farm. MATERIAL AND METHODS: The Ziehl-Neelsen staining technique was employed to confirm the presence of Cryptosporidium oocysts. ELISA test was applied to detect coproantigen in faecal specimens. Nested PCR was used to amplify a small ribosomal subunit (SSU rRNA) and sequencing of the GP60 gene served to identify the zoonotic subtypes. RESULTS: The nested PCR allowed to confirm the C. parvum species; subsequently, the IIdA15G1 zoonotic subtype was identified. CONCLUSIONS: This is the first confirmed case in Slovakia of human cryptosporidiosis caused by the unique subtype IIdA15G1.


Assuntos
Criptosporidiose/diagnóstico , Cryptosporidium parvum/isolamento & purificação , Animais , Criptosporidiose/parasitologia , Cryptosporidium parvum/classificação , Ensaio de Imunoadsorção Enzimática , Humanos , Reação em Cadeia da Polimerase , Proteínas de Protozoários/análise , Eslováquia , Estudantes de Medicina , Medicina Veterinária , Adulto Jovem , Zoonoses/diagnóstico , Zoonoses/parasitologia
10.
J Transl Med ; 18(1): 358, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32957995

RESUMO

COVID-19 caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan (Hubei province, China) during late 2019. It has spread across the globe affecting nearly 21 million people with a toll of 0.75 million deaths and restricting the movement of most of the world population during the past 6 months. COVID-19 became the leading health, economic, and humanitarian challenge of the twenty-first century. In addition to the considerable COVID-19 cases, hospitalizations, and deaths in humans, several cases of SARS-CoV-2 infections in animal hosts (dog, cat, tiger, lion, and mink) have been reported. Thus, the concern of pet owners is increasing. Moreover, the dynamics of the disease requires further explanation, mainly concerning the transmission of the virus from humans to animals and vice versa. Therefore, this study aimed to gather information about the reported cases of COVID-19 transmission in animals through a literary review of works published in scientific journals and perform genomic and phylogenetic analyses of SARS-CoV-2 isolated from animal hosts. Although many instances of transmission of the SARS-CoV-2 have been reported, caution and further studies are necessary to avoid the occurrence of maltreatment in animals, and to achieve a better understanding of the dynamics of the disease in the environment, humans, and animals. Future research in the animal-human interface can help formulate and implement preventive measures to combat the further transmission of COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Pneumonia Viral/veterinária , Zoonoses/transmissão , Criação de Animais Domésticos , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Gatos , Coronavirus/classificação , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Cães , Genoma Viral , Humanos , Vison/virologia , Países Baixos/epidemiologia , Exposição Ocupacional , Animais de Estimação/virologia , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Glicoproteína da Espícula de Coronavírus/genética , Pesquisa Médica Translacional , Zoonoses/epidemiologia
11.
S Afr Med J ; 110(7): 646-651, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32880341

RESUMO

Brucellosis is recognised as a neglected zoonotic tropical disease of global health and economic importance. Medical practitioner unawareness of the disease is reported to contribute to the overall neglect. In South Africa (SA), human brucellosis is a notifiable medical condition and bovine brucellosis is a controlled animal disease. The overall aim of this review article is to increase medical practitioner capacity to detect, diagnose and treat brucellosis in the SA context. A brief review of the literature on human brucellosis in SA is presented, together with a discussion of current issues related to medical detection, treatment and management of brucellosis, applicable to the SA context.


Assuntos
Brucelose/diagnóstico , Animais , Antibacterianos/uso terapêutico , Brucella abortus , Brucelose/tratamento farmacológico , Quimioterapia Combinada , História do Século XX , Humanos , Testes Imunológicos , África do Sul , Zoonoses
12.
mSphere ; 5(5)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968009

RESUMO

Bats are the reservoir for a large number of zoonotic viruses, including members of Coronaviridae (severe acute respiratory syndrome coronavirus [SARS-CoV] and SARS-CoV-2), Paramyxoviridae (Hendra and Nipah viruses), Rhabdoviridae (rabies virus), and Filoviridae (Ebola virus) as exemplars. Many retroviruses, such as human immunodeficiency virus, are similarly zoonotic; however, only infectious exogenous gammaretroviruses have recently been identified in bats. Here, viral metagenomic sequencing of samples from bats submitted for rabies virus testing, largely due to human exposure, identified a novel, highly divergent exogenous Deltaretrovirus from a big brown bat (Eptesicus fuscus) in South Dakota. The virus sequence, corresponding to Eptesicus fuscus deltaretrovirus (EfDRV), comprised a nearly complete coding region comprised of canonical 5'-gag-pro-pol-env-3' genes with 37% to 51% identity to human T-lymphotropic virus (HTLV), an infectious retrovirus that causes T-cell lymphoma. A putative tax gene with 27% identity to HTLV was located downstream of the pol gene along with a gene harbored in an alternative reading frame which possessed a conserved domain for an Epstein-Barr virus nuclear antigen involved in gene transactivation, suggesting a regulatory function similar to that of the deltaretrovirus rex gene. A TaqMan reverse transcriptase PCR (RT-PCR) targeting the pol gene identified 4/60 (6.7%) bats as positive for EfDRV, which, combined with a search of the E. fuscus genome that failed to identify sequences with homology to EfDRV, suggests that EfDRV is an infectious exogenous virus. As all known members of Deltaretrovirus can cause malignancies and E. fuscus is widely distributed in the Americas, often with a colonial roosting behavior in human dwellings, further studies are needed to investigate potential zoonosis.IMPORTANCE Bats host a large numbers of viruses, many of which are zoonotic. In the United States, the big brown bat (Eptesicus fuscus) is widely distributed and lives in small colonies that roost in cavities, often in human dwellings, leading to frequent human interaction. Viral metagenomic sequencing of samples from an E. fuscus bat submitted for rabies testing identified the first exogenous bat Deltaretrovirus The E. fuscus deltaretrovirus (EfDRV) genome consists of the typical deltaretrovial 5'-gag-pro-pol-env-3' genes along with genes encoding two putative transcriptional transactivator proteins distantly related to the Tax protein of human T-cell lymphotrophic virus and nuclear antigen 3B of Epstein-Barr virus. Searches of the E. fuscus genome sequence failed to identify endogenous EfDRV. RT-PCR targeting the EfDRV pol gene identified 4/60 (6.7%) bats with positive results. Together, these results suggest that EfDRV is exogenous. As all members of Deltaretrovirus are associated with T- and B-cell malignancies or neurologic disease, further studies on possible zoonosis are warranted.


Assuntos
Quirópteros/virologia , Deltaretrovirus/genética , Deltaretrovirus/isolamento & purificação , Genoma Viral/genética , Animais , Produtos do Gene tax/genética , Humanos , RNA Viral/genética , South Dakota , Estados Unidos , Zoonoses/virologia
13.
Viruses ; 12(9)2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872469

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic emphasizes the need to actively study the virome of unexplained respiratory diseases. We performed viral metagenomic next-generation sequencing (mNGS) analysis of 91 nasal-throat swabs from individuals working with animals and with acute respiratory diseases. Fifteen virus RT-PCR-positive samples were included as controls, while the other 76 samples were RT-PCR negative for a wide panel of respiratory pathogens. Eukaryotic viruses detected by mNGS were then screened by PCR (using primers based on mNGS-derived contigs) in all samples to compare viral detection by mNGS versus PCR and assess the utility of mNGS in routine diagnostics. mNGS identified expected human rhinoviruses, enteroviruses, influenza A virus, coronavirus OC43, and respiratory syncytial virus (RSV) A in 13 of 15 (86.7%) positive control samples. Additionally, rotavirus, torque teno virus, human papillomavirus, human betaherpesvirus 7, cyclovirus, vientovirus, gemycircularvirus, and statovirus were identified through mNGS. Notably, complete genomes of novel cyclovirus, gemycircularvirus, and statovirus were genetically characterized. Using PCR screening, the novel cyclovirus was additionally detected in 5 and the novel gemycircularvirus in 12 of the remaining samples included for mNGS analysis. Our studies therefore provide pioneering data of the virome of acute-respiratory diseases from individuals at risk of zoonotic infections. The mNGS protocol/pipeline applied here is sensitive for the detection of a variety of viruses, including novel ones. More frequent detections of the novel viruses by PCR than by mNGS on the same samples suggests that PCR remains the most sensitive diagnostic test for viruses whose genomes are known. The detection of novel viruses expands our understanding of the respiratory virome of animal-exposed humans and warrant further studies.


Assuntos
Infecções Respiratórias/virologia , Viroses/virologia , Zoonoses/virologia , Animais , Coronavirus/genética , Coronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenoma , Metagenômica/métodos , Pandemias , Filogenia , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Infecções Respiratórias/diagnóstico , Viroses/diagnóstico , Zoonoses/diagnóstico
14.
Rev Esp Salud Publica ; 942020 Sep 30.
Artigo em Espanhol | MEDLINE | ID: mdl-32994390

RESUMO

In the midst of the SARS-CoV-2 public-health pandemic emergency, it is important to understand its zoonotic origin and how an animal virus finally infects humans. Identifying the circumstances in which a virus jumps species boundaries to infect humans so productively is objective of this work and will help us to determine the epidemiology and pathogenisis of this agent. Nowadays, it is known that bats serve as reservoir hosts for virus progenitor, but determine the possibility of a potential intermediate host of SARS-CoV-2 is still a challenge. Scientific investigations stablish the natural selection theory as the most probable (natural selection in an animal host before zoonotic transfer or acquired mutations in humans following crossing species barrier). It is necessary to find out how SARS-CoV-2 emerged, its rapidly spreads within a community and the optimal context in which this virus binds to human receptor. One Health is a multisectoral, collaborative and transdisciplinary approach which allows a cooperative working between animal and human health that will help us to introduce some possible control measures that might reduce the spread of the virus; improving sanitary management, identifying new outbreaks and preventing future zoonotic and pandemic events.


Assuntos
Betacoronavirus , Quirópteros/virologia , Doenças Transmissíveis Emergentes/transmissão , Infecções por Coronavirus/transmissão , Reservatórios de Doenças/virologia , Pandemias , Pneumonia Viral/transmissão , Zoonoses/transmissão , Animais , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Saúde Global , Humanos , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Seleção Genética , Zoonoses/epidemiologia , Zoonoses/virologia
15.
Mol Biol Evol ; 37(9): 2463-2464, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893295

RESUMO

Identifying the origin of SARS-CoV-2, the etiological agent of the current COVID-19 pandemic, may help us to avoid future epidemics of coronavirus and other zoonoses. Several theories about the zoonotic origin of SARS-CoV-2 have recently been proposed. Although Betacoronavirus found in Rhinolophus bats from China have been broadly implicated, their genetic dissimilarity to SARS-CoV-2 is so high that they are highly unlikely to be its direct ancestors. Thus, an intermediary host is suspected to link bat to human coronaviruses. Based on genomic CpG dinucleotide patterns in different coronaviruses from different hosts, it was suggested that SARS-CoV-2 might have evolved in a canid gastrointestinal tract prior to transmission to humans. However, similar CpG patterns are now reported in coronaviruses from other hosts, including bats themselves and pangolins. Therefore, reduced genomic CpG alone is not a highly predictive biomarker, suggesting a need for additional biomarkers to reveal intermediate hosts or tissues. The hunt for the zoonotic origin of SARS-CoV-2 continues.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Genoma Viral , Pandemias , Pneumonia Viral/epidemiologia , Proteínas Virais/genética , Zoonoses/epidemiologia , Animais , Betacoronavirus/classificação , Betacoronavirus/patogenicidade , Quirópteros/virologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Ilhas de CpG , Eutérios/virologia , Evolução Molecular , Expressão Gênica , Mutação , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Recombinação Genética , Proteínas Virais/metabolismo , Zoonoses/transmissão , Zoonoses/virologia
16.
Infez Med ; 28(3): 302-311, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920565

RESUMO

SARS-CoV-2 has created a global disaster by infecting millions of people and causing thousands of deaths across hundreds of countries. Currently, the infection is in its exponential phase in several countries and there is no sign of immediate relief from this deadly virus. At the same time, some "conspiracy theories" have arisen on the origin of this virus due to the lack of a "definite origin". To understand if this controversy is also reflected in scientific publications, here, we reviewed the key articles published at initial stages of the COVID-19 pandemic (January 01, 2020 to April 30, 2020) related to the zoonotic origin of SARS-CoV-2 and the articles opposing the "conspiracy theories". We also provide an overview on the current knowledge on SARS-CoV-2 Spike as well as the Coronavirus research domain. Furthermore, a few important points related to the "conspiracy theories" such as "laboratory engineering" or "bioweapon" aspects of SARS-CoV-2 are also reviewed. In this article, we have only considered the peer-reviewed publications that are indexed in PubMed and other official publications, and we have directly quoted the authors' statements from their respective articles to avoid any controversy.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Engenharia Genética/métodos , Pneumonia Viral/virologia , Seleção Genética , Animais , Derramamento de Material Biológico , Armas Biológicas , Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Dissidências e Disputas , Eutérios/classificação , Eutérios/virologia , Saúde Global/estatística & dados numéricos , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Recombinação Genética , Alinhamento de Sequência , Zoonoses/virologia
17.
Viruses ; 12(9)2020 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933150

RESUMO

Coronaviruses are enveloped RNA viruses capable of causing respiratory, enteric, or systemic diseases in a variety of mammalian hosts that vary in clinical severity from subclinical to fatal. The host range and tissue tropism are largely determined by the coronaviral spike protein, which initiates cellular infection by promoting fusion of the viral and host cell membranes. Companion animal coronaviruses responsible for causing enteric infection include feline enteric coronavirus, ferret enteric coronavirus, canine enteric coronavirus, equine coronavirus, and alpaca enteric coronavirus, while canine respiratory coronavirus and alpaca respiratory coronavirus result in respiratory infection. Ferret systemic coronavirus and feline infectious peritonitis virus, a mutated feline enteric coronavirus, can lead to lethal immuno-inflammatory systemic disease. Recent human viral pandemics, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and most recently, COVID-19, all thought to originate from bat coronaviruses, demonstrate the zoonotic potential of coronaviruses and their potential to have devastating impacts. A better understanding of the coronaviruses of companion animals, their capacity for cross-species transmission, and the sharing of genetic information may facilitate improved prevention and control strategies for future emerging zoonotic coronaviruses. This article reviews the clinical, epidemiologic, virologic, and pathologic characteristics of nine important coronaviruses of companion animals.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus/isolamento & purificação , Animais de Estimação/virologia , Animais , Camelídeos Americanos/virologia , Doenças do Gato/epidemiologia , Doenças do Gato/virologia , Gatos/virologia , Quirópteros/virologia , Coronavirus/classificação , Coronavirus/genética , Coronavirus/fisiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Doenças do Cão/epidemiologia , Doenças do Cão/virologia , Cães/virologia , Peritonite Infecciosa Felina/epidemiologia , Peritonite Infecciosa Felina/virologia , Furões/virologia , Variação Genética , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/virologia , Cavalos/virologia , Especificidade de Hospedeiro , Humanos , RNA Viral/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Replicação Viral , Zoonoses
18.
Med Sci (Paris) ; 36(8-9): 775-782, 2020.
Artigo em Francês | MEDLINE | ID: mdl-32755537

RESUMO

The recent emergence of a new coronavirus, SARS-CoV-2, responsible for COVID-19, is a new warning of the risk to public health represented by viral zoonoses and in particular by coronaviruses. Mainly described as being able to infect the upper and lower respiratory tract, coronaviruses can also infect the central and peripheral nervous systems as many other respiratory viruses, such as influenza or respiratory syncytial virus. Viral infections of the nervous system are a major public health concern as they can cause devastating illnesses up to death, especially when they occur in the elderly, who are more susceptible to these infections. Knowledge concerning the pathophysiology of recently emerging coronaviruses (MERS-CoV, SARS-CoV and SARS-CoV-2) and how they reach the central nervous system are very sketchy and the work in progress aims in particular to better understand their biology and the mechanisms associated with neurological damage. In this review we will discuss the current state of knowledge on the neurotropism of human coronaviruses and the associated mechanisms by developing in particular the latest data concerning SARS-CoV-2.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/complicações , Doenças do Sistema Nervoso/etiologia , Pandemias , Pneumonia Viral/complicações , Animais , Transporte Biológico , Técnicas de Laboratório Clínico , Doenças Transmissíveis Emergentes , Coronaviridae/patogenicidade , Coronaviridae/fisiologia , Coronaviridae/ultraestrutura , Infecções por Coronaviridae/complicações , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/fisiopatologia , Humanos , Sistema Nervoso/virologia , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/terapia , Doenças do Sistema Nervoso/virologia , Especificidade de Órgãos , Pneumonia Viral/diagnóstico , Pneumonia Viral/fisiopatologia , Tropismo Viral , Virulência , Replicação Viral , Zoonoses
19.
Med Sci (Paris) ; 36(8-9): 783-796, 2020.
Artigo em Francês | MEDLINE | ID: mdl-32773024

RESUMO

SARS-CoV-2 is a new human coronavirus (CoV), which emerged in People's Republic of China at the end of 2019 and is responsible for the global Covid-19 pandemic that caused more than 540 000 deaths in six months. Understanding the origin of this virus is an important issue and it is necessary to determine the mechanisms of its dissemination in order to be able to contain new epidemics. Based on phylogenetic inferences, sequence analysis and structure-function relationships of coronavirus proteins, informed by the knowledge currently available, we discuss the different scenarios evoked to account for the origin - natural or synthetic - of the virus. On the basis of currently available data, it is impossible to determine whether SARS-CoV-2 is the result of a natural zoonotic emergence or an accidental escape from experimental strains. Regardless of its origin, the study of the evolution of the molecular mechanisms involved in the emergence of this pandemic virus is essential to develop therapeutic and vaccine strategies.


Assuntos
Betacoronavirus/genética , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/virologia , Coronavirus/classificação , Evolução Molecular , Pandemias , Filogenia , Pneumonia Viral/virologia , RNA Viral/genética , Sequência de Aminoácidos , Animais , Betacoronavirus/classificação , Betacoronavirus/isolamento & purificação , Derramamento de Material Biológico , China/epidemiologia , Infecções por Coronaviridae/transmissão , Infecções por Coronaviridae/veterinária , Infecções por Coronaviridae/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Reservatórios de Doenças , Mutação com Ganho de Função , Genoma Viral , HIV/genética , Especificidade de Hospedeiro , Humanos , Mamíferos/virologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Vírus Reordenados/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Zoonoses
20.
PLoS One ; 15(8): e0237129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32776964

RESUMO

Outbreaks of emerging coronaviruses in the past two decades and the current pandemic of a novel coronavirus (SARS-CoV-2) that emerged in China highlight the importance of this viral family as a zoonotic public health threat. To gain a better understanding of coronavirus presence and diversity in wildlife at wildlife-human interfaces in three southern provinces in Viet Nam 2013-2014, we used consensus Polymerase Chain Reactions to detect coronavirus sequences. In comparison to previous studies, we observed high proportions of positive samples among field rats (34.0%, 239/702) destined for human consumption and insectivorous bats in guano farms (74.8%, 234/313) adjacent to human dwellings. Most notably among field rats, the odds of coronavirus RNA detection significantly increased along the supply chain from field rats sold by traders (reference group; 20.7% positivity, 39/188) by a factor of 2.2 for field rats sold in large markets (32.0%, 116/363) and 10.0 for field rats sold and served in restaurants (55.6%, 84/151). Coronaviruses were also detected in rodents on the majority of wildlife farms sampled (60.7%, 17/28). These coronaviruses were found in the Malayan porcupines (6.0%, 20/331) and bamboo rats (6.3%, 6/96) that are raised on wildlife farms for human consumption as food. We identified six known coronaviruses in bats and rodents, clustered in three Coronaviridae genera, including the Alpha-, Beta-, and Gammacoronaviruses. Our analysis also suggested either mixing of animal excreta in the environment or interspecies transmission of coronaviruses, as both bat and avian coronaviruses were detected in rodent feces on wildlife farms. The mixing of multiple coronaviruses, and their apparent amplification along the wildlife supply chain into restaurants, suggests maximal risk for end consumers and likely underpins the mechanisms of zoonotic spillover to people.


Assuntos
Animais Selvagens/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Coronavirus/genética , Carne/virologia , Zoonoses/epidemiologia , Zoonoses/transmissão , Animais , Quirópteros/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Fezes/virologia , Abastecimento de Alimentos , Humanos , Filogenia , Reação em Cadeia da Polimerase , Porcos-Espinhos/virologia , RNA Viral/genética , Ratos , Risco , Vietnã/epidemiologia , Zoonoses/diagnóstico , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA