Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 912
Filtrar
1.
BMC Vet Res ; 20(1): 86, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459577

RESUMO

BACKGROUND: The raccoon roundworm, Baylisascaris procyonis, can cause a meningoencephalitis as neural larva migrans which is known in avian species, including rainbow lorikeets in North America, but has not been described in Old World parrots in Germany yet. CASE PRESENTATION: A 2-month-old, male rainbow lorikeet from a zoo in Germany was submitted for necropsy. Prior to death the animal had progressive neurological signs like apathy and torticollis. In the cerebrum a focally extensive severe granulomatous to necrotizing encephalitis with an intralesional larval nematode was diagnosed. Based on the clinical and pathological findings, the larval morphology and the epidemiological background, the larva was identified as Baylisascaris procyonis. CONCLUSIONS: Cerebral baylisascariosis should be considered as a differential diagnosis in zoo and pet birds with neurological signs having contact to racoons or rather racoon faeces in Germany due to the high prevalence of Baylisascaris procyonis in the German raccoon population.


Assuntos
Ascaridoidea , Encefalite , Infecções por Nematoides , Papagaios , Animais , Masculino , Guaxinins , Infecções por Nematoides/veterinária , Encefalite/veterinária
2.
Parasitol Res ; 123(3): 154, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446231

RESUMO

The big-scale sand smelt (Atherina boyeri) is an Atlanto-Mediterranean amphidromous fish species found within the Black Sea. Here, we assess differences in the parasite fauna of big-scale sand smelt populations from their natural range in the northwestern Black Sea and from their expansion range in the Lower and Middle River Dnipro. In addition, we undertook a microsatellite analysis to assess the genetic similarity of fish from the different locations. We found that the parasite community of fish in their natural range was wider than that from their expansion range. While the Gulf of Odesa was most distant from all other localities by parasite community composition and the Dnipro Reservoir was characterised by an absence of parasites (newest and most distant expansion locality), only fish from the Danube Delta showed a significant genetic difference. Our results suggest that the parasite community of big-scale sand smelt is primarily influenced by environmental factors, such as habitat type, water salinity and/or prey composition. Both microsatellite analysis and parasite community species composition (e.g. the presence of the marine Telosentis exiguus in the Kakhovka Reservoir and freshwater Raphidascaris sp. in the Gulf of Odesa) confirmed that populations in the River Dnipro reservoirs had, at some time, been connected with native marine populations, thus also confirming the species' amphidromous nature.


Assuntos
Ascaridoidea , Osmeriformes , Parasitos , Animais , Parasitos/genética , Ucrânia , Variação Genética
3.
PLoS One ; 19(2): e0298039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359071

RESUMO

Anthelmintic resistance in equine parasite Parascaris univalens, compromises ivermectin (IVM) effectiveness and necessitates an in-depth understanding of its resistance mechanisms. Most research, primarily focused on holistic gene expression analyses, may overlook vital tissue-specific responses and often limit the scope of novel genes. This study leveraged gene co-expression network analysis to elucidate tissue-specific transcriptional responses and to identify core genes implicated in the IVM response in P. univalens. Adult worms (n = 28) were exposed to 10-11 M and 10-9 M IVM in vitro for 24 hours. RNA-sequencing examined transcriptional changes in the anterior end and intestine. Differential expression analysis revealed pronounced tissue differences, with the intestine exhibiting substantially more IVM-induced transcriptional activity. Gene co-expression network analysis identified seven modules significantly associated with the response to IVM. Within these, 219 core genes were detected, largely expressed in the intestinal tissue and spanning diverse biological processes with unspecific patterns. After 10-11 M IVM, intestinal tissue core genes showed transcriptional suppression, cell cycle inhibition, and ribosomal alterations. Interestingly, genes PgR028_g047 (sorb-1), PgB01_g200 (gmap-1) and PgR046_g017 (col-37 & col-102) switched from downregulation at 10-11 M to upregulation at 10-9 M IVM. The 10-9 M concentration induced expression of cuticle and membrane integrity core genes in the intestinal tissue. No clear core gene patterns were visible in the anterior end after 10-11 M IVM. However, after 10-9 M IVM, the anterior end mostly displayed downregulation, indicating disrupted transcriptional regulation. One interesting finding was the non-modular calcium-signaling gene, PgR047_g066 (gegf-1), which uniquely connected 71 genes across four modules. These genes were enriched for transmembrane signaling activity, suggesting that PgR047_g066 (gegf-1) could have a key signaling role. By unveiling tissue-specific expression patterns and highlighting biological processes through unbiased core gene detection, this study reveals intricate IVM responses in P. univalens. These findings suggest alternative drug uptake of IVM and can guide functional validations to further IVM resistance mechanism understanding.


Assuntos
Anti-Helmínticos , Ascaridoidea , Cavalos/genética , Animais , Ivermectina/farmacologia , Anti-Helmínticos/farmacologia , Regulação da Expressão Gênica , Perfilação da Expressão Gênica , Ascaridoidea/genética , Resistência a Medicamentos/genética
4.
Parasitol Res ; 123(1): 90, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195805

RESUMO

We provide the incidental necropsy findings associated with anisakid nematode infections of black noddy terns, Anous minutus Boie, 1844 (Charadriiformes: Laridae), from offshore islands in the southern Great Barrier Reef, Queensland, Australia. Specimens collected from the proventriculi were identified morphologically as Contracaecum magnipapillatum Chapin, 1925 (Rhabditida: Anisakidae), using light and scanning electron microscopy (SEM). The entire nuclear ribosomal DNA internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) was amplified by polymerase chain reaction (PCR) and sequenced to provide reference sequences for morphologically well-identified voucher specimens. Interestingly, after an alignment with closely related taxa using BLAST, sequences of the ITS1 and ITS2 were 100% identical to the sequences assigned to Contracaecum septentrionale Kreis, 1955, from a razorbill, Alca torda Linnaeus, 1758 (Charadriiformes: Alcidae), from Spain. These results either raise questions about the ITS as a genetic marker for some members of Contracaecum, or the identity of the specimens assigned to C. septentrionale, given that no supporting morphological data was associated with them. We highlight the need for a combined morphological and molecular approach to parasite diagnostics and the use of multiple genetic loci to resolve the molecular taxonomy of cryptic species. Morphological identifications should be taxonomically robust, transparent and precede the deposition of molecular barcodes in public repositories. The gross and histopathological findings of our investigation concur with previous reports of widespread Contracaecum infections in black noddies and support the contention that Contracaecum spp. are an unlikely primary cause of mortality.


Assuntos
Ascaridoidea , Charadriiformes , Animais , Austrália , Aves , Ascaridoidea/genética , Queensland
5.
Prev Vet Med ; 223: 106100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198900

RESUMO

Grazing equids are constantly exposed to three clinically important gastrointestinal parasites (small strongyles/cyathostomins, Anoplocephala spp. and Parascaris spp.). Knowledge of the local seasonal dynamic of these parasitic infections is important for constructing a sustainable parasite control program with a rational number of anthelmintic treatments. However, studies describing these patterns are sparse in France. In this context, a two-year study was carried out to assess i) the seasonal dynamic and variability of strongyle faecal egg counts (FEC) and infective larvae (L3) counts on pastures, and ii) the prevalence of Anoplocephala spp. and Parascaris spp. and the dynamic evolution of their presence. During 2021 and 2022 grazing seasons, monthly individual faecal egg counts (FEC) and diarrhea scores (DS) were determined on 428 equids divided into 33 groups. A monthly body condition score (BCS) was also attributed to animals ≥3 years old and a monthly bodyweight was estimated for each animal <3 years old. At the group level, the strongyle L3 counts on grazed pastures were carried out at least in spring, summer and autumn. Eggs of strongyles were observed in 97% of equids. In 64% of the groups, the peaks of FEC were noted in September and October. At the individual level, the maximum strongyle FEC was related to age, group of breeds, number of grazed plots and number of anthelmintic treatments. No negative association was observed between strongyle FEC and BCS or average daily weight gain. In the pastures, cyathostomin larvae were found almost exclusively. Over the two years, the peaks of cyathostomin L3 counts occurred in 87% of the groups between September and November and ranged from 635 to 87,500 L3 kg-1 dry herbage. The variability of the maximum cyathostomin L3 count in each group was explained by the year and the number of grazed plots. Eggs of Anoplocephala spp. were observed in 12% of equids. Eggs of Parascaris spp. were noted in 34% of one year-old animals, 9% of two years-olds and 2% of olders. Anoplocephala spp. and Parascaris spp. eggs were observed every month with a peak in the percentage of shedders in groups in October for Anoplocephala spp. and May-June for Parascaris spp.This study highlights the prevalence of each parasite, the variability in cyathostomin egg excretion and L3 counts amongst groups and individuals and the factors involved in this variation These local epidemiological data will help us to re-think a newer strategy against these parasites.


Assuntos
Anti-Helmínticos , Ascaridoidea , Doenças dos Cavalos , Enteropatias Parasitárias , Parasitos , Humanos , Cavalos , Animais , Doenças dos Cavalos/parasitologia , Estações do Ano , Prevalência , Contagem de Ovos de Parasitas/veterinária , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/veterinária , Anti-Helmínticos/uso terapêutico , Fezes/parasitologia , França/epidemiologia
6.
Res Vet Sci ; 166: 105078, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952299

RESUMO

This study aimed to evaluate the efficacy of fenbendazole and ivermectin on strongyles and Parascaris sp. infecting adult riding horses in three regions with different climates. During 2021 and 2022 fecal specimens were randomly collected from 483 horses older than three years in 31 equestrian clubs in Hamedan (n = 217), Yazd (n = 146) and Tabriz cities (n = 120). Eggs were counted by McMaster technique, and the strongyle larvae were identified using coproculture, PCR and sequencing. Horses with strongyles and Parascaris egg counts ≥150 were enrolled in fecal egg count reduction (FECR) examination following treatment with ivermectin or fenbendazole. In total, 26.5% of examined horses were positive with at least one parasite. Infection rates varied in three cities i.e., 25.8% in Hamedan, 28.8% in Yazd, 25% in Tabriz. Fifty-seven horses had FECR measured. FECR below <90% was observed for IVM-strongyle in two horses in Tabriz, for FBZ-strongyle in two horses in Tabriz and two horses in Hamedan, for IVM-Parascaris in one horse in all three cities, and for FBZ-Parascaris in one horse in Yazd. Furthermore, FECR 90-100% was observed in IVM-Parascaris and FBZ -Parascaris groups in Tabriz. Data herein presented demonstrate different degrees of resistance of strongyles and Parascaris infecting horses in Iran against both ivermectin and fenbendazole. Since non-principled use of anthelminthics is common among horse owners, urgency of test-and-treatment strategy should be educated and implemented by policy-making organizations. Evaluating efficacy of different anthelminthics and choosing the most effective treatment in each region is suggested.


Assuntos
Anti-Helmínticos , Ascaridoidea , Doenças dos Cavalos , Cavalos , Animais , Ivermectina/uso terapêutico , Fenbendazol/uso terapêutico , Irã (Geográfico) , Doenças dos Cavalos/tratamento farmacológico , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/parasitologia , Resistência a Medicamentos , Óvulo , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/farmacologia , Strongyloides , Fezes/parasitologia , Contagem de Ovos de Parasitas/veterinária
7.
Parasitology ; 151(2): 200-212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087962

RESUMO

Species of Baylisascaris (Nematoda: Ascarididae) are of great veterinary and zoonotic significance, owing to cause Baylisascariosis or Baylisascariasis in wildlife, captive animals and humans. However, the phylogenetic relationships of the current 10 Baylisascaris species remain unclear. Moreover, our current knowledge of the detailed morphology and morphometrics of the important zoonotic species B. procyonis is still insufficient. The taxonomical status of B. procyonis and B. columnaris remains under debate. In the present study, the detailed morphology of B. procyonis was studied using light and scanning electron microscopy based on newly collected specimens from the raccoon Procyon lotor (Linnaeus) in China. The results of the ASAP analysis and Bayesian inference (BI) using the 28S, ITS, cox1 and cox2 genetic markers did not support that B. procyonis and B. columnaris represent two distinct species. Integrative morphological and molecular assessment challenged the validity of B. procyonis, and suggested that B. procyonis seems to represent a synonym of B. columnaris. Molecular phylogenetic results indicated that the species of Baylisascaris were grouped into 4 clades according to their host specificity. The present study provided new insights into the taxonomic status of B. procyonis and preliminarily clarified the phylogenetic relationships of Baylisascaris species.


Assuntos
Ascaridídios , Ascaridoidea , Parasitos , Animais , Humanos , Filogenia , Teorema de Bayes , Ascaridoidea/genética , Guaxinins
8.
Int J Food Microbiol ; 410: 110426, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37977078

RESUMO

Zoonotic nematodes of the family Anisakidae are highly common in many marine fish species, which act as paratenic hosts for the third larval stage. In the fish, these parasites may migrate from the fish's gastro-intestinal tract (GI-tract) further to the coelomic cavity and muscles, making them a possible contamination source of bacteria they carry on their cuticle and in their GI-tract. A previous study revealed no apparent effect of Anisakis simplex on spoilage of fish, but the equally common anisakid species Pseudoterranova decipiens has a larger body surface potentially increasing the bacterial load brought into the fish muscle upon migration. As the presence of shelf-life reducing spoilage bacteria in the microbiome of this anisakid species has been demonstrated, the objective of the present study was to assess the potential shelf-life reducing effect of P. decipiens in fresh fish fillets stored in a domestic refrigerator. Atlantic cod was used as a model since members of the cod family are the third most consumed marine fish globally and it has the highest prevalence of P. decipiens infections. Infected and non-infected codfish fillet portions were collected and microbiologically analyzed at day 0 and day 4 of storage in a domestic fridge. Three isolation media were used to enhance maximum bacterial recovery and isolates were identified using MALDI-TOF MS and 16S rRNA gene sequencing. In parallel to the microbiological examination, sensory analysis was performed daily on the cod fillets to evaluate the freshness of the fish. Results revealed the presence of typical spoilage bacteria (e.g., Pseudomonas sp., Photobacterium sp.) in all fish, but based on the total viable counts, total H2S-producing bacteria, and sensory analysis, there were no objective indications to assume an increased fish spoilage rate by the presence and migration P. decipiens. Additionally, a beta-diversity comparison revealed no significant differences in microbiota composition between infected and non-infected fish parts, though individual heterogeneity in microbiome composition among Atlantic codfish individuals was found. As total viable counts did, however, exceed the guideline limits for fresh fish, further research should now focus on the role of the candling step as a potential source of post-harvest contamination. As such, anisakid infection might still accelerate fish spoilage, though now in an indirect way.


Assuntos
Anisakis , Ascaridoidea , Gadus morhua , Animais , Gadus morhua/genética , Gadus morhua/parasitologia , RNA Ribossômico 16S/genética , Ascaridoidea/genética , Peixes/parasitologia
9.
J Fish Dis ; 47(1): e13866, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750419

RESUMO

A dispersion of Anisakidae nematodes (particularly Contracaecum osculatum) among marine organisms in the Baltic Sea has been reported over the last decade. This is in line with an increase in the number of grey seal that act as final host for Contracaecum osculatum and Pseudoterranova sp., and are thus indispensable for the completion of their life cycles. Most attention has been paid to zoonotic nematode species, like Pseudoterranova sp., which have been noted in commercially important fish in the area. Little is known about the spread and transmission of Pseudoterranova sp. in the Baltic Sea. The aim of this study was to investigate whether sprat may play a role as a transport host for this Anisakidae. Samples were collected in three areas of the southern Baltic Sea (south and east of Bornholm, Slupsk Farrow and the Gulf of Gdansk) during a research cruise in August 2019. A visual inspection of the viscera of 556 sprats was conducted. Parasites were identified using anatomomorphological and molecular methods. Nematodes were recorded only in sprat caught southeast of Bornholm (prevalence 2.7%; intensity of infection 1-4; abundance 0.05). Molecular identification revealed the presence of Pseudoterranova decipiens. This is the first report of P. decipiens in sprat from the Baltic Sea. Sprat is likely a transmitter of P. decipiens in the Baltic Sea food web.


Assuntos
Ascaridoidea , Doenças dos Peixes , Animais , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Países Bálticos
10.
Rev Bras Parasitol Vet ; 32(4): e011623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055437

RESUMO

Our hypothesis for this study was that annual and seasonal variations do not influence the structure of the component communities and the diversity of metazoan parasites of spinycheek sleeper (Eleotris pisonis) in the Amazon River, state of Amapá, Brazil. A total of 164 fish were collected between 2020 and 2021, from which 888 parasites were found. In 2020, five species of parasites were found (one Nematoda, one Digenea, one Acanthocephala, one Arachnida and one Crustacea); and in 2021, five species were also found (three Nematoda, one Digenea and one Crustacea). Larvae of Contracaecum sp. were the dominant taxon throughout the study. The parasite species richness and Brillouin diversity index were higher in 2021, without significant differences between seasonal periods. Some component communities of parasites showed differences between years and between seasonal periods. These facts do not support the hypothesis that such variables would not influence the component communities of the parasites. Lastly, this report provides the first records of Spirocamallanus inopinatus, Genarchella genarchella, Acari, Ergasilus sp., Neoechinorhynchus sp., larvae of Pseudoproleptus sp. and larvae of Contracaecum sp. in E. pisonis.


Assuntos
Acantocéfalos , Ascaridoidea , Copépodes , Doenças dos Peixes , Parasitos , Perciformes , Trematódeos , Animais , Estações do Ano , Brasil , Rios/parasitologia , Larva , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia
11.
Parasitol Res ; 123(1): 20, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072876

RESUMO

Baylisascaris schroederi is among the most severe intestinal nematodes affecting giant pandas. Developing effective and secure vaccines can be used as a novel strategy for controlling repeated roundworm infection and addressing drug resistance. In our previous study, three recombinant antigens (rBsHP2, rBsGAL, and rBsUP) exhibited promising effects against B. schroederi infection in the mice model. This study extends the findings by formulating four-form cocktail vaccines (GAL+UP, HP2+UP, GAL+HP2, and GAL+HP2+UP) using three B. schroederi recombinant antigens to improve protection in mice further. Additionally, the protective differences after immunizing mice with different doses of cocktail antigens (150 µg, 100 µg, and 50 µg) were analyzed. Administration of rBs(GAL+UP), rBs(HP2+UP), rBs(GAL+HP2), and rBs(GAL+HP2+UP) significantly reduced liver and lung lesions, along with a decrease in L3 larvae by 83.7%, 82.1%, 76.4%, and 75.1%, respectively. These vaccines induced a Th1/Th2 mixed immunity, evidenced by elevated serum antibody levels (IgG, IgG1, IgG2a, IgE, and IgA) and splenocyte cytokines [interferon gamma (IFN-γ), interleukin (IL)-5, and IL-10]. Furthermore, varying cocktail vaccine dosages did not significantly affect protection. The results confirm that a 50 µg rBs(GAL+UP) dosage holds promise as a better candidate vaccine combination against B. schroederi infection, providing a basis for developing the B. schroederi vaccine.


Assuntos
Ascaridoidea , Vacinas , Animais , Camundongos , Proteínas Recombinantes , Antígenos de Helmintos/genética , Ascaridoidea/genética , Camundongos Endogâmicos BALB C
12.
Parasitol Res ; 123(1): 56, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105374

RESUMO

The microbiome plays an important role in health, where changes in microbiota composition can have significant downstream effects within the host, and host-microbiota relationships can be exploited to affect health outcomes. Parasitic helminths affect animals globally, but an exploration of their microbiota has been limited, despite the development of anti-Wolbachia drugs to help control infections with some filarial nematodes. The equine ascarids, Parascaris spp., are considered the most pathogenic nematodes affecting juvenile horses and are also the only ascarid parasite to have developed widespread anthelmintic resistance. The aim of this study was to characterize the microbiota of this helminth, focusing on the female gonad, determine a core microbiota for this organ, identify bacterial species, and show bacterial localization to the female gonad via in situ hybridization (ISH). A total of 22 gonads were isolated from female Parascaris spp. collected from three foals, and 9 female parasites were formalin-fixed and paraffin-embedded for ISH. Next-generation sequencing was performed using V3-V4 primers as well as the Swift Amplicon™ 16S+ ITS Panel. Overall, ten genera were identified as members of the Parascaris spp. female gonad and twelve bacterial species were identified. The most prevalent genus was Mycoplasma, followed by Reyranella, and there were no differences in alpha diversity between parasites from different horses. Specific eubacteria staining was identified in both the intestine and within the gonad using ISH. Overall, this study provided in-depth information regarding the female Parascaris spp. microbiota and was the first to identify the core microbiota within a specific parasite organ.


Assuntos
Infecções por Ascaridida , Ascaridoidea , Helmintos , Doenças dos Cavalos , Parasitos , Animais , Cavalos , Feminino , Ascaridoidea/genética , Doenças dos Cavalos/parasitologia , Infecções por Ascaridida/veterinária , Infecções por Ascaridida/parasitologia , Resistência a Medicamentos , Fezes/parasitologia , Gônadas
13.
Parasitol Res ; 123(1): 61, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112785

RESUMO

Species of the genus Contracaecum (Family Anisakidae) exhibit a broad host and geographical distribution, parasitizing aquatic organisms such as piscivorous birds and mammals as their definitive hosts. Several Contracaecum species have been reported parasitizing cormorants (Family: Phalacrocoracidae) in South America. The objective of this study was to highlight phylogenetic relationships between Contracaecum species parasitizing cormorants based on both molecular analyses and the papillae arrangement on the male tail. Some Contracaecum species parasitizing Red-legged cormorants from the Ría Deseado (RD), and other nematodes parasitizing eight Neotropic cormorants from San Miguel del Monte lagoon (SMML), Argentina, were collected and analyzed. Both morphological and phylogenetic analyses allowed us to recognize two species: Contracaecum chubutensis parasitizing Phalacrocorax gaimardi, and Contracaecum australe parasitic in Phalacrocorax brasilianus. According to the obtained sequences (mtDNA cox2, ITS1, ITS2, and SSrRNA), Contracaecum sp. parasitizing P. gaimardi exhibited concordance with the previously reported C. chubutensis parasitizing P. atriceps from Bahía Bustamante, Chubut province. Likewise, Contracaecum sp. isolates parasitizing P. brasilianus showed concordance with C. australe from Chile. Besides, the papillae arrangement on the male tail allowed us to understand the interspecific and genetic relationships between the Contracaecum species. The analyses confirm that C. chubutensis specimens parasitizing P. gaimardi from RD present a new host record for the species, whereas, those C. australe specimens parasitizing P. brasilianus from SMML provide a new geographical record for the species and the extension of its distribution range. Present results also confirm the inland and marine distribution of C. australe and C. chubutensis, respectively.


Assuntos
Ascaridoidea , Doenças das Aves , Animais , Masculino , Argentina , Doenças das Aves/parasitologia , Aves/parasitologia , Chile , Filogenia
14.
Ecohealth ; 20(3): 263-272, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37971598

RESUMO

The raccoon roundworm (Baylisascaris procyonis), a gastrointestinal nematode of the raccoon (Procyon lotor), may cause a severe form of larva migrans in humans, which can lead to death or permanent neurological damage. Although roundworms were inadvertently introduced to Europe alongside their raccoon hosts, the parasite is not present in every raccoon population. It is important to understand the geographic distribution of B. procyonis, as early and rapid treatment can prevent severe pathologies in humans. We present evidence for the roundworm spreading into a naive raccoon population through natural dispersal of infected raccoons. We sampled 181 raccoons from Saxony-Anhalt, a German federal state containing contact zones of different raccoon populations, two of which were previously free of the parasite. We screened the raccoons for roundworms and used microsatellite-based assignment tests to determine the genetic origin of the raccoons and their parasites. We detected roundworms in 16 of 45 raccoons sampled in a previously roundworm-free area in the northern part of the state. The largest proportion of the genetic ancestry (≥ 0.5) of the 16 raccoon hosts was assigned to the previously naive raccoon population. Conversely, the genetic ancestry of almost all the roundworms was assigned to the nearest roundworm population in the southern part of the state. Infected raccoons have, therefore, spread to the north of the state, where they interbred with and infected local raccoons. It seems likely that the roundworms will continue to spread. Health authorities should consider continuous surveillance programmes of naive populations and raise public awareness.


Assuntos
Infecções por Ascaridida , Ascaridoidea , Animais , Humanos , Guaxinins/parasitologia , Infecções por Ascaridida/epidemiologia , Infecções por Ascaridida/veterinária , Infecções por Ascaridida/parasitologia , Ascaridoidea/genética , Europa (Continente)
15.
Rev Bras Parasitol Vet ; 32(4): e013423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37971024

RESUMO

New morphological, morphometric and scanning electron microscopy data of a nematode of the family Anisakidae, recovered from a specimen of Kogia sima, a cetacean that died off the northern coast of Brazil, are presented in this paper. Morphological features such as the violin-shaped ventricle and short and equal spicules, as well as the distribution of post-cloacal papillae and specificity for the definitive host (Kogiidae cetaceans) demonstrate similarity to Skrjabinisakis paggiae. This research records Kogia sima and S. paggiae on the estuarine coast of Pará, northern Brazil.


Assuntos
Anisakis , Ascaridoidea , Nematoides , Animais , Brasil , Anisakis/anatomia & histologia , Baleias/parasitologia
16.
Parasitology ; 150(11): 1040-1051, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37859396

RESUMO

The distribution of parasites is shaped by a variety of factors, among which are the migratory movements of their hosts. Israel has a unique position to migratory routes of several bird species leaving Europe to winter in Africa, however, detailed studies on the parasite fauna of birds from this area are scarce. Our study investigates occurrence and distribution of sibling species among Contracaecum rudolphii complex in Phalacrocorax carbo sinensis from Italy and Israel, to acquire further information on the geographical range of these species to gain deeper knowledge on the ecology of these parasites and their bird host. A total of 2383 Contracaecum were collected from the gastric mucosa of 28 great cormorants (18 from Israel and 10 from Italy). A subsample was processed for morphological analyses in light and scanning electron microscopy (SEM), and for molecular analyses through amplification and sequencing of the ITS rDNA and the cox2 mtDNA, and through PCR-RFLP. All the 683 Contracaecum subjected to molecular identification belonged to C. rudolphii s.l., (300 C. rudolphii A and 383 C. rudolphii B). SEM micrographs provided, for the first time, details of taxonomic structures in male specimens from both sibling species, and the first SEM characterization of C. rudolphii B. This work presents the first data on the occurrence of sibling species of C. rudolphii in Israel and provides additional information on the distribution of C. rudolphii A and B in Italy, confirming the high prevalence and intensity of infection observed in Ph. carbo sinensis from other Italian areas.


Assuntos
Ascaridoidea , Doenças das Aves , Animais , Masculino , Israel/epidemiologia , DNA Ribossômico/química , Polimorfismo de Fragmento de Restrição , Itália , Ascaridoidea/genética , Aves/parasitologia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia
18.
Vet Parasitol ; 322: 110029, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37734131

RESUMO

Parascaris spp. infect foals worldwide and foals typically shed eggs in the feces from about three to six months of age, upon which natural immunity is incurred. High levels of anthelmintic resistance of Parascaris spp. are a global concern, and further understanding egg shedding patterns and fecal egg counting (FEC) data variability is of high importance. The aims of this study were to monitor Parascaris spp. egg shedding in untreated foals during 12-23 weeks of age, estimate sources of data variability, and assess precision of two ascarid FEC techniques. Fecal samples were collected weekly from 11 foals born in 2022, from May through November (29 weeks). Six subsamples were extracted from each weekly sample to determine 30 FECs between two techniques: a McMaster technique and an Automated Egg Counting System (AECS). Mixed linear modeling was carried out with age, sex, birth month, seasonality, spring- or summer-born foals, and egg counting technique as explanatory variables. Ascarid FECs were associated with age (p < 0.001), seasonality (p < 0.001), and technique (p < 0.001). The McMaster technique was more precise with a mean coefficient of variation (CV) of 34.57% and a 95% confidence interval (CI) of 30.80%- 38.30% compared to the CV for the AECS, which was 42.22% (CI: 37.70%-46.70%). Seasonality accounted for the highest proportion of variance (PV) of all covariates, but differences in PVs for covariates existed between techniques with foal age and subsample contributing more variance to the McMaster, and individual foal and seasonality contributing more to the AECS. Subsamples and replicate counts accounted for less than 1% of the total data variance. The results highlighted substantial differences in PVs between the two techniques at the subsample (AECS: 57.14%; McMaster: 77.51%) and replicate count levels (AECS: 42.86%; McMaster: 22.49%). While differences in precision were observed between the two FEC techniques, they were negligible in the data set, as the overwhelming majority of the data variability in ascarid FECs was attributed to individual foal, seasonality, and foal age.


Assuntos
Infecções por Ascaridida , Ascaridoidea , Doenças dos Cavalos , Animais , Cavalos , Infecções por Ascaridida/veterinária , Contagem de Ovos de Parasitas/veterinária , Óvulo , Fezes
19.
Vet Parasitol Reg Stud Reports ; 44: 100907, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37652626

RESUMO

Gastrointestinal nematodes (GIN) are a major impediment to breeding and exploitation of horses. Traditional control of GIN has generated resistance to main anthelmintics, including ivermectin. An analysis of five ranches with a history of IVM use was done to determine the efficacy and resistance of GIN to IVM treatment in horses from the Mexican southeast. Predesigned questionnaires were applied to collect information on previous treatment protocols. The fecal egg count reduction test (FECRT) was applied to determine resistance. Before IVM application, a McMaster test was used to diagnose GIN infection in horses, and feces cultures were done to identify L3 larvae for Strongylida eggs. Pre-treatment samples showed that 72.7% (80/110) of horses were GIN positive, with cyathostomins being the most frequent (91.8%), followed by Oxyuris equi (7.0%), Parascaris equorum (1.0%), and Strongylus vulgaris (0.2%). Based on the results, the horses at each ranch were divided in control (CG) and experimental (EG) groups with similar eggs per gram of feces (EPG). The EG (40/80) was dewormed with IVM (0.2 mg/kg orally) and the CG (40/80) remained untreated. After 14 days, EPG were measured, and feces cultures were done again to identify L3 larvae. After treatment of EG, 40% (16/40) of horses were positive, the most frequently identified GIN were cyathostomins (98.6%), followed by P. equorum (1.0%) and S. vulgaris (0.2%). Three of the five ranches were classified as resistant, according to the FECRT, with a percentage of reduction from 53 to 68%, all of which used IVM ≥4 times annually. This is the first evidence of resistance in cyathostomins to IVM treatment in horses from the Mexican southeast, adding to the current problem of anthelmintic resistance in equine GIN.


Assuntos
Ascaridoidea , Estrongilídios , Animais , Cavalos , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Fezes , Larva
20.
Emerg Infect Dis ; 29(9): 1900-1903, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610238

RESUMO

We describe a case in Australia of human neural larva migrans caused by the ascarid Ophidascaris robertsi, for which Australian carpet pythons are definitive hosts. We made the diagnosis after a live nematode was removed from the brain of a 64-year-old woman who was immunosuppressed for a hypereosinophilic syndrome diagnosed 12 months earlier.


Assuntos
Ascaridoidea , Larva Migrans , Feminino , Animais , Humanos , Pessoa de Meia-Idade , Larva Migrans/diagnóstico , Austrália , Encéfalo , Hospedeiro Imunocomprometido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...