Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.305
Filtrar
1.
Cell ; 187(6): 1402-1421.e21, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428422

RESUMO

Neonates are highly susceptible to inflammation and infection. Here, we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPCs) respond to inflammation, testing the hypothesis that deficits in the engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical adult-like EM transcriptional program. Moreover, we find that fetal HSPCs can respond to EM-inducing inflammatory stimuli in vitro but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero. Accordingly, we demonstrate that the loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of fetal demise. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.


Assuntos
Inflamação , Interleucina-10 , Mielopoese , Animais , Camundongos , Feto , Hematopoese , Inflamação/imunologia , Interleucina-10/imunologia , Gravidez/imunologia , Células-Tronco Hematopoéticas/citologia
2.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37917177

RESUMO

Control of visceral leishmaniasis (VL) depends on proinflammatory Th1 cells that activate infected tissue macrophages to kill resident intracellular parasites. However, proinflammatory cytokines produced by Th1 cells can damage tissues and require tight regulation. Th1 cell IL-10 production is an important cell-autologous mechanism to prevent such damage. However, IL-10-producing Th1 (type 1 regulatory; Tr1) cells can also delay control of parasites and the generation of immunity following drug treatment or vaccination. To identify molecules to target in order to alter the balance between Th1 and Tr1 cells for improved antiparasitic immunity, we compared the molecular and phenotypic profiles of Th1 and Tr1 cells in experimental VL caused by Leishmania donovani infection of C57BL/6J mice. We also identified a shared Tr1 cell protozoan signature by comparing the transcriptional profiles of Tr1 cells from mice with experimental VL and malaria. We identified LAG3 as an important coinhibitory receptor in patients with VL and experimental VL, and we reveal tissue-specific heterogeneity of coinhibitory receptor expression by Tr1 cells. We also discovered a role for the transcription factor Pbx1 in suppressing CD4+ T cell cytokine production. This work provides insights into the development and function of CD4+ T cells during protozoan parasitic infections and identifies key immunoregulatory molecules.


Assuntos
Interleucina-10 , Infecções por Protozoários , Células Th1 , Células Th1/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Linfócitos T Reguladores/imunologia , Camundongos Endogâmicos C57BL , Leishmania donovani , Leishmaniose Visceral/imunologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Infecções por Protozoários/imunologia , Humanos , Animais , Camundongos , Proteína do Gene 3 de Ativação de Linfócitos/antagonistas & inibidores , Interferon gama/metabolismo , Ligação Proteica , Regiões Promotoras Genéticas/imunologia , Modelos Animais de Doenças
3.
Eur J Immunol ; 53(12): e2350574, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37689974

RESUMO

Various regulatory CD8+ T-cell subsets have been proposed for immune tolerance and have been implicated in controlling autoimmune diseases. However, their phenotypic identities and suppression mechanisms are not yet understood. This study found that coculture of T-cell receptor (TCR)- or interferon (IFN)-ß-activated CD8+ T cells significantly suppressed the cytokine production of Th1 and Th17 cells. By experimenting with the experimental autoimmune uveitis (EAU), we found that adoptive transfer of TCR or IFN-ß-activated CD8+ T cells significantly lessened disease development in an IFN-γ-dependent manner with a decreased uveitogenic Th1 and Th17 response. Interestingly, after adoptive transfer into the EAU mice, the IFN-γ+ CD8+ T cells were recruited more efficiently into the secondary lymphoid organs during the disease-priming phase. This recruitment depends on the IFN-γ-inducible chemokine receptor CXCR3; knocking out CXCR3 abolishes the protective effect of CD8+ T cells in EAU. In conclusion, we identified the critical role of IFN-γ for CD8+ T cells to inhibit Th1 and Th17 responses and ameliorate EAU. CXCR3 is necessary to recruit IFN-γ+ CD8+ T cells to the secondary lymphoid organ for the regulation of autoreactive Th1 and Th17 cells.


Assuntos
Linfócitos T CD8-Positivos , Interferon gama , Retinite , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária , Retinite/imunologia , Células Th1/imunologia , Células Th17/imunologia , Interferon gama/imunologia , Polaridade Celular/imunologia , Interleucina-10/imunologia , Interferon beta/farmacologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Transporte Proteico/genética , Baço/imunologia
4.
Biomolecules ; 13(6)2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371554

RESUMO

Interleukin 10 (IL-10) plays a role in inflammation and cell-type responses. The anti-SS-A/Ro antibody contributes to leucopenia, and cutaneous and neonatal lupus. OBJECTIVES: To evaluate the association between serum IL-10 levels and autoantibodies, disease activity and organ involvement in systemic lupus erythematosus (SLE) patients. PATIENTS AND METHODS: We studied 200 SLE patients and 50 controls. We analyzed organ involvement, disease activity, serum IL-10 and interleukin-6 (IL-6) levels, and antinuclear and antiphospholipid antibody profiles. RESULTS: Serum IL-10 and IL-6 levels were higher in SLE patients than in controls (all p < 0.00001). Serum IL-10 levels were positively correlated with IL-6 (p < 0.00001), CRP (p < 0.00001), fibrinogen (p = 0.003), and ESR (p < 0.00001), and negatively correlated with hemoglobin (p = 0.0004) and lymphocytes (p = 0.01). Serum IL-6 levels were positively correlated with CRP (p < 0.00001), fibrinogen (p = 0.001), and ESR (p < 0.00001); and negatively correlated with hemoglobin (p = 0.008) and lymphocytes (p = 0.03). Elevated serum IL-10 levels were associated with an increased risk of anti-SS-A/Ro antibody positivity (p = 0.03). Elevated serum IL-6 levels were associated with an increased risk of heart (p = 0.007) and lung (p = 0.04) involvement. CONCLUSIONS: In SLE patients, increased serum IL-10 levels were associated with increased disease activity and risk of anti-SS-A/Ro antibody positivity.


Assuntos
Autoanticorpos , Interleucina-10 , Interleucina-6 , Lúpus Eritematoso Sistêmico , Humanos , Recém-Nascido , Autoanticorpos/imunologia , Interleucina-10/sangue , Interleucina-10/imunologia , Interleucina-6/sangue , Interleucina-6/imunologia , Leucopenia/sangue , Leucopenia/imunologia , Lúpus Eritematoso Sistêmico/imunologia
5.
Cancer Gene Ther ; 30(9): 1227-1233, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296315

RESUMO

Although it can promote effector T-cell function, the summative effect of interleukin-10 (IL-10) in the tumor microenvironment (TME) appears to be suppressive; therefore, blocking this critical regulatory cytokine has therapeutic potential to enhance antitumor immune function. As macrophages efficiently localize to the TME, we hypothesized that they could be used as a delivery vehicle for drugs designed to block this pathway. To test our hypothesis, we created and evaluated genetically engineered macrophages (GEMs) that produce an IL-10-blocking antibody (αIL-10). Healthy donor human peripheral blood mononuclear cells were differentiated and transduced with a novel lentivirus (LV) encoding BT-063, a humanized αIL-10 antibody. The efficacy of αIL-10 GEMs was assessed in human gastrointestinal tumor slice culture models developed from resected specimens of pancreatic ductal adenocarcinoma primary tumors and colorectal cancer liver metastases. LV transduction led to sustained production of BT-063 by αIL-10 GEMs for at least 21 days. Transduction did not alter GEM phenotype as evaluated by flow cytometry, but αIL-10 GEMs produced measurable quantities of BT-063 in the TME that was associated with an ~5-fold higher rate of tumor cell apoptosis than control.


Assuntos
Neoplasias Gastrointestinais , Neoplasias Pancreáticas , Humanos , Apoptose/genética , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/terapia , Interleucina-10/antagonistas & inibidores , Interleucina-10/imunologia , Leucócitos Mononucleares , Macrófagos/patologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral/genética
6.
Viruses ; 15(3)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992299

RESUMO

Opioid use disorder (OUD) and HIV are comorbid epidemics that can increase depression. HIV and the viral protein Tat can directly induce neuronal injury within reward and emotionality brain circuitry, including the prefrontal cortex (PFC). Such damage involves both excitotoxic mechanisms and more indirect pathways through neuroinflammation, both of which can be worsened by opioid co-exposure. To assess whether excitotoxicity and/or neuroinflammation might drive depressive behaviors in persons infected with HIV (PWH) and those who use opioids, male mice were exposed to HIV-1 Tat for eight weeks, given escalating doses of morphine during the last two weeks, and assessed for depressive-like behavior. Tat expression decreased sucrose consumption and adaptability, whereas morphine administration increased chow consumption and exacerbated Tat-induced decreases in nesting and burrowing-activities associated with well-being. Across all treatment groups, depressive-like behavior correlated with increased proinflammatory cytokines in the PFC. Nevertheless, supporting the theory that innate immune responses adapt to chronic Tat exposure, most proinflammatory cytokines were unaffected by Tat or morphine. Further, Tat increased PFC levels of the anti-inflammatory cytokine IL-10, which were exacerbated by morphine administration. Tat, but not morphine, decreased dendritic spine density on layer V pyramidal neurons in the anterior cingulate. Together, our findings suggest that HIV-1 Tat and morphine differentially induce depressive-like behaviors associated with increased neuroinflammation, synaptic losses, and immune fatigue within the PFC.


Assuntos
Espinhas Dendríticas , Depressão , Imunidade Inata , Morfina , Córtex Pré-Frontal , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Depressão/induzido quimicamente , Depressão/imunologia , Córtex Pré-Frontal/imunologia , Espinhas Dendríticas/patologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/efeitos adversos , Morfina/efeitos adversos , Masculino , Animais , Camundongos , Comportamento Animal , Citocinas/imunologia , Interleucina-10/imunologia , Doenças Neuroinflamatórias , Camundongos Transgênicos , Transtornos Relacionados ao Uso de Opioides , Infecções por HIV , Analgésicos Opioides/efeitos adversos
7.
In Vivo ; 37(1): 286-293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593062

RESUMO

BACKGROUND/AIM: Vitamin D3 (VD3) affects the regulation of the immune system, including the differentiation and function of regulatory T-cells (Tregs). Tregs play an important role in maintaining immune homeostasis in patients with colorectal cancer (CRC). The effects of VD3 on Treg-associated immune function were investigated in Thai patients in the early stages of CRC. MATERIALS AND METHODS: Twenty-eight patients were randomized to one of two groups: Untreated or treatment with VD3 for 3 months. Whole blood samples were collected at baseline, and at 1 and 3 months. Peripheral blood mononuclear cells were isolated and the populations of forkhead box P3-positive Treg cells was analyzed by flow cytometry. The levels of Treg-associated cytokines, interleukin 10 (IL-10) and transforming growth factor beta 1 (TGF-ß1), were measured by enzyme-linked immunosorbent assays. RESULTS: Serum VD3 levels of the VD3-treated group were significantly increased at 1 (p=0.017) and 3 months (p<0.001) compared to the untreated control group. The mean percentage of Tregs was maintained between 1 and 3 months in the VD3-treated group. At 3 months, the untreated group had significantly lower Treg levels than the VD3-treated group (p=0.043). Serum IL-10 levels of the VD3-treated group were statistically increased at 1 month compared to the control group (p=0.032). No significant difference in serum TGF-ß1 levels was observed between the two groups. However, the TGF-ß1 level in the VD3-treated group at 1 month was lower than that of the control. CONCLUSION: Our findings suggest that VD3 supplementation can maintain immune responses in the early stages of CRC, helping to control Treg function. Therefore, VD3 should be supplemented to maintain immune homeostasis, especially in patients with vitamin D deficiency.


Assuntos
Colecalciferol , Neoplasias Colorretais , Linfócitos T Reguladores , Humanos , Colecalciferol/administração & dosagem , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/cirurgia , Suplementos Nutricionais , Homeostase , Interleucina-10/imunologia , Leucócitos Mononucleares/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/imunologia
8.
J Virol ; 96(22): e0131022, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36314824

RESUMO

During childhood, the composition and function of the T cell compartment undergoes significant changes. In healthy individuals, primary infection with herpesviruses is followed by latency, and occasional subclinical reactivation ensures transmission and contributes to an emerging pool of memory T cells. In immunocompromised individuals, herpesviruses can be life threatening. However, knowledge about the spectrum of virus-specific cytokine responses is limited. Here, we investigated peripheral blood mononuclear cells (PBMCs) from children with differential carrier statuses for cytomegalovirus (CMV), Epstein-Barr virus (EBV), and varicella zoster virus (VZV) (n = 32, age 1 to 17 years). We examined memory T cell subsets as well as IFN-γ-, IL-10-, IL-17A-, and IL-22-producing T cells after polyclonal activation or stimulation with viral peptides using flow cytometry and a 4-parameter FluoroSpot assay. Age and herpesvirus carriage influenced the size of the memory T cell subsets. A positive association between age and the number of IFN-γ-, IL-17A- and IL-22-producing T cells was found following polyclonal activation. For CMV, age was positively associated with IL-17A spot-forming cells (SFC), while for VZV, age was negatively associated with IL-22 and positively associated with IFN-γ SFC. Upon activation with CMV, VZV, and EBV peptides, IFN-γ SFCs dominated. Notably, VZV responses were characterized by a higher IL-10 SFC population compared to both CMV and EBV. Our findings suggest that cytokine responses vary across herpesvirus-type-specific memory T cells and may more adequately reflect their composition. An observed deviation between polyclonal and herpesvirus-specific T cell cytokine responses in children needs to be considered when interpreting the associations between herpesvirus carrier status and bulk T cell reactivity. In summary, these findings may have implications for the treatment of immunocompromised patients. IMPORTANCE Infection with herpesviruses accounts for 35 to 40 billion human cases worldwide. Despite this, little is known about how herpesviruses shape the immune system in the asymptomatic carrier. Particularly in children, primary infection is connected to no or mild symptoms ahead of latency for life. Most research on cellular responses against herpesviruses focuses on inflammatory cytokines associated with antiproliferative and antitumor mechanisms and not the spectrum of cytokine responses in healthy humans. This study investigated four divergent cytokine-producing T cell responses to herpesviruses, reflecting different immunological functions. Three common childhood herpesviruses were selected: Epstein-Barr virus, cytomegalovirus, and varicella-zoster virus. Curiously, not all viruses induced the same pattern of cytokines. Varicella-zoster responses were characterized by IL-10, which is considered regulatory. Besides broadening understanding of responses to herpesviruses, our results raise the possibility that reactivation of varicella-zoster may be counterproductive in cancer treatment through the action of IL-10-producing T-cells.


Assuntos
Varicela , Infecções por Citomegalovirus , Infecções por Vírus Epstein-Barr , Interleucina-10 , Células T de Memória , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Varicela/imunologia , Citomegalovirus , Infecções por Citomegalovirus/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpes Zoster , Herpesvirus Humano 3 , Herpesvirus Humano 4 , Interleucina-10/imunologia , Interleucina-17 , Leucócitos Mononucleares , Células T de Memória/imunologia , Simplexvirus
9.
J Virol ; 96(19): e0094622, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36154611

RESUMO

Laryngopharynx epithelium neoplasia induced by HPV6/11 infection in juvenile-onset recurrent respiratory papillomatosis (JO-RRP) causes a great health issue characteristic of frequent relapse and aggressive disease progression. Local cell-mediated immunity shaped by the recruitment and activation of cytotoxic effector cells is critical for viral clearance. In this study, we found that NK cells in the papillomas of aggressive JO-RRP patients, in contrast to massive infiltrated T cells, were scarce in number and impaired in activation and cytotoxicity as they were in peripheral blood. Data from cell infiltration analysis indicated that the migration of NK cell to papilloma was restricted in aggressive JO-RRP patients. Further study showed that the skewed chemokine expression in the papillomas and elevated ICAM-1 expression in hyperplastic epithelia cells favored the T cell but not NK cell recruitment in aggressive JO-RRP patients. In parallel to the increased CD3+ T cells, we observed a dramatical increase in Tregs and Treg-promoting cytokines such as IL-4, IL-10 and TGFß in papillomas of aggressive JO-RRP patients. Our study suggested that likely initialized by the intrinsic change in neoplastic epithelial cells with persistent HPV infection, the aggressive papillomas built an entry barrier for NK cell infiltration and formed an immunosuppressive clump to fend off the immune attack from intra-papillomas NK cells. IMPORTANCE Frequent relapse and aggressive disease progression of juvenile-onset recurrent respiratory papillomatosis (JO-RRP) pose a great challenge to the complete remission of HPV 6/11 related laryngeal neoplasia. Local immune responses in papillomas are more relevant to the disease control considering the locale infected restriction of HPV virus in epitheliums. In our study, the restricted NK cell number and reduced expression of activating NKp30 receptor suggested one possible mechanism underlying impaired NK cell defense ability in aggressive JO-RRP papillomas. Meanwhile, the negative impact of HPV persistent infection on NK cell number and function represented yet another example of a chronic pathogen subverting NK cell behavior, affirming a potentially important role for NK cells in viral containment. Further, the skewed chemokine/cytokine expression in the papillomas and the elevated adhesion molecules expression in hyperplastic epithelia cells provided important clues for understanding blocked infiltration and antiviral dysfunction of NK cells in papilloma.


Assuntos
Células Matadoras Naturais , Papiloma , Infecções por Papillomavirus , Infecções Respiratórias , Progressão da Doença , Papillomavirus Humano 11 , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-10/imunologia , Interleucina-4/imunologia , Células Matadoras Naturais/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Recidiva Local de Neoplasia , Papiloma/imunologia , Papiloma/virologia , Infecções por Papillomavirus/imunologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Fator de Crescimento Transformador beta/imunologia
10.
Int J Med Sci ; 19(8): 1265-1274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928722

RESUMO

Objective: To investigate the efficiency and potential mechanisms of exosomes from dendritic cells (DCs) transfected with Forkhead box protein P3 (FOXP3) in the development of experimental autoimmune encephalomyelitis (EAE). Method: Mouse bone marrow-derived immature DCs were loaded with adenovirus carrying FOXP3 gene, and exosomes were generated. Then the exosomes with FOXP3 (FOXP3-EXOs) were co-cultured with CD4+T cell in vitro to evaluate their potential on CD4+T cell proliferation and differentiation, and injected into EAE mice to assess their effects on the development of EAE. Result: FOXP3-EXOs were effective to inhibit the CD4+T cell proliferation and the production of Interferon gamma (IFN-γ), interleukin (IL)-6, and IL-17, while they promoted the production of IL-10 in vitro. Moreover, FOXP3-EXOs treatment significantly decreased the neurological scores, reduced the infiltration of inflammatory cells into the spinal cord, and decreased demyelination in comparison to saline and Con-EXOs treated EAE mice. Moreover, the FOXP3-EXOs treatment resulted in obvious increases in the levels of regulatory T (Treg) cells and IL-10, whereas levels of T helper 1 (Th1) cells, Th17 cells, IFN-γ, IL-6, and IL-17 decreased significantly in the splenocyte culture of EAE mice. Conclusion: The present study preliminarily investigated the effects and potential mechanisms of FOXP3-EXOs in EAE and revealed that the FOXP3-EXOs could inhibit the production of Th1 and Th17 cells and promote the production of Treg cells as well as ameliorate the development of EAE. The neuroprotective effects of FOXP3-EXOs on EAE are likely due to the regulation of Th/Treg balance.


Assuntos
Células Dendríticas , Encefalomielite Autoimune Experimental , Exossomos , Fatores de Transcrição Forkhead , Animais , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Exossomos/genética , Exossomos/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-17/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores , Células Th17
11.
Front Immunol ; 13: 967281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990645

RESUMO

Discoid lupus erythematosus and oral lichen planus are chronic systemic immune system-mediated diseases with unclear etiology and pathogenesis. The oral mucosa is the common primary site of pathogenesis in both, whereby innate and adaptive immunity and inflammation play crucial roles. The clinical manifestations of discoid lupus erythematosus on the oral mucosa are very similar to those of oral lichen planus; therefore, its oral lesion is classified under oral lichenoid lesions. In practice, the differential diagnosis of discoid lupus erythematosus and oral lichen planus has always relied on the clinical manifestations, with histopathological examination as an auxiliary diagnostic tool. However, the close resemblance of the clinical manifestations and histopathology proves challenging for accurate differential diagnosis and further treatment. In most cases, dentists and pathologists fail to distinguish between the conditions during the early stages of the lesions. It should be noted that both are considered to be precancerous conditions, highlighting the significance of early diagnosis and treatment. In the context of unknown etiology and pathogenesis, we suggest a serological and genetic diagnostic method based on TNF-α and IL-10. These are the two most common cytokines produced by the innate and adaptive immune systems and they play a fundamental role in maintaining immune homeostasis and modulating inflammation. The prominent variability in their expression levels and gene polymorphism typing in different lesions compensates for the low specificity of current conventional diagnostic protocols. This new diagnostic scheme, starting from the immunity and inflammation of the oral mucosa, enables simultaneous comparison of discoid lupus erythematosus and oral lichen planus. With relevant supportive evidence, this information can enhance physicians' understanding of the two diseases, contribute to precision medicine, and aid in prevention of precancerous conditions.


Assuntos
Interleucina-10 , Líquen Plano Bucal , Lúpus Eritematoso Discoide , Lesões Pré-Cancerosas , Fator de Necrose Tumoral alfa , Genótipo , Humanos , Testes Imunológicos , Inflamação , Interleucina-10/genética , Interleucina-10/imunologia , Líquen Plano Bucal/genética , Líquen Plano Bucal/imunologia , Lúpus Eritematoso Discoide/genética , Lúpus Eritematoso Discoide/imunologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
12.
Mol Med Rep ; 26(3)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35856408

RESUMO

Sepsis serves as a leading cause of admission to and death of patients in the intensive care unit (ICU) and is described as a systemic inflammatory response syndrome caused by abnormal host response to infection. Adipose­derived mesenchymal stem cells (ADSCs) have exhibited reliable and promising clinical application potential in multiple disorders. However, the function and the mechanism of ADSCs in sepsis remain elusive. In the present study, the crucial inhibitory effect of ADSC­derived hydroxy­carboxylic acid receptor 1 (HCAR1) on sepsis was identified. Reverse transcription quantitative­PCR determined that the mRNA expression of HCAR1 was reduced while the mRNA expression of Toll­like receptor 4 (TLR4), major histocompatibility complex class II (MHC II), NOD­like receptor family pyrin domain containing 3 (NLRP3), and the levels of interleukin­1ß (IL­1ß), tumor necrosis factor­α (TNF­α), interleukin­10 (IL­10), and interleukin­18 (IL­18) were enhanced in the peripheral blood of patients with sepsis. The expression of HCAR1 was negatively correlated with TLR4 (r=­0.666), MHC II (r=­0.587), and NLRP3 (r=­0.621) expression and the expression of TLR4 was positively correlated with NLRP3 (r=0.641), IL­1ß (r=0.666), TNF­α (r=0.606), and IL­18 (r=0.624) levels in the samples. Receiver operating characteristic (ROC) curve analysis revealed that the area under the ROC curve (AUC) of HCAR1, TLR4, MHC II and NLRP3 mRNA expression was 0.830, 0.853, 0.735 and 0.945, respectively, in which NLRP3 exhibited the highest diagnostic value, and the AUC values of IL­1ß, IL­18, TNF­α, and IL­10 were 0.751, 0.841, 0.924 and 0.729, respectively, in which TNF­α exhibited the highest diagnostic value. A sepsis rat model was established by injecting lipopolysaccharide (LPS) and the rats were randomly divided into 5 groups, including a normal control group (NC group; n=6), a sepsis model group (LPS group; n=6), an ADSC transplantation group (L + M group; n=6), a combined HCAR1 receptor agonist group [L + HCAR1 inducer (Gi) + M group; n=6], and a combined HCAR1 receptor inhibitor group [L + HCAR1 blocker (Gk) + M group; n=6]. Hematoxylin and eosin staining determined that ADSCs attenuated the lung injury of septic rats and ADSC­derived HCAR1 enhanced the effect of ADSCs. The expression of HCAR1, TLR4, MHC II, NLRP3, IL­1ß, IL­18 and TNF­α levels were suppressed by ADSCs and the effect was further induced by ADSC­derived HCAR1. However, ADSC­derived HCAR1 induced the levels of anti­inflammatory factor IL­10. The negative correlation of HCAR1 expression with TLR4, MHC II, and NLRP3 expression in the peripheral blood and lung tissues of the rats was then identified. It is thus concluded that ADSC­derived HCAR1 regulates immune response in the attenuation of sepsis. ADSC­derived HCAR1 may be a promising therapeutic strategy for sepsis.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Receptores Acoplados a Proteínas G , Sepse , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Animais , Imunidade , Interleucina-10/imunologia , Interleucina-18/imunologia , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , RNA Mensageiro/metabolismo , Ratos , Receptores Acoplados a Proteínas G/imunologia , Sepse/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
13.
Curr Opin Hematol ; 29(4): 218-224, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787550

RESUMO

PURPOSE OF REVIEW: This review highlights findings describing the role of interleukin (IL)-10-producing Type 1 regulatory T (Tr1) cells in controlling autoimmune diseases and possible approaches to restore their function and number. RECENT FINDINGS: Reduced frequency and/or function of cell subsets playing a role in Tr1 cell induction (e.g., DC-10 and Bregs), was found in patients with autoimmunity and may impact on Tr1 cell frequency. SUMMARY: IL-10 is a pleiotropic cytokine with fundamental anti-inflammatory functions acting as negative regulator of immune responses. IL-10 is critically involved in the induction and functions of Tr1 cells, a subset of memory CD4+ T cells induced in the periphery to suppress immune responses to a variety of antigens (Ags), including self-, allogeneic, and dietary Ags. Alterations in IL-10-related pathways and/or in the frequency and activities of Tr1 cells have been associated to several autoimmune diseases. We will give an overview of the alterations of IL-10 and IL-10-producing Tr1 cells in Multiple Sclerosis, Type 1 Diabetes, and Celiac Disease, in which similarities in the role of these tolerogenic mechanisms are present. Current and future approaches to overcome Tr1 cell defects and restore tolerance in these diseases will also be discussed.


Assuntos
Doenças Autoimunes , Interleucina-10/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Autoimunidade , Humanos
14.
Immunobiology ; 227(4): 152236, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35691133

RESUMO

The severity of COVID-19 is largely determined by the inflammatory response, a "Cytokine storm," that involves both pro- and anti-inflammatory cytokines. In the current study we investigated the balance of pro- and anti-inflammatory status as represented by the levels of IL-6/IL-10 in severe to critical COVID-19 patients. 66 confirmed COVID-19 patients admitted to the ICU were categorized into groups according to the mortality and respiratory failure. Data were collected retrospectively in ICU, including a peripheral immune cells and infection-related biomarker CRP. The measurements of cytokine levels were performed by Immulite analyzer for IL-6 and ELISA sandwich for IL-10. In addition, longitudinal measurement of IL-6 was performed during 5 days post admission. Longitudinal assays showed that IL-6 was sustained at a medium level within 5 days post admission in severe cases who survived or not requiring mechanical ventilation, whereas it was sustained at high levels throughout the disease course in either deceased cases or who developed respiratory failure. The ratio of IL-6/lymphocytes was positively correlated with the risk of mortality, while IL-10/lymphocytes ratio could predict respiratory failure in ICU. IL-6/IL-10 profiling revealed that deceased patients have different magnitudes of both IL-6 and IL-10 cytokine release. Notably, excessive levels of IL-6 concomitant with high levels of IL-10 were more common in diseased COVID-19 patients. Taking into account the IL-6/IL-10 profiling may help clinicians to identify the right time of anti-inflammation treatment and select patients who will respond to anti-cytokine therapies and maintain an adequate inflammatory response for SARS-CoV-2 clearance.


Assuntos
COVID-19 , Interleucina-10/imunologia , Interleucina-6/imunologia , Insuficiência Respiratória , Anti-Inflamatórios , Citocinas , Humanos , Insuficiência Respiratória/induzido quimicamente , Estudos Retrospectivos , SARS-CoV-2
15.
Front Immunol ; 13: 899413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757772

RESUMO

L. johnsonii N6.2 releases nano-sized vesicles (NVs) with distinct protein and lipid contents. We hypothesized that these NVs play a central role in the delivery of bioactive molecules that may act as mechanistic effectors in immune modulation. In this report, we observed that addition of NVs to the human pancreatic cell line ßlox5 reduced cytokine-induced apoptosis. Through RNAseq analyses, increased expression of CYP1A1, CYP1B1, AHRR, and TIPARP genes in the aryl hydrocarbon receptor (AHR) pathways were found to be significantly induced in presence of NVs. AHR nuclear translocation was confirmed by confocal microscopy. The role of NVs on beta cell function was further evaluated using primary human pancreatic islets. It was found that NVs significantly increased insulin secretion in presence of high glucose concentrations. These increases positively correlated with increased GLUT6 and SREBF1 mRNA and coincided with reduced oxidative stress markers. Furthermore, incubation of NVs with THP-1 macrophages promoted the M2 tolerogenic phenotype through STAT3 activation, expression of AHR-dependent genes and secretion of IL10. Altogether, our findings indicate that bacterial NVs have the potential to modulate glucose homeostasis in the host by directly affecting insulin secretion by islets and through the induction of a tolerogenic immune phenotype.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Interleucina-10 , Lactobacillus johnsonii , Receptores de Hidrocarboneto Arílico , Apoptose/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Glucose/metabolismo , Humanos , Interleucina-10/imunologia , Interleucina-10/metabolismo , Lactobacillus johnsonii/genética , Lactobacillus johnsonii/imunologia , Lactobacillus johnsonii/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo
16.
Nat Immunol ; 23(5): 743-756, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35437326

RESUMO

Phenotypic and transcriptional profiling of regulatory T (Treg) cells at homeostasis reveals that T cell receptor activation promotes Treg cells with an effector phenotype (eTreg) characterized by the production of interleukin-10 and expression of the inhibitory receptor PD-1. At homeostasis, blockade of the PD-1 pathway results in enhanced eTreg cell activity, whereas during infection with Toxoplasma gondii, early interferon-γ upregulates myeloid cell expression of PD-L1 associated with reduced Treg cell populations. In infected mice, blockade of PD-L1, complete deletion of PD-1 or lineage-specific deletion of PD-1 in Treg cells prevents loss of eTreg cells. These interventions resulted in a reduced ratio of pathogen-specific effector T cells: eTreg cells and increased levels of interleukin-10 that mitigated the development of immunopathology, but which could compromise parasite control. Thus, eTreg cell expression of PD-1 acts as a sensor to rapidly tune the pool of eTreg cells at homeostasis and during inflammatory processes.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores , Toxoplasmose Animal , Animais , Antígeno B7-H1/imunologia , Homeostase , Interleucina-10/imunologia , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia
17.
Front Immunol ; 13: 796682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250975

RESUMO

In the ongoing coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), natural killer T (NKT) cells act as primary initiators of immune responses. However, a decrease of circulating NKT cells has been observed in COVID-19 different stages, of which the underlying mechanism remains to be elucidated. Here, by performing single-cell RNA sequencing analysis in three large cohorts of COVID-19 patients, we found that increased expression of Tim-3 promotes depletion of NKT cells during the progression stage of COVID-19, which is associated with disease severity and outcome of patients with COVID-19. Tim-3+ NKT cells also expressed high levels of CD147 and CD26, which are potential SARS-CoV-2 spike binding receptors. In the study, Tim-3+ NKT cells showed high enrichment of apoptosis, higher expression levels of mitochondrial genes and caspase genes, with a larger pseudo time value. In addition, Tim-3+ NKT cells in COVID-19 presented a stronger capacity to secrete IFN-γ, IL-4 and IL-10 compared with healthy individuals, they also demonstrated high expression of co-inhibitory receptors such as PD-1, CTLA-4, and LAG-3. Moreover, we found that IL-12 secreted by dendritic cells (DCs) was positively correlated with up-regulated expression of Tim-3 in NKT cells in COVID-19 patients. Overall, this study describes a novel mechanism by which up-regulated Tim-3 expression induced the depletion and dysfunction of NKT cells in COVID-19 patients. These findings not only have possible implications for the prediction of severity and prognosis in COVID-19 but also provide a link between NKT cells and future new therapeutic strategies in SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Células T Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Humanos , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-4/imunologia , Transdução de Sinais/imunologia
18.
J Immunol ; 208(5): 1034-1041, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35140133

RESUMO

The critical role of IL-10-producing B cells (B10 cells) with a unique CD1dhiCD5+ phenotype in suppressing autoimmune responses and relieving inflammation has been demonstrated in several models of autoimmune diseases. However, the regulatory role of B10 cells in T cell-mediated autoimmune responses during the natural history of type 1 diabetes is unclear. In this study, we used the NOD mouse model of autoimmune diabetes to clarify the changes and potential mechanisms of B10 cells for disease. Compared with B10 cells present in the 4-wk-old normoglycemic NOD mice, the frequency of B10 cells was increased in the insulitis and diabetic NOD mice, with the highest proportion in the insulitis NOD mice. The changes in the relative number of B10 cells were most pronounced in the pancreas-draining lymph nodes. The pathogenic T cells, including Th1 and Th17 cells, remarkably increased. The assays in vitro showed that B10 cells in the NOD mice did not inhibit the proliferation of CD4+CD25- T cells. They also had no regulatory effect on IFN-γ and IL-4 secretion or on Foxp3 expression of T cells. B10 cells suppressed T cell-mediated autoimmune responses via an IL-10-dependent pathway. In contrast, B10 cells in the NOD mice exhibited a significant reduction in IL-10 production. In summary, a defect in the number and function of B10 cells may participate in the development and progression of type 1 diabetes.


Assuntos
Linfócitos B Reguladores/imunologia , Diabetes Mellitus Tipo 1/imunologia , Interleucina-10/imunologia , Ativação Linfocitária/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Proliferação de Células/fisiologia , Células Cultivadas , Microambiente Celular/imunologia , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/biossíntese , Homeostase/imunologia , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-4/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Células Th1/imunologia , Células Th17/imunologia
20.
Viruses ; 14(2)2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215787

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus (PCVs) are two major viruses that affect pigs. Coinfections between PRRSV and PCV2 are frequently reported in most outbreaks, with clinical presentations involving dyspnea, fever, reduced feed intake, weight loss, and death in fattening pigs. The NADC30-like PRRSV and PCV2d are the main circulating virus strains found in China. This study determines the impact of NADC30-like PRRSV and PCV2d mono-infection and coinfection on the immune system, organ pathology, and viral shedding in five-week-old post-weaned pigs. Pigs were randomly divided into six groups: PBS, PRRSV, PCV2, PRRSV-PCV2 coinfection (co), and PRRSV-PCV2 or PCV2-PRRSV sequential infections. Fever, dyspnea, decreased feed intake, weight loss, and pig deaths occurred in groups infected with PRRSV, Co-PRRSV-PCV2, and PRRSV-PCV2. The viral load was higher in Co-PRRSV-PCV2, PRRSV-PCV2, and PCV2-PRRSV than those mono-infected with PRRSV or PCV2. Additionally, cytokines (IFN-γ, TNF-α, IL-4, and IL-10) produced by pigs under Co-PRRSV-PCV2 and PRRSV-PCV2 groups were more intense than the other groups. Necropsy findings showed hemorrhage, emphysema, and pulmonary adhesions in the lungs of pigs infected with PRRSV. Smaller alveoli and widened lung interstitium were found in the Co-PRRSV-PCV2 and PRRSV-PCV2 groups. In conclusion, PRRSV and PCV2 coinfection and sequential infection significantly increased viral pathogenicity and cytokine responses, resulting in severe clinical signs, lung pathology, and death.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/fisiologia , Circovirus/patogenicidade , Coinfecção/virologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Animais , China , Infecções por Circoviridae/genética , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/virologia , Circovirus/genética , Coinfecção/genética , Coinfecção/imunologia , Coinfecção/mortalidade , Feminino , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Pulmão/imunologia , Pulmão/virologia , Masculino , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/mortalidade , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...