Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.918
Filter
1.
Fish Shellfish Immunol ; : 109901, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276815

ABSTRACT

SOCS family genes are a class of repressors in various signaling pathways of mammals involved in regulating immunity, growth, and development, but the information remains limited in teleost. The full-length cDNA sequence of the Japanese eel SOCS6 gene, named AjSOCS6, was first cloned and showed to encode 529 amino acids with a conserved SH2 structural domain and a typical structure of a C-terminal SOCS box. AjSOCS6 is evolutionarily close to that of rainbow trout and zebrafish. AjSOCS6 gene expression was observed across all tissues in Japanese eel, with the highest levels found in the intestine. In vivo studies showed that AjSOCS6 was significantly upregulated in the liver following exposure to LPS, poly I:C, and Aeromonas hydrophila infection. In vitro, stimulation with poly I:C, CpG, and A. hydrophila infection increased AjSOCS6 expression in Japanese eel liver cells. Subcellular localization revealed that AjSOCS6 was dispersed in the cytoplasm. Overexpressing AjSOCS6 significantly suppressed the expression of immune-related genes, such as c-Rel and p65 in the NF-κB pathway, IFN1, IFN2, and IFN4 in the type I IFN signaling pathway, and the downstream inflammatory factor IL-6 in Japanese eel liver cells. Conversely, knocking down AjSOCS6 in vitro in liver cells and in vivo in the liver, spleen, and kidney significantly upregulated these gene expressions. Co-transfection of AjSOCS6 with AjMyD88 into HEK293 cells significantly reduced NF-κB luciferase activities compared to AjMyD88 single-transfection groups, in a natural state and under LPS stimulation. These findings suggest that AjSOCS6 negatively regulates MyD88-dependent NF-κB and type I IFN signaling pathways, underscoring its role in the immune defense of fish against viral and bacterial infections.

2.
Curr Biol ; 34(17): R812-R813, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39255761

ABSTRACT

Predation shapes diversity in the defensive tactics of prey. One specialized defensive tactic is to escape the digestive system of the predator after capture1,2,3,4,5,6,7,8. While most of these defensive tactics involve passive ejection alive from predators' mouths and vents1,2,3,4,5, active escape from the digestive tracts of predators has recently been observed in certain invertebrate species6,7 and fish8. However, no study has yet uncovered the behavioral patterns and escape routes of the prey within a predator's digestive tract. Here, we report the sequential escape processes of the Japanese eel Anguilla japonica from capture to escape via the gills of predatory fish Odontobutis obscura using an X-ray video system. All captured eels had at least one portion of their bodies swallowed into the stomach of the predator. Surprisingly, after being swallowed, most individuals attempted to escape by going back up the digestive tract towards the esophagus and gill, and some of them succeeded in escaping via the predator's gill. Some eels, whose entire bodies were completely inside the stomach, exhibited circling behavior along the stomach, seemingly searching for possible escape routes. An electro-anesthetization experiment revealed that eels utilize various escape routes through gill clefts, rather than just one.


Subject(s)
Anguilla , Escape Reaction , Predatory Behavior , Animals , Predatory Behavior/physiology , Escape Reaction/physiology , Anguilla/physiology , Stomach/physiology , Gills/physiology
3.
Fish Physiol Biochem ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235533

ABSTRACT

To induce sexual maturation in captivity, eels rely on hormonal treatments, but this process is costly and time-consuming. As an alternative, different types of conditioning, also referred as pre-treatment, have been assessed to ease hormonal treatment response. Recent studies have shown that migrating eels experience a wide range of temperatures, varying from 12 °C at night to as low as to 8 °C during the day. Therefore, this study evaluates the effects of low-temperature (10 °C) seawater pre-treatments of different durations (2 and 4 weeks) on male eel reproduction. The eye, gonadosomatic and hepatosomatic indexes from control (without thermic seawater pre-treatment) and pre-treated fish were measured. Blood and testis samples were also collected for sex steroid and histology analysis, respectively. Eels pre-treated for 2 weeks demonstrated increased progestin levels, comparing with the control group. Eels pre-treated for 4 weeks showed significantly higher gonadosomatic index and elevated androgens and estradiol levels in comparison with the remaining groups. In eels pre-treated for 2 and 4 weeks, there was an increase in the proportion of spermatogonia type B cells compared to undifferentiated spermatogonia type A, a differentiation process that was not observed in the control group. Cold seawater pre-treatment induced early sexual maturation, including steroid production, which consequently stimulated biometric changes and increased spermatogonia differentiation. Following the pre-treatments, eels started receiving standard hormonal treatment (with recombinant human chorionic gonadotropin at 20 °C). Pre-treated males started to spermiate earlier than the control group. In some treatment weeks, pre-treated individuals registered higher values of sperm density, motility, and kinetic parameters. Moreover, an economic evaluation was carried out relating the investment made in terms of hormone injections with the volume of high-quality sperm obtained from each experimental group. The low temperature pre-treatments demonstrated their economic effectiveness in terms of hormone treatment profitability, increasing the production of high-quality sperm in the European eel. Thus, this in vivo study suggests that cold seawater pre-treatment may increase sensitivity to the hormone applied during standard maturation treatment.

4.
Sci Rep ; 14(1): 17888, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095511

ABSTRACT

Globally, catadromous freshwater eels of the genus Anguilla are of conservation concern, including critically endangered European eel (Anguilla anguilla). Pumping stations that move river water to a higher elevation severely impact eels during their seaward spawning migration. Fish-friendly pumps can mitigate fish injury and mortality but here we uniquely rethink a fish-friendly pump as a fish passage solution. In this pluriannual study, the seasonal timing of pump operation was misaligned with the typical silver eel migration period. Eels were almost exclusively nocturnal but night-time pumping represented as little as 5.6% a year. Night-time eel approaches were primarily influenced by pump duration and temperature, but did not align with lunar phase, unlike in unregulated rivers. After reaching the pumping station, eel passage was influenced by weedscreen aperture and increased when the aperture was increased. Passive sensor collision suggested non-pump infrastructure could cause injury and mortality to eels. It is therefore recommended pump operation should align with the timing of silver eel migration, weedscreen and pump entrance efficiencies should be maximised, and non-pump infrastructure must have low fish injury risk. Ultimately, considering the entire structure a fish passage solution will help ensure fish-friendly pumps have high conservation value for anguillid eels globally.


Subject(s)
Anguilla , Animal Migration , Conservation of Natural Resources , Animals , Animal Migration/physiology , Anguilla/physiology , Conservation of Natural Resources/methods , Rivers , Seasons , Endangered Species
5.
Zoolog Sci ; 41(4): 392-399, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39093285

ABSTRACT

Some anguillid eels migrate thousands of kilometers from their spawning grounds, dispersing across vast geographic areas to fresh and brackish water habitats, where they settle and grow. Japanese eels (Anguilla japonica) and giant mottled eels (A. marmorata) are both found in Japan, although their distributions differ, and their exact distributions are poorly known. We assumed that topographic distribution patterns of Japanese and giant mottled eels must differ among and within rivers along the northwest coast of Kyushu, Japan. Environmental DNA (eDNA) analysis was conducted at 87 sites in 23 rivers. Japanese eel eDNA was detected in 19 rivers (82.6%) and that of giant mottled eels was detected in eight (34.8%). We detected giant mottled eel eDNA in five rivers where they were previously unknown. eDNA for Japanese eels was detected at six of nine sites in the north (66.7%), 13 of 23 sites in Omura (56.5%), and 37 of 55 sites in the south (67.3%). In contrast, giant mottled eel eDNA was detected at one of nine sites in the north (11.1%), no sites in Omura, and 15 of 55 sites in the south (27.3%). There was no correlation between eDNA concentrations of the two species at 10 sites in the five rivers where eDNA of both species was detected. These findings suggest differences in the distribution of the two eel species and the northern distributional limit of giant mottled eels in the area facing the East China Sea.


Subject(s)
Anguilla , Animal Distribution , DNA, Environmental , Animals , Japan , Anguilla/genetics , DNA, Environmental/genetics , Rivers , Species Specificity
6.
Folia Parasitol (Praha) ; 712024 Jul 29.
Article in English | MEDLINE | ID: mdl-39101756

ABSTRACT

European eel, Anguilla anguilla (Linnaeus) (Elopomorpha: Anguilliformes), is a critically endangered fish of ecological and economic importance, hosting numerous parasites, including myxozoans (Cnidaria). Since its initial discovery in the kidney of European eel, Myxidium giardi Cépède, 1906 has been reported with numerous spore sizes and shapes from various tissues of multiple anguillid species. Morphological variability, wide host and tissue spectrum, and lack of sequence data raised doubts about the conspecificity of reported isolates. Subsequent studies provided 18S rDNA sequences of several isolates from anguillids and other elopiform fish, and demonstrated a split of parasite data into two distinct phylogenetic lineages, one comprising the M. giardi sequence, and the other all species infecting elopiform fishes classified under the recently established genus Paramyxidium Freeman et Kristmundsson, 2018. Myxidium giardi was, however, transferred to this genus as Paramyxidium giardi n. comb. and designated as the type species of the genus. In line with this change, the sequence originally identified as M. giardi was considered to have been incorrectly associated with this species. To shed light on the status of M. giardi originally described by Cépède (1906), we conducted microscopic and molecular examinations of various organs of 24 individuals of European eel, originating from diverse Czech habitats. Through morphometric and molecular analyses, we demonstrated that spore and polar capsule morphology, morphometry and tissue tropism of our European eel kidney parasite isolates matched the features of the original M. giardi description. Our isolates clustered in the lineage encompassing the first published M. giardi sequence. Thus, the originally described M. giardi indeed represents an existing species within the genus Myxidium Bütschli, 1882, which we formally resurrect and redescribe. Due to the morphological and molecular differences between M. giardi and P. giardi of Freeman et Kristmundsson (2018), we additionally rename the latter species as Paramyxidium freemani nom. nov.


Subject(s)
Anguilla , Fish Diseases , Kidney , Myxozoa , Parasitic Diseases, Animal , Phylogeny , Animals , Myxozoa/classification , Myxozoa/genetics , Myxozoa/physiology , Fish Diseases/parasitology , Parasitic Diseases, Animal/parasitology , Kidney/parasitology , Anguilla/parasitology , RNA, Ribosomal, 18S/analysis
7.
Sci Data ; 11(1): 952, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39214993

ABSTRACT

In East Asia, anguillid eels are commercially important. However, unlike other species, they have not been successfully cultivated throughout their lifecycle. Facing population decline due to overharvesting and environmental pressures, the industry is turning to alternatives, such as Anguilla bicolor pacifica (short-finned eel). However, genomic data for short-finned eels are unavailable. Here, we present in-depth whole-genome sequencing results for short-finned eel obtained using two sequencing platforms (PacBio Revio, and Illumina). In this study, we achieved a highly contiguous genome assembly of the short-finned eel, comprising 19 pseudochromosomes encompassing 99.76% of the 1.087 Gb genome sequence with an N50 of 16.88 and 61.07 Mb from contig and scaffold, respectively. Transcripts from four different tissues led to the annotation of 23,095 protein-coding genes in the eel genome, 98.66% of which were functionally annotated. This high-quality genome assembly, along with the annotation data, provides a foundation for future functional genomic studies of short-finned eels.


Subject(s)
Anguilla , Genome , Molecular Sequence Annotation , Whole Genome Sequencing , Animals , Anguilla/genetics
8.
iScience ; 27(8): 110563, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39165844

ABSTRACT

The Japanese eel (Anguilla japonica), a flagship anguillid species for conservation, is known for its long-distance-oriented migration. However, our understanding of the genetic architecture underlying long-distance migration and population genomic characteristics of A. japonica is still limited. Here, we generated a high-quality chromosome-level genome assembly and conducted whole-genome resequencing of 218 individuals to explore these aspects. Strong signals of selection were found on genes involved in long-distance aerobic exercise and navigation, which might be associated with evolutionary adaptation to long-distance migrations. Low genetic diversity was detected, which might result from genetic drift associated with demographic declines. Both mitochondrial and nuclear genomic datasets supported the existence of a single panmictic population for Japanese eel, despite signals of single-generation selection. Candidate genes for local selection involved in functions like development and circadian rhythm. The findings can provide insights to adaptative evolution to long-distance migration and inform conservation efforts for A. japonica.

9.
Metabolites ; 14(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39195528

ABSTRACT

During field surveys and culture procedures, large growth disparities in Anguilla japonica have been observed. However, the potential causes are unknown. This study explored differences in digestive ability, metabolic levels, and transcriptomic profiles of appetite-related genes between growth-retarded eel (GRE) and normal-growing eel (NGE) under the same rearing conditions. The results showed that growth hormone (gh) mRNA expression in GREs was considerably lower than NGEs. The levels of total protein (TP), total cholesterol (T-CHO), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), blood ammonia (BA), blood urea nitrogen (BUN), and alkaline phosphatase (ALP) in GREs were significantly lower than in NGEs. Conversely, levels of glucose (GLU), alanine aminotransferase (ALT), and aspartate transaminase (AST) were higher in GREs. The activities of SOD, CAT, and T-AOC levels were also significantly lower in GREs, as were the activities of glucose-related enzymes including hexokinase (HK), pyruvate kinase (PK), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PASE). Additionally, orexigenic genes (npy and ghrelin) were dramatically downregulated, whereas anorexigenic genes (crh and pyy) were significantly upregulated in GREs. These findings suggested that variances in growth hormone, metabolic activities, and appetite level could be associated with the different growth rates of A. japonica. The present research not only revealed the characteristics of the growth, metabolism, and appetite of GREs but also offered new perspectives into the substantial growth discrepancies in A. japonica, providing novel ideas for enhancing fish growth.

10.
Proc Biol Sci ; 291(2027): 20240674, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043239

ABSTRACT

Protecting ocean habitats is critical for international efforts to mitigate climate impacts and ensure food security, but the ecological data upon which policy makers base conservation and restoration targets often reflect ecosystems that have already been deeply impacted by anthropogenic change. The archaeological record is a biomolecular archive offering a temporal scope that cannot be gathered from historical records or contemporary fieldwork. Insights from biogeochemical and osteometric analyses of fish bones, combined with context from contemporary field studies, show how prehistoric fisheries in the western Baltic relied on seagrass meadows. European eels (Anguilla anguilla) harvested by Mesolithic and Neolithic peoples over millennia showed a strong fidelity for eelgrass foraging habitats, an ecological relationship that remains largely overlooked today, demonstrating the value of protecting these habitats. These data open new windows onto ecosystem- and species-level behaviours, highlighting the need for wider incorporation of archaeological data in strategies for protecting our oceans.


Subject(s)
Ecosystem , Fisheries , Animals , Archaeology , Anguilla/physiology , Conservation of Natural Resources , Baltic States
11.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-39071172

ABSTRACT

The American eel ( Anguilla rostrata) inhabits Louisiana waterways; however, little is known about their life history, population abundance, or behavior. Eels under 400 mm require histologic evaluation to determine sex. We have processed eel gonad samples from 40 sampling locations across Louisiana, as well as across size categories to aid in establishing a sex determination protocol. One hundred and eighteen (118) eel samples have been histologically analyzed to date. The histologic data compliments morphometric, location, and ageing data collected by the Louisiana Department of Wildlife and Fisheries to build an initial understanding of the biological characteristics of American eels in Louisiana.

12.
Environ Pollut ; : 124637, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084590

ABSTRACT

Migratory fish are very important species from an ecological and socioeconomic point of view, but they suffer the effects of many threats such as climate change, pollution, or overfishing, thus contributing to the decline of these species. To study the main factors influencing these species, Partial Least Squares Path Modelling (PLS-PM) methodology has been used to analyse and quantify the main threats facing two highly relevant migratory species: the eel (Anguilla anguilla) and the sea lamprey (Petromyzon marinus). Based on this statistical approach, two models have been developed for a total of 14 rivers located in the Autonomous Community of Galicia (NW Spain), one for the eel and the other for the lamprey. For the construction of the models, the influence of environmental factors, surface water quality and anthropogenic impacts on the population of these species has been studied. Two scenarios have also been simulated to assess how the application of corrective measures to reduce the anthropogenic impact implies important improvements to the eel and lamprey populations. The results of the models developed indicate that the variables analysed predict 69% of the eel "Population", with the weight of the measured variables (MV) 'Water treatment plants' having the most substantial weight (W=0.939) followed by the significant negative influence of 'Surface area of reservoirs and rivers' (W=-0.746). Similarly, in the lamprey model, an R2 of 0.58 has been obtained, where the negative influence of the MV "Agricultural nitrate discharge points" (-0.938) stands out substantially. In relation to the scenarios developed for both species, we highlight that the application of measures aimed at reducing anthropogenic pressure manages to mitigate the impact by 4.82% in the case of eel and by 1.37% in the case of lamprey. The set of models and scenarios proposed will make it possible to design preventive and corrective measures to mitigate the impacts affecting these populations, guaranteeing the integrated management of these species, and improving future decision-making, thus strengthening environmental governance.

13.
PLoS One ; 19(7): e0306634, 2024.
Article in English | MEDLINE | ID: mdl-38976712

ABSTRACT

In rearing systems for the Japanese eel Anguilla japonica, although it is assumed that microorganisms influence larval survival and mortality, particularly during the early stages of growth, the effects of bacterial communities on larval survival have yet to be sufficiently determined. In this study, we compared the bacterial communities associated with larval survival at three stages of eel growth. To artificially alter bacterial communities and assess larval survival, eel larvae were treated with 11 types of antibiotic, and larval survival and bacterial characteristics were compared between the antibiotic-treated and antibiotic-free control groups. Throughout the three growth stages, eels treated with four antibiotics (polymyxin B, tetracycline, novobiocin, and erythromycin) had survival rates higher than those in the control groups. The bacterial communities of surviving larvae in the control and antibiotic groups and dead larvae in the control groups were subsequently analyzed using 16S rRNA gene amplicon sequencing. PERMANOVA analysis indicated that these three larval groups were characterized by significantly different bacterial communities. We identified 14 biomarker amplicon sequence variants (ASVs) of bacterial genera such as Oceanobacter, Alcanivorax, Marinobacter, Roseibium, and Sneathiella that were enriched in surviving larvae in the antibiotic treatment groups. In contrast, all four biomarker ASVs enriched in dead larvae of the control groups were from bacteria in the genus Vibrio. Moreover, 52 bacterial strains corresponding to nine biomarkers were isolated using a culture method. To the best of our knowledge, this is the first study to evaluate the bacterial communities associated with the survival and mortality of larvae in during the early stages of Japanese eel growth and to isolate biomarker bacterial strains. These findings will provide valuable insights for enhancing larval survival in the eel larval rearing systems from a microbiological perspective.


Subject(s)
Anguilla , Anti-Bacterial Agents , Biomarkers , Larva , Animals , Larva/microbiology , Larva/drug effects , Larva/growth & development , Anguilla/microbiology , Anguilla/growth & development , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Bacteria/isolation & purification , Bacteria/growth & development
14.
J Fish Biol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831621

ABSTRACT

China has experienced substantial coastal reclamation and damming of rivers. These changes have the potential to impact migrations of diadromous fishes between the sea and fresh waters, but the composition of these fishes and the impacts of barriers to their movement in China have received little attention. We inventoried the species composition and distribution of diadromous fishes, and the impacts of barriers on them, in the Hong Kong Special Administrative Region (HKSAR), southern China. Fish assemblages were surveyed using hand-nets, supplemented by cast-netting and single-pass snorkel surveys, in 24 small coastal streams across three regions. Surveys were undertaken on multiple occasions during the wet and dry seasons to account for the monsoonal tropical climate. Twenty-eight diadromous fishes were collected, mostly gobies, amounting to over half (53%) of the total richness of primary freshwater fishes; four additional species are known from literature records. Diadromous richness was 48% greater during the wet season, when all species were encountered. Richness varied substantially among streams, from a maximum of 17 (2 streams that were diversity hot spots) to none (3 streams). The most widespread diadromous fish was Glossogobius giuris (71% frequency of occurrence), followed by Mugil cephalus (58% occurrence) and Eleotris oxycephala (50% occurrence). The remaining 25 diadromous fishes occurred in fewer than half of the streams; 12 species were confined to a single stream and may be locally threatened. There were conspicuous spatial differences in diadromous assemblages across HKSAR, despite its limited extent (1114 km2), the proximity of the surveyed streams, and the broad geographic distribution of most species. Regional species assemblages were influenced by localized habitat characteristics, with a noticeable distinction between areas with and without large, fast-flowing, and highly oxygenated streams. The presence of in-stream barriers (weirs: 0.3-8.7 m high) did not affect spatial patterns in species assemblages, although, on average, diadromous richness was lower in weir-obstructed streams (4.0 vs. 6.9 species in unobstructed streams). In total, 18 species were confined to unobstructed streams or sections below weirs, whereas the remaining 10 species were recorded both above and below weirs. Only the mottled eel (Anguilla marmorata) and a goby (Stiphodon multisquamus) were able to ascend weirs over 2 m. Although at least 400 m of the lower course of each stream was sampled, diadromous fishes were confined to the first 300 m in 12 of the 13 weir-obstructed streams. Remarkably, the tally of 32 diadromous species in HKSAR exceeds the 19 known from mainland China, highlighting the need for further research on composition and conservation status of diadromous fishes.

15.
BMC Genomics ; 25(1): 585, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862878

ABSTRACT

BACKGROUND: Anguillid eels spend their larval period as leptocephalus larvae that have a unique and specialized body form with leaf-like and transparent features, and they undergo drastic metamorphosis to juvenile glass eels. Less is known about the transition of leptocephali to the glass eel stage, because it is difficult to catch the metamorphosing larvae in the open ocean. However, recent advances in rearing techniques for the Japanese eel have made it possible to study the larval metamorphosis of anguillid eels. In the present study, we investigated the dynamics of gene expression during the metamorphosis of Japanese eel leptocephali using RNA sequencing. RESULTS: During metamorphosis, Japanese eels were classified into 7 developmental stages according to their morphological characteristics, and RNA sequencing was used to collect gene expression data from each stage. A total of 354.8 million clean reads were generated from the body and 365.5 million from the head, after the processing of raw reads. For filtering of genes that characterize developmental stages, a classification model created by a Random Forest algorithm was built. Using the importance of explanatory variables feature obtained from the created model, we identified 46 genes selected in the body and 169 genes selected in the head that were defined as the "most characteristic genes" during eel metamorphosis. Next, network analysis and subsequently gene clustering were conducted using the most characteristic genes and their correlated genes, and then 6 clusters in the body and 5 clusters in the head were constructed. Then, the characteristics of the clusters were revealed by Gene Ontology (GO) enrichment analysis. The expression patterns and GO terms of each stage were consistent with previous observations and experiments during the larval metamorphosis of the Japanese eel. CONCLUSION: Genome and transcriptome resources have been generated for metamorphosing Japanese eels. Genes that characterized metamorphosis of the Japanese eel were identified through statistical modeling by a Random Forest algorithm. The functions of these genes were consistent with previous observations and experiments during the metamorphosis of anguillid eels.


Subject(s)
Anguilla , Gene Expression Profiling , Larva , Metamorphosis, Biological , Animals , Metamorphosis, Biological/genetics , Larva/growth & development , Larva/genetics , Anguilla/genetics , Anguilla/growth & development , Transcriptome , Gene Expression Regulation, Developmental
16.
Biology (Basel) ; 13(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38927286

ABSTRACT

The round goby Neogobius melanostomus is a notoriously invasive fish originating from the Ponto-Caspian region that in recent decades has successfully spread across the globe. One of its primary impacts is direct predation; in addition, when entering new ecosystems, the round goby is likely to become a food resource for many higher native predators. However, little is known either about the indirect effects of predators on the round goby as prey or its feeding behaviour and activity. The non-consumptive effect of the presence of higher native predators presumably plays an important role in mitigating the impact of non-native round gobies as mesopredators on benthic invertebrate communities, especially when both higher- and mesopredators occupy the same habitat. We tested the food consumption probability and gut evacuation rates in round gobies in response to chemical signals from a higher predator, the European eel Anguilla anguilla. Gobies were placed individually in experimental arenas equipped with shelters and exposed to water from a tank in which (a) the higher predator had actively preyed on a heterospecific prey, earthworms Lumbricus sp. (the heterospecific treatment; HS); (b) the higher predator had fed on round gobies (the conspecific treatment; CS); or (c) the water was provided as a control treatment (C). To ensure exposure to the chemical stimuli, this study incorporated the application of skin extracts containing damaged-released alarm cues from the CS treatment; distilled water was used for the remaining treatments. No significant differences were observed in either the food consumption probability or gut evacuation rate in the tested treatments. Despite the lack of reaction to the chemical stimuli, round gobies did exhibit high evacuation rates (R = 0.2323 ± 0.011 h-1; mean ± SE) in which complete gut clearance occurred within 16 h regardless of the applied treatment. This rapid food processing suggests high efficiency and great pressure on resources regardless of the presence or not of a higher predator. These findings hint at the boldness of round gobies, which did not exhibit any pronounced threat sensitivity. This would seem to suggest great efficiency in food processing and a potential competitive advantage over local native species when colonising new ecosystems, irrespective of the presence of native predators. Our study did not detect any non-consumptive effect attributable to the higher predator, given that the feeding activity of the invasive round goby was not altered.

17.
Biomedicines ; 12(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38927502

ABSTRACT

Synaptic zinc ions (Zn2+) play an important role in the development of vascular dementia (VD) and Parkinson's disease (PD). In this article, we reviewed the current comprehension of the Zn2+-induced neurotoxicity that leads to the pathogenesis of these neuronal diseases. Zn2+-induced neurotoxicity was investigated by using immortalised hypothalamic neurons (GT1-7 cells). This cell line is useful for the development of a rapid and convenient screening system for investigating Zn2+-induced neurotoxicity. GT1-7 cells were also used to search for substances that prevent Zn2+-induced neurotoxicity. Among the tested substances was a protective substance in the extract of Japanese eel (Anguilla japonica), and we determined its structure to be like carnosine (ß-alanylhistidine). Carnosine may be a therapeutic drug for VD and PD. Furthermore, we reviewed the molecular mechanisms that involve the role of carnosine as an endogenous protector and its protective effect against Zn2+-induced cytotoxicity and discussed the prospects for the future therapeutic applications of this dipeptide for neurodegenerative diseases and dementia.

18.
Article in English | MEDLINE | ID: mdl-38876440

ABSTRACT

The swimming activity, although an essential trait in the life cycle of fish, is still poorly understood in farmed fish. The current study aimed to investigate the impact of short-term induced swimming on the immune and antioxidant defence systems in European eel (Anguilla anguilla). Sixteen male yellow European eels (total length: 39.9 ± 0.7 cm; body weight: 108.8 ± 6.1 g) were individually placed in swimming flumes and divided into two groups: i) no swimming (n = 8); and ii) induced-swimming (n = 8) at 0.3 body lengths (BL)·s-1 for 7 h. Swimming resulted in a 2-fold lower cortisol concentration in plasma, whereas plasma glucose, lactate, and several immune-related parameters did not present variations between groups. Interestingly, swimming led to higher lysozyme, peroxidase, and protease activities in skin mucus, whereas bactericidal activity did not show differences among groups. Additionally, the gene expression of interleukin 1 beta showed an up-regulation in the skin of fish with induced swimming, while no differences were observed in the head-kidney or gills. Furthermore, modulation of the antioxidant status was observed in the liver and posterior skeletal muscle after induced swimming. Fish subjected to swimming showed lower lipid peroxidation and higher reduced glutathione levels, increasing the reduced/oxidized glutathione ratio. However, no variations in the antioxidant status were observed between groups in the anterior skeletal muscle. This study showed modulation of immune and oxidative stress markers in European eels upon short-term induced swimming compared to non-swimming fish.


Subject(s)
Anguilla , Antioxidants , Immunity, Innate , Swimming , Animals , Antioxidants/metabolism , Anguilla/immunology , Anguilla/physiology , Anguilla/metabolism , Male , Hydrocortisone/blood , Gills/metabolism , Oxidative Stress , Liver/metabolism , Skin/metabolism
19.
Fish Shellfish Immunol ; 149: 109615, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719095

ABSTRACT

Curcumin (Cur) exhibits diverse natural pharmacological activities, despite its limited water solubility (hydrophobicity) and low bioavailability. In this investigation, a valine-curcumin conjugate (Val-Cur) was synthesized through amino acid side chain modification, and its solubility increased to 1.78 mg/mL. In vitro experimental findings demonstrated that the antibacterial activity of Val-Cur against Escherichia coli, Staphylococcus aureus, Aeromonas hydrophila, and Vibrio parahaemolyticus was significantly superior to that of Cur. The inhibition rate of Val-Cur against HepG2 (human hepatocellular carcinoma) cells was higher than that of Cur at low concentrations (below 25 µmol/L), although the IC50 value of Val-Cur did not differ significantly from that of Cur. In vivo biological effects of Val-Cur were assessed by adding it into the feed (150 mg/kg) of American eels (Anguilla rostrata). Val-Cur significantly improved the growth performance (↑weight gain rate, ↑specific growth rate, and ↓feed conversion rate) and activities of intestinal digestive enzymes (amylase and lipase) and antioxidant enzymes (superoxide dismutase) in American eels. Additionally, Val-Cur significantly improved serum biochemical indices (↑high-density lipoprotein cholesterol, ↓low-density lipoprotein cholesterol, ↓aspartate and alanine aminotransferases). Furthermore, Val-Cur increased intestinal microbial diversity, reduced the abundance of potentially pathogenic bacteria (Spiroplasma, Clostridium, and Pseudomonas), and elevated the abundance of beneficial digestion-promoting bacteria (Romboutsia, Phyllobacterium, Romboutsia sedimentorum, and Clostridium butyricum) conducive to glucose metabolism (P < 0.05). To the best of our knowledge, this study is the first to explore water-soluble curcumin in aquaculture, and the findings will lay the groundwork for the potential application of water-soluble curcumin in the field of aquaculture.


Subject(s)
Anguilla , Anti-Bacterial Agents , Antineoplastic Agents , Curcumin , Animals , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Valine/pharmacology , Valine/chemistry , Animal Feed/analysis , Diet/veterinary , Humans , Dietary Supplements/analysis , Vibrio parahaemolyticus/drug effects , Vibrio parahaemolyticus/physiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Hep G2 Cells , Aeromonas hydrophila/physiology , Aeromonas hydrophila/drug effects
20.
J Fish Biol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807298

ABSTRACT

The homing behavior and site fidelity to habitats in various fishes, including anguillid eels (genus Anguilla), are fascinating. However, little is known about how yellow-phase eels exhibit homing behavior and the sensory mechanisms involved. Using acoustic telemetry, we investigated the homing behavior of 18 Japanese eels, A. japonica, with total lengths ranging from 204 to 570 mm, in a narrow freshwater river in inland central Japan, where salinity gradient, tidal current, and magnetic sense cannot be used for their homing, but where olfaction could play a role. The tagged eels captured upstream and downstream were released downstream and upstream, respectively. The results showed that large eels, over approximately 400 mm in total length, exhibited homing behavior to their original sampling locations (likely to shelters and foraging sites, where they probably spent a longer time than in other locations and grew successfully) from outside their home ranges, predominantly during the dark period. Homing success was not affected by the two capture locations, indicating that eels did not use olfactory cues for short-range homing in freshwater rivers.

SELECTION OF CITATIONS
SEARCH DETAIL