Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.625
Filtrar
1.
Cancer Med ; 13(7): e7149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572951

RESUMO

BACKGROUND: Poly (ADP-ribose) polymerase (PARP) inhibitors have been increasingly used in the treatment of ovarian cancer, with BRCA positivity and homologous recombination deficiency (HRD) being common biomarkers used for predicting their efficacy. However, given the limitations of these biomarkers, new ones need to be explored. METHODS: This retrospective study included 181 ovarian cancer patients who received olaparib or niraparib at two independent hospitals in Japan between May 2018 and December 2022. Clinical information and blood sampling data were collected. Patient characteristics, treatment history, and predictability of treatment duration based on blood data before treatment initiation were examined. RESULTS: High-grade serous carcinoma, BRCA positivity, HRD, and maintenance therapy after recurrence treatment were observed more frequently in the olaparib group than in the niraparib group. The most common reasons for treatment interruption were anemia, fatigue, and nausea in the olaparib group and thrombocytopenia in the niraparib group. Regarding response to olaparib treatment, complete response to the most recent treatment, maintenance therapy after the first chemotherapy, high-grade serous carcinoma, and germline BRCA positivity were observed significantly more frequently among responders than among non-responders. Furthermore, neutrophil counts were significantly higher among responders than among non-responders. CONCLUSIONS: Inflammation-related blood data, such as neutrophil count, obtained at the initial pre-treatment visit might serve as potential predictors for prolonged olaparib treatment. While this study offers valuable insights into potential indicators for prolonged olaparib treatment, it underscores the need for more expansive research to strengthen our understanding of PARP inhibitors and optimize treatment strategies in ovarian cancer.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Japão , Ribose/uso terapêutico , Estudos Retrospectivos , Mutação , Antineoplásicos/efeitos adversos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Biomarcadores , Poli(ADP-Ribose) Polimerases , Carcinoma/tratamento farmacológico , Ftalazinas/efeitos adversos
2.
J Exp Clin Cancer Res ; 43(1): 88, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38515178

RESUMO

BACKGROUND: This study explores the repurposing of Auranofin (AF), an anti-rheumatic drug, for treating non-small cell lung cancer (NSCLC) adenocarcinoma and pancreatic ductal adenocarcinoma (PDAC). Drug repurposing in oncology offers a cost-effective and time-efficient approach to developing new cancer therapies. Our research focuses on evaluating AF's selective cytotoxicity against cancer cells, identifying RNAseq-based biomarkers to predict AF response, and finding the most effective co-therapeutic agents for combination with AF. METHODS: Our investigation employed a comprehensive drug screening of AF in combination with eleven anticancer agents in cancerous PDAC and NSCLC patient-derived organoids (n = 7), and non-cancerous pulmonary organoids (n = 2). Additionally, we conducted RNA sequencing to identify potential biomarkers for AF sensitivity and experimented with various drug combinations to optimize AF's therapeutic efficacy. RESULTS: The results revealed that AF demonstrates a preferential cytotoxic effect on NSCLC and PDAC cancer cells at clinically relevant concentrations below 1 µM, sparing normal epithelial cells. We identified Carbonic Anhydrase 12 (CA12) as a significant RNAseq-based biomarker, closely associated with the NF-κB survival signaling pathway, which is crucial in cancer cell response to oxidative stress. Our findings suggest that cancer cells with low CA12 expression are more susceptible to AF treatment. Furthermore, the combination of AF with the AKT inhibitor MK2206 was found to be particularly effective, exhibiting potent and selective cytotoxic synergy, especially in tumor organoid models classified as intermediate responders to AF, without adverse effects on healthy organoids. CONCLUSION: Our research offers valuable insights into the use of AF for treating NSCLC and PDAC. It highlights AF's cancer cell selectivity, establishes CA12 as a predictive biomarker for AF sensitivity, and underscores the enhanced efficacy of AF when combined with MK2206 and other therapeutics. These findings pave the way for further exploration of AF in cancer treatment, particularly in identifying patient populations most likely to benefit from its use and in optimizing combination therapies for improved patient outcomes.


Assuntos
Adenocarcinoma , Antineoplásicos , Anidrases Carbônicas , Carcinoma Pulmonar de Células não Pequenas , Carcinoma Ductal Pancreático , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Auranofina/farmacologia , Auranofina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Pulmonares/genética , Reposicionamento de Medicamentos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pulmão/patologia , Biomarcadores , Organoides/metabolismo
3.
Front Immunol ; 15: 1341804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515757

RESUMO

IL-15 has shown preclinical activity by enhancing the functional maturation of natural killer (NK) cells. Clinical evaluation of the potential anticancer activity of most cytokines, including IL-15, has been limited by low tolerability and rapid in vivo clearance. Efbalropendekin Alfa (XmAb24306) is a soluble IL15/IL15-receptor alpha heterodimer complex fused to a half-life extended Fc domain (IL15/IL15Rα-Fc), engineered with mutations to reduce IL-15 affinity for CD122. Reduced affinity drives lower potency, leading to prolonged pharmacodynamic response in cynomolgus monkeys. We show that in vitro, human NK cells treated with XmAb24306 demonstrate enhanced cytotoxicity against various tumor cell lines. XmAb24306-treated NK cells also exhibit enhanced killing of 3D colorectal cancer spheroids. Daratumumab (dara), a monoclonal antibody (mAb) that targets CD38 results in antibody-dependent cellular cytotoxicity (ADCC) of both multiple myeloma (MM) cells and NK cells. Addition of XmAb24306 increases dara-mediated NK cell ADCC against various MM cell lines in vitro. Because NK cells express CD38, XmAb24306 increases dara-mediated NK cell fratricide, but overall does not negatively impact the ADCC activity against a MM cell line likely due to increased NK cell activity of the surviving cells. These data show that XmAb24306 increases direct and ADCC-mediated human NK cell cytotoxicity in vitro.


Assuntos
Antineoplásicos , Interleucina-15 , Humanos , Interleucina-15/farmacologia , Interleucina-15/metabolismo , Antineoplásicos/farmacologia , Citocinas/metabolismo , Fatores Imunológicos/metabolismo , Células Matadoras Naturais , Linhagem Celular Tumoral
4.
Eur J Oncol Nurs ; 69: 102536, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452425

RESUMO

PURPOSE: Antineoplastic drugs (ADs) are widely used in cancer treatment. Nurses in chemotherapy centers are exposed to these drugs during preparation. They can affect healthy cells, leading to teratogenic and mutagenic effects, as well as oxidative stress. This study aimed to evaluate oxidative stress biomarkers in the nurses exposed to these drugs. METHOD: This study was conducted on 30 nurses exposed to ADs and 30 nurses with no exposure to these drugs as non-exposed group. Oxidative stress biomarkers were measured in the blood serum samples of both groups, including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), total antioxidant capacity (TAC), and blood thiol groups. RESULTS: Considering the possibility of confounding effect of nutritional supplement consumption, the effect of this factor was adjusted in the analysis. A significant difference was observed for CAT, SOD, thiol, and TAC biomarkers between two groups (P < 0.05). However, the difference in MDA and GPx biomarkers between two groups was not statistically significant. CONCLUSIONS: The findings of the present study showed that supplement consumption has a significant effect on the biomarker of total antioxidant capacity. Thus, total antioxidant capacity measurement is advised as the best biomarker for tracking oxidative status in nurses exposed to ADs due to its capacity to measure all antioxidants in the body, except the thiol group, and its lower cost when compared to other biomarkers. Furthermore, it can be claimed that the consumption of nutritional supplements has a greater effect on the non-enzymatic biomarkers of oxidative stress than on enzymatic antioxidant system.


Assuntos
Antineoplásicos , Antioxidantes , Humanos , Antioxidantes/análise , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Estudos Transversais , Estresse Oxidativo , Biomarcadores , Superóxido Dismutase/farmacologia , Glutationa Peroxidase/farmacologia , Antineoplásicos/efeitos adversos , Compostos de Sulfidrila/farmacologia
5.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474121

RESUMO

The integration of innovative medical technologies and interdisciplinary collaboration could improve the treatment of cancer, a globally prevalent and often deadly disease. Despite recent advancements, current cancer therapies fail to specifically address recurrence and target cancer stem cells (CSCs), which contribute to relapse. In this study, we utilized three types of cancer cells, from which three types of CSCs were further derived, to conduct a proteomic analysis. Additionally, shared cell surface biomarkers were identified as potential targets for a comprehensive treatment strategy. The selected biomarkers were evaluated through short hairpin RNA treatment, which revealed contrasting functions in cancer cells and CSCs. Knockdown of the identified proteins revealed that they regulate the epithelial-mesenchymal transition (EMT) and stemness via the ERK signaling pathway. Resistance to anticancer agents was consequently reduced, ultimately enhancing the overall anticancer effects of the treatment. Additionally, the significance of these biomarkers in clinical patient outcomes was confirmed using bioinformatics. Our study suggests a novel cancer treatment strategy that addresses the limitations of current anticancer therapies.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Linhagem Celular Tumoral , Proteômica , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Fatores de Transcrição/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo
6.
J Pharm Biomed Anal ; 242: 116001, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354536

RESUMO

Saikosaponin D (SsD), a natural triterpenoid saponin compound, exhibits notable potential in suppressing tumor growth and inhibiting metastasis, particularly in breast cancer. However, its underlying mechanism of action for SsD remains unclear. In this study, a combination strategy to reveal the metabolism modulation of SsD on breast cancer was performed by integration of histopathological assessments and untargeted metabolomics analysis. Pathological evaluation of the efficacy of SsD from a visual and intuitive perspective. Accordingly, a non-targeted metabolomics study was used to investigate the pharmacological efficacy using a set of serum samples from mice before and after (0-30 days) modulated with SsD based on ultra-high performance liquid chromatography tandem orbitrap mass spectrometry to discover metabolite biomarkers for finding the key metabolic mechanism in a molecular perspective. As a result, 20 metabolites were selected as potential biomarkers for SsD efficacy evaluation with high sensitivity and specificity. These metabolites changes were involved in sphingolipid metabolism, glycerophospholipid metabolism, phenylalanine and tryptophan metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis pathways, suggesting that SsD exerted anti-breast cancer effects through the regulation of the underlying metabolism. In conclusion, we developed a new analysis strategy that effectively discovers tumor-progressing related metabolite biomarkers in serum for pharmacological efficacy evaluation.


Assuntos
Antineoplásicos , Neoplasias , Ácido Oleanólico/análogos & derivados , Saponinas , Camundongos , Animais , Triptofano , Metabolômica/métodos , Saponinas/farmacologia , Biomarcadores , Cromatografia Líquida de Alta Pressão/métodos , Fenilalanina
7.
Mol Cancer Ther ; 23(4): 436-446, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363729

RESUMO

The clinical development and then the progressive entry in clinical practice of antibody-drug conjugates (ADC) have marked a transformative advancement in the overall cancer treatment. ADCs have been extensively tested for a large number of tumors, reporting heterogeneous clinical efficacy and safety results. In some diseases, the advent of ADCs has yielded significant changes in the prognostic trajectory, portending an improvement of the survival and/or quality of life. ADCs are targeted agents, capable of delivering highly cytotoxic payloads selectively to antigen-expressing cancer cells. As such, they have been intended as perfect "bullets" to enable the promise of precision medicine, toward high-efficacy and limited-toxicity treatment options. However, only some approved ADCs are intended for the use in biomarker-selected patient populations, restricting potentially the opportunity to be more precise. Yet, key characteristics of modern ADCs might allow the activity of ADCs in tumors with heterogeneous or low expression of cancer antigens, resulting in a clinical activity that could sublimate the classic paradigm of a drug-to-target perfect match. In our review, we portrayed the current landscape of approved ADCs, reporting data of activity as related to the expression of the cancer antigens, and elucidating possible determinants of the safety and efficacy, including when used in a therapeutic sequence.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Qualidade de Vida , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores
8.
Crit Rev Oncol Hematol ; 196: 104291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346462

RESUMO

Rare cancers (RCs), which account for over 20% of cancer cases, face significant research and treatment challenges due to their limited prevalence. This results in suboptimal outcomes compared to more common malignancies. Rare bone tumors (RBTs) constitute 5-10% of rare cancer cases and pose unique diagnostic complexities. The therapeutic potential of anti-cancer drugs for RBTs remains largely unexplored. Identifying molecular alterations in cancer-related genes and their associated pathways is essential for precision medicine in RBTs. Small molecule inhibitors and monoclonal antibodies targeting specific RBT-associated proteins show promise. Ongoing clinical trials aim to define RBT biomarkers, subtypes, and optimal treatment contexts, including combination therapies and immunotherapeutic agents. This review addresses the challenges in diagnosing, treating, and studying RBTs, shedding light on the current state of RBT biomarkers, potential therapeutic targets, and promising inhibitors. Rare cancers demand attention and innovative solutions to improve clinical outcomes.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Terapia Combinada , Medicina de Precisão , Biomarcadores
9.
Biomater Sci ; 12(3): 776-789, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38167881

RESUMO

Immunosuppressive tumor microenvironments challenge the effectiveness of protein-based biopharmaceuticals in cancer immunotherapy. Reestablishing tumor cell immunogenicity by enhancing calreticulin (CRT) exposure is expected to improve tumor immunotherapy. Given that CRT translocation is inherently modulated by phosphorylated eIF2α, the selective inhibition of protein phosphatase 1 (PP1) emerges as an effective strategy to augment tumor immunogenicity. To harness the PP1-disrupting potential of GADD34-derived motifs and address their limited intracellular delivery, we integrated these sequences into an enzyme-triggered, cell-penetrating peptide-mediated chimeric protein scaffold. This design not only facilitates efficient cytoplasmic delivery of these immunostimulatory motifs to induce "eat-me" signaling, but also provides a versatile platform for combination immunotherapy. Fabrication of biomodulators with cytotoxic BLF1 provides additional "eat-me" signaling through phosphatidylserine exposure or that with an immunomodulatory designed ankyrin repeat protein disables "don't-find-me" signaling by antagonizing PD-L1. Notably, these bifunctional biomodulators exhibit remarkable ability to induce macrophage phagocytosis, dendritic cell maturation, and CD8+ T activation, ultimately substantially inhibiting tumor growth. This study presents a modular genetic coding strategy for PP1-centered therapies that enables seamless integration of immunostimulatory sequences into protein-based anti-tumor cocktail therapies, thereby offering novel alternatives for improving antitumor efficacy.


Assuntos
Antineoplásicos , Peptídeos Penetradores de Células , Neoplasias , Humanos , Imunoterapia , Antineoplásicos/farmacologia , Neoplasias/patologia , Fatores Imunológicos , Microambiente Tumoral , Linhagem Celular Tumoral
10.
Orphanet J Rare Dis ; 19(1): 5, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167464

RESUMO

BACKGROUND: The nonclinical as well as clinical development of orphan drugs is difficult, owing to unknown pathophysiology and the absence of animal models. Both, the U.S. Food and Drug Administration (FDA) Guidance and European Medicines Agency (EMA) Guidelines, for orphan drug development describe non-clinical studies, but lack specific information, such as animal species and study design. Against this background, this study aimed to elucidate efficient methods for evaluating nonclinical efficacy based on a review report of orphan drugs approved in Japan. RESULTS: A total of 184 orphan drugs, including 84 anticancer and 100 non-anticancer drugs, approved in Japan from January 2010 to December 2019 were investigated. Some anticancer drugs progressed to clinical development without distinct efficacy data in nonclinical studies. Patient-derived cells have been used for some drugs due to a lack of established cell lines. Cells used for non-clinical studies were devised for drugs indicated for cancers resistant to prior therapies, tumours with specific amino acid mutations in the target molecules, and solid tumours with specific biomarkers. For some non-anticancer drugs, similar disease animal models and normal animals were used for evaluation, since animal models did not exist. Biomarkers have been used specifically for evaluation in normal animals and as endpoints in some clinical trials. CONCLUSIONS: It was possible to evaluate drug efficacy by flexibly designing nonclinical studies according to disease characteristics for potentials orphan drugs. These approaches, which are not described in detail in the EMA Guideline or FDA Guidance, may thus lead to approval.


Assuntos
Antineoplásicos , Neoplasias , Animais , Estados Unidos , Humanos , Produção de Droga sem Interesse Comercial , Aprovação de Drogas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , United States Food and Drug Administration , Biomarcadores
11.
J Pharm Sci ; 113(1): 268-277, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992870

RESUMO

Cisplatin is widely used for the treatment of various types of cancer. However, cisplatin-induced nephrotoxicity (CIN) is frequently observed in patients receiving cisplatin therapy which poses a challenge in its clinical utility. Currently used clinical biomarkers for CIN are not adequate for early detection of nephrotoxicity, hence there is a need to identify potential early biomarkers in predicting CIN. In the current study, a combination of in vitro toxicodynamic (TD) modeling and untargeted global metabolomics approach was used to identify novel potential metabolite biomarkers for early detection of CIN. In addition, we investigated the protective role of cimetidine (CIM), an inhibitor of the organic cation transporter 2 (OCT2), in suppressing CIN. We first characterized the time-course of nephrotoxic effects of cisplatin (CIS) and the protective effects of CIM in a human pseudo-immortalized renal proximal tubule epithelial cell line (RPTEC), SA7K cell line. Secondly, we used a mathematical cell-level, in vitro TD modeling approach to quantitatively characterize the time-course effects of CIS and CIM as single agents and combination in SA7K cells. Based on the experimental and modeling results, we selected relevant concentrations of CIS and CIM for our metabolomics study. With the help of PCA (Principal Component Analysis) and PLS-DA (Projection to Latent Structure - Discriminate Analysis) analyses, we confirmed global metabolome changes for different groups (CIS, CIM, CIS+CIM vs control) in SA7K cells. Based on the criterion of a p-value ≤ 0.05 and a fold change ≥ 2 or ≤ 0.5, we identified 20 top metabolites that were significantly changed during the early phase i.e. within first 12 h of CIS treatment. Finally, pathway analysis was conducted that revealed the key metabolic pathways that were most impacted in CIN.


Assuntos
Antineoplásicos , Cisplatino , Humanos , Cisplatino/toxicidade , Antineoplásicos/toxicidade , Cimetidina/farmacologia , Rim/metabolismo , Biomarcadores
12.
J Drug Target ; 32(1): 33-44, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38095181

RESUMO

Cancer stem cells (CSCs) represent a distinct subset of neoplastic cells characterised by their heightened capacity for tumorigenesis. These cells are implicated in the facilitation of cancer metastasis, recurrence, and resistance to conventional therapeutic interventions. Extensive scientific research has been devoted to the identification of biomarkers and the elucidation of molecular mechanisms in order to improve targeted therapeutic approaches. Accurate identification of cancer stem cells based on biomarkers can provide a theoretical basis for drug combinations of malignant tumours. Targeted biomarker-based therapies also offer a silver lining for patients with advanced malignancies. This review aims comprehensively to consolidate the latest findings on CSCs biomarkers, targeted agents as well as biomarkers associated signalling pathways in well-established cancer types, thereby contributing to improved prognostic outcomes.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/terapia , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Biomarcadores Tumorais/metabolismo
13.
Cancer Treat Rev ; 122: 102664, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064878

RESUMO

Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are the current recommended option for the first-line treatment of patients with EGFR-mutant non-small cell lung cancer (NSCLC). Resistance to first-generation TKIs led to the development of second- and third-generation TKIs with improved clinical outcomes. However, sequential administration of TKIs has led to the emergence of new EGFR resistance mutations and persistent tumor cell survival. This evidence highlights the potential role of EGFR in transducing growth signals in NSCLC tumor cells. Therefore, dual inhibition of EGFR using combinations of anti-EGFR monoclonal antibodies (mAbs) and EGFR-TKIs may offer a unique treatment strategy to suppress tumor cell growth. Several clinical studies have demonstrated the benefits of dual blockade of EGFR using anti-EGFR mAbs coupled with EGFR-TKIs in overcoming treatment resistance in patients with EGFR-mutated NSCLC. However, a single treatment option may not result in the same clinical benefits in all patients with acquired resistance. Biomarkers, including EGFR overexpression, EGFR gene copy number, EGFR and KRAS mutations, and circulating tumor DNA, have been associated with improved clinical efficacy with anti-EGFR mAbs in patients with NSCLC and acquired resistance. Further investigation of biomarkers may allow patient selection for those who could benefit from anti-EGFR mAbs in combination with EGFR-TKIs. This review summarizes findings of recent studies of anti-EGFR mAbs in combination with EGFR-TKIs for the treatment of patients with EGFR-mutated NSCLC, as well as clinical evidence for potential biomarkers towards personalized targeted medicine.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB , Inibidores de Proteínas Quinases/efeitos adversos , Antineoplásicos/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Mutação , Biomarcadores , Resistencia a Medicamentos Antineoplásicos
14.
Mol Cancer Ther ; 23(4): 507-519, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38159110

RESUMO

The small-molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), elimusertib, is currently being tested clinically in various cancer entities in adults and children. Its preclinical antitumor activity in pediatric malignancies, however, is largely unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 patient-derived xenograft (PDX) models derived from common pediatric solid tumor entities. Detailed in vitro and in vivo molecular characterization of the treated models enabled the evaluation of response biomarkers. Pronounced objective response rates were observed for elimusertib monotherapy in PDX, when treated with a regimen currently used in clinical trials. Strikingly, elimusertib showed stronger antitumor effects than some standard-of-care chemotherapies, particularly in alveolar rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical antitumor activity in pediatric solid tumor models, which may translate to clinically meaningful responses in patients.


Assuntos
Antineoplásicos , Neoplasias , Criança , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral
15.
Crit Rev Oncol Hematol ; 193: 104233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103761

RESUMO

WEE1 kinase is renowned as an S-G2 checkpoint inhibitor activated by ATR-CHK1 in response to replication stress. WEE1 inhibition enhances replication stress and effectively circumvents checkpoints into mitosis, which triggers significant genetic impairs and culminates in cell death. This approach has been validated clinically for its promising anti-tumor efficacy across various cancer types, notably in cases of ovarian cancers. Nonetheless, the initial stage of clinical trials has shown that the first-in-human WEE1 inhibitor adavosertib is limited by dose-limiting adverse events. As a result, recent efforts have been made to explore predictive biomarkers and smart combination schedules to alleviate adverse effects. In this review, we focused on the exploration of therapeutic biomarkers, as well as schedules of combination utilizing WEE1 inhibitors and canonical anticancer drugs, according to the latest preclinical and clinical studies, indicating that the optimal application of WEE1 inhibitors will likely be as part of dose-reducing combination and be tailored to specific patient populations.


Assuntos
Humanos , Biomarcadores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Combinação de Medicamentos , Proteínas Tirosina Quinases/antagonistas & inibidores , /uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
16.
Cancer Treat Res ; 186: 239-283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37978140

RESUMO

As a key component of the DNA Damage Response, the Ataxia telangiectasia and Rad3-related (ATR) protein is a promising druggable target that is currently widely evaluated in phase I-II-III clinical trials as monotherapy and in combinations with other rational antitumor agents, including immunotherapy, DNA repair inhibitors, chemo- and radiotherapy. Ongoing clinical studies for this drug class must address the optimization of the therapeutic window to limit overlapping toxicities and refine the target population that will most likely benefit from ATR inhibition. With advances in the development of personalized treatment strategies for patients with advanced solid tumors, many ongoing ATR inhibitor trials have been recruiting patients based on their germline and somatic molecular alterations, rather than relying solely on specific tumor subtypes. Although a spectrum of molecular alterations have already been identified as potential predictive biomarkers of response that may sensitize to ATR inhibition, these biomarkers must be analytically validated and feasible to measure robustly to allow for successful integration into the clinic. While several ATR inhibitors in development are poised to address a clinically unmet need, no ATR inhibitor has yet received FDA-approval. This chapter details the underlying rationale for targeting ATR and summarizes the current preclinical and clinical landscape of ATR inhibitors currently in evaluation, as their regulatory approval potentially lies close in sight.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores , Dano ao DNA
17.
Front Immunol ; 14: 1188087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022682

RESUMO

Introduction: Triple negative breast cancer (TNBC) is a subtype of breast cancer characterised by its high tumourigenic, invasive, and immunosuppressive nature. Photodynamic therapy (PDT) is a focal therapy that uses light to activate a photosensitizing agent and induce a cytotoxic effect. 5-aza-2'-deoxycytidine (5-ADC) is a clinically approved immunomodulatory chemotherapy agent. The mechanism of the combination therapy using PDT and 5-ADC in evoking an anti-tumour response is not fully understood. Methods: The present study examined whether a single dose of 5-ADC enhances the cytotoxic and anti-tumour immune effect of low dose PDT with verteporfin as the photosensitiser in a TNBC orthotopic syngeneic murine model, using the triple negative murine mammary tumour cell line 4T1. Histopathology analysis, digital pathology and immunohistochemistry of treated tumours and distant sites were assessed. Flow cytometry of splenic and breast tissue was used to identify T cell populations. Bioinformatics were used to identify tumour immune microenvironments related to TNBC patients. Results: Functional experiments showed that PDT was most effective when used in combination with 5-ADC to optimize its efficacy. 5-ADC/PDT combination therapy elicited a synergistic effect in vitro and was significantly more cytotoxic than monotherapies on 4T1 tumour cells. For tumour therapy, all types of treatments demonstrated histopathologically defined margins of necrosis, increased T cell expression in the spleen with absence of metastases or distant tissue destruction. Flow cytometry and digital pathology results showed significant increases in CD8 expressing cells with all treatments, whereas only the 5-ADC/PDT combination therapy showed increase in CD4 expression. Bioinformatics analysis of in silico publicly available TNBC data identified BCL3 and BCL2 as well as the following anti-tumour immune response biomarkers as significantly altered in TNBC compared to other breast cancer subtypes: GZMA, PRF1, CXCL1, CCL2, CCL4, and CCL5. Interestingly, molecular biomarker assays showed increase in anti-tumour response genes after treatment. The results showed concomitant increase in BCL3, with decrease in BCL2 expression in TNBC treatment. In addition, the treatments showed decrease in PRF1, CCL2, CCL4, and CCL5 genes with 5-ADC and 5-ADC/PDT treatment in both spleen and breast tissue, with the latter showing the most decrease. Discussion: To our knowledge, this is the first study that shows which of the innate and adaptive immune biomarkers are activated during PDT related treatment of the TNBC 4T1 mouse models. The results also indicate that some of the immune response biomarkers can be used to monitor the effectiveness of PDT treatment in TNBC murine model warranting further investigation in human subjects.


Assuntos
Antineoplásicos , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Decitabina/uso terapêutico , Modelos Animais de Doenças , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Antineoplásicos/uso terapêutico , Fotoquimioterapia/métodos , Biomarcadores , Proteínas Proto-Oncogênicas c-bcl-2 , Microambiente Tumoral
18.
J Exp Clin Cancer Res ; 42(1): 273, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37858153

RESUMO

The insulin-like growth factor receptor (IGF-1R) was among the most intensively pursued kinase targets in oncology. However, even after a slew of small-molecule and antibody therapeutics reached clinical trials for a range of solid tumors, the initial promise remains unfulfilled. Mechanisms of resistance to, and toxicities resulting from, IGF-1R-targeted drugs are well-catalogued, and there is general appreciation of the fact that a lack of biomarker-based patient stratification was a limitation of previous clinical trials. But no next-generation therapeutic strategies have yet successfully exploited this understanding in the clinic.Currently there is emerging interest in re-visiting IGF-1R targeted therapeutics in combination-treatment protocols with predictive biomarker-driven patient-stratification. One such biomarker that emerged from early clinical trials is the sub-cellular localization of IGF-1R. After providing some background on IGF-1R, its drugging history, and the trials that led to the termination of drug development for this target, we look more deeply into the correlation between sub-cellular localization of IGF-1R and susceptibility to various classes of IGF-1R - targeted agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Receptor IGF Tipo 1/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores
19.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894912

RESUMO

Gonadotropin-releasing hormone (GnRH) is pivotal in regulating human reproduction and fertility through its specific receptors. Among these, gonadotropin-releasing hormone receptor type I (GnRHR I), which is a member of the G-protein-coupled receptor family, is expressed on the surface of both healthy and malignant cells. Its presence in cancer cells has positioned this receptor as a primary target for the development of novel anti-cancer agents. Moreover, the extensive regulatory functions of GnRH have underscored decapeptide as a prominent vehicle for targeted drug delivery, which is accomplished through the design of appropriate conjugates. On this basis, a rationally designed series of anthraquinone/mitoxantrone-GnRH conjugates (con1-con8) has been synthesized herein. Their in vitro binding affinities range from 0.06 to 3.42 nM, with six of them (con2-con7) demonstrating higher affinities for GnRH than the established drug leuprolide (0.64 nM). Among the mitoxantrone based GnRH conjugates, con3 and con7 show the highest affinities at 0.07 and 0.06 nM, respectively, while the disulfide bond present in the conjugates is found to be readily reduced by the thioredoxin (Trx) system. These findings are promising for further pharmacological evaluation of the synthesized conjugates with the prospect of performing future clinical studies.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/síntese química , Antineoplásicos/imunologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Fatores Imunológicos , Terapia de Imunossupressão , Imunossupressores , Mitoxantrona , Neoplasias/tratamento farmacológico , Receptores LHRH/metabolismo
20.
Tissue Cell ; 85: 102234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844391

RESUMO

Acute pancreatitis (AP) is an inflammatory disorder of acinar cells. It may develop into severe chronic pancreatitis with a significant mortality rate. The current study aimed to assess the therapeutic effect of a Lactobacillus (LAB) mixture against rat AP. Six groups were created including control, taurine (300 mg/kg; i.p.) for 7 days, LAB mixture for 7 days, L-arginine (2.5 g/kg; i.p.) 2 doses with 1 h interval on 1st day, L-arginine+taurine, and L-arginine+LAB. Serum amylase and lipase activities were measured. Pancreatic tissue was used for histopathological examination, oxidative stress biomarkers including malondialdehyde (MDA) and reduced glutathione (GSH), and inflammatory biomarkers including myeloperoxidase (MPO) and interleukin (IL)-33 assessment. qRT-PCR was used for transient receptor potential vanilloid-1 (TRPV-1) investigation and Western blot analysis for measuring nuclear factor kappa-B (NF-κBp65) and the apoptosis biomarker; caspase-3. Taurine and LAB reduced lipase and significantly ameliorated induced oxidative stress by normalizing MDA and GSH contents. They counteracted inflammation by reducing MPO, IL-33, NF-κBp65, and TRPV-1. In addition, taurine and LAB counteracted apoptosis as proved by reduced caspase-3 expression. Taken together, these findings indicate that taurine and the use LAB mixture can mitigate AP by L-arginine via influencing TRPV-1/IL-33/NF-κB signaling together with exhibiting potent antioxidant and anti-inflammatory effects.


Assuntos
Antineoplásicos , Pancreatite , Animais , Ratos , Doença Aguda , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Arginina/efeitos adversos , Biomarcadores/metabolismo , Caspase 3/metabolismo , Interleucina-33/imunologia , Interleucina-33/metabolismo , Lipase/metabolismo , NF-kappa B/metabolismo , Pâncreas/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...