Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.526
Filter
1.
J Chromatogr A ; 1722: 464870, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38604058

ABSTRACT

Birds are excellent bioindicators of environmental pollution, and blood provides information on contaminant exposure, although its analysis is challenging because of the low volumes that can be sampled. The objective of the present study was to optimize and validate a miniaturized and functional extraction and analytical method based on gas chromatography coupled to Orbitrap mass spectrometry (GCOrbitrap-MS) for the trace analysis of contaminants in avian blood. Studied compounds included 25 organochlorine pesticides (OCPs), 6 polychlorinated biphenyls (PCBs), 8 polybrominated diphenyl ethers (PBDEs) and 15 polycyclic aromatic hydrocarbons (PAHs). Four extraction and clean-up conditions were optimized and compared in terms of efficiency, accuracy, and uncertainty assessment. Extraction with hexane:dichloromethane and miniaturized Florisil pipette clean-up was the most adequate considering precision and accuracy, time, and costs, and was thereafter used to analyse 20 blood samples of a pelagic seabird, namely the Bermuda petrel (Pterodroma cahow). This species, endemic to the Northwest Atlantic, is among the most endangered seabirds of the region that in the '60 faced a decrease in the breeding success likely linked to a consistent exposure to dichloro-diphenyl-trichloroethane (DDT). Indeed, p,p'-DDE, the main DDT metabolite, was detected in all samples and ranged bewteen 1.13 and 6.87 ng/g wet weight. Other ubiquitous compounds were PCBs (ranging from 0.13 to 6.76 ng/g ww), hexachlorobenzene, and mirex, while PAHs were sporadically detected at low concentrations, and PBDEs were not present. Overall, the extraction method herein proposed allowed analysing very small blood volumes (∼ 100 µL), thus respecting ethical principles prioritising the application of less-invasive sampling protocols, fundamental when studying threatened avian species.


Subject(s)
Birds , Gas Chromatography-Mass Spectrometry , Hydrocarbons, Chlorinated , Pesticides , Animals , Gas Chromatography-Mass Spectrometry/methods , Pesticides/blood , Hydrocarbons, Chlorinated/blood , Polychlorinated Biphenyls/blood , Halogenated Diphenyl Ethers/blood , Polycyclic Aromatic Hydrocarbons/blood , Polycyclic Aromatic Hydrocarbons/analysis , Endangered Species , Environmental Monitoring/methods , Environmental Pollutants/blood , Environmental Pollutants/analysis
2.
BMC Plant Biol ; 24(1): 235, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561649

ABSTRACT

Drought stress considered a key restrictive factor for a warm-season bermudagrass growth during summers in China. Genotypic variation against drought stress exists among bermudagrass (Cynodon sp.), but the selection of highly drought-tolerant germplasm is important for its growth in limited water regions and for future breeding. Our study aimed to investigate the most tolerant bermudagrass germplasm among thirteen, along latitude and longitudinal gradient under a well-watered and drought stress condition. Current study included high drought-resistant germplasm, "Tianshui" and "Linxiang", and drought-sensitive cultivars; "Zhengzhou" and "Cixian" under drought treatments along longitude and latitudinal gradients, respectively. Under water deficit conditions, the tolerant genotypes showed over-expression of a dehydrin gene cdDHN4, antioxidant genes Cu/ZnSOD and APX which leads to higher antioxidant activities to scavenge the excessive reactive oxygen species and minimizing the membrane damage. It helps in maintenance of cell membrane permeability and osmotic adjustment by producing organic osmolytes. Proline an osmolyte has the ability to keep osmotic water potential and water use efficiency high via stomatal conductance and maintain transpiration rate. It leads to optimum CO2 assimilation rate, high chlorophyll contents for photosynthesis and elongation of leaf mesophyll, palisade and thick spongy cells. Consequently, it results in elongation of leaf length, stolon and internode length; plant height and deep rooting system. The CdDHN4 gene highly expressed in "Tianshui" and "Youxian", Cu/ZnSOD gene in "Tianshui" and "Linxiang" and APX gene in "Shanxian" and "Linxiang". The genotypes "Zhongshan" and "Xiaochang" showed no gene expression under water deficit conditions. Our results indicate that turfgrass show morphological modifications firstly when subjected to drought stress; however the gene expression is directly associated and crucial for drought tolerance in bermudagrass. Hence, current research has provided excellent germplasm of drought tolerant bermudagrass for physiological and molecular study and future breeding.


Subject(s)
Antioxidants , Cynodon , Cynodon/physiology , Antioxidants/metabolism , Droughts , Plant Breeding , Photosynthesis/genetics , Water/metabolism , Gene Expression
3.
Front Plant Sci ; 15: 1369416, 2024.
Article in English | MEDLINE | ID: mdl-38601306

ABSTRACT

Under changing climatic scenarios, grassland conservation and development have become imperative to impart functional sustainability to their ecosystem services. These goals could be effectively and efficiently achieved with targeted genetic improvement of native grass species. To the best of our literature search, very scant research findings are available pertaining to gene editing of non-cultivated grass species (switch grass, wild sugarcane, Prairie cordgrass, Bermuda grass, Chinese silver grass, etc.) prevalent in natural and semi-natural grasslands. Thus, to explore this novel research aspect, this study purposes that gene editing techniques employed for improvement of cultivated grasses especially sugarcane might be used for non-cultivated grasses as well. Our hypothesis behind suggesting sugarcane as a model crop for genetic improvement of non-cultivated grasses is the intricacy of gene editing owing to polyploidy and aneuploidy compared to other cultivated grasses (rice, wheat, barley, maize, etc.). Another reason is that genome editing protocols in sugarcane (x = 10-13) have been developed and optimized, taking into consideration the high level of genetic redundancy. Thus, as per our knowledge, this review is the first study that objectively evaluates the concept and functioning of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 technique in sugarcane regarding high versatility, target specificity, efficiency, design simplicity, and multiplexing capacity in order to explore novel research perspectives for gene editing of non-cultivated grasses against biotic and abiotic stresses. Additionally, pronounced challenges confronting sugarcane gene editing have resulted in the development of different variants (Cas9, Cas12a, Cas12b, and SpRY) of the CRISPR tool, whose technicalities have also been critically assessed. Moreover, different limitations of this technique that could emerge during gene editing of non-cultivated grass species have also been highlighted.

4.
Front Public Health ; 12: 1301095, 2024.
Article in English | MEDLINE | ID: mdl-38605873

ABSTRACT

Background: Allergic rhinitis (AR) is a prevalent public health concern globally, significantly impacting quality of life. In Thailand, the prevalence of AR is rising, with grass and weed pollen identified as primary outdoor triggers. Objectives: This study aimed to (1) assess patterns of pollen sensitization in Thai AR patients and (2) investigate correlations between demographics/clinical data and SPT results. Methods: A total of 121 individuals aged ≥18 years with clinically diagnosed AR were recruited. Skin prick testing (SPT) was performed using a panel of commonly encountered tropical grass and weed pollen extracts. SPT wheal sizes and clinical symptom scores were recorded. Correlations between SPT outcomes and symptom scores were analyzed. Results: Among the participants, 104 (85.95%) exhibited positive SPT reactions to at least one pollen type. Nutsedge (76/121), para grass (57/121), and Bermuda grass (48/121) were the most frequently identified allergens. Hurricane grass elicited the strongest reaction, evidenced by the highest average wheal size (6.2 mm). Poly-sensitization was observed in 77 (63.6%) of the SPT-positive individuals, with most cases involving two different pollen extracts (35/77). Notably, AR severity positively correlated with both average wheal size and the number of positive SPT tests. Conclusion: This study highlights nutsedge, para grass, and Bermuda grass as major allergenic pollen sources for Thai AR patients. Including nutsedge, hurricane grass, and careless weed in clinical SPT panels is recommended for improved diagnostic accuracy. Additionally, the positive correlation between AR severity and pollen reaction strength emphasizes the importance of implementing patient education and avoidance strategies.


Subject(s)
Quality of Life , Rhinitis, Allergic , Humans , Adolescent , Adult , Thailand/epidemiology , Incidence , Allergens , Rhinitis, Allergic/epidemiology
5.
PLoS One ; 19(4): e0302409, 2024.
Article in English | MEDLINE | ID: mdl-38662726

ABSTRACT

Natural disasters such as landslides often occur on soil slopes in seasonally frozen areas that undergo freeze‒thaw cycling. Ecological slope protection is an effective way to prevent such disasters. To explore the change in the mechanical properties of soil under the influence of both root reinforcement and freeze‒thaw cycles and its influence on slope stability, the Baijiabao landslide in the Three Gorges Reservoir area was taken as an example. The mechanical properties of soil under different confining pressures, vegetation coverages (VCs) and numbers of freeze‒thaw cycles were studied via mechanical tests, such as triaxial compression tests, wave velocity tests and FLAC3D simulations. The results show that the shear strength of a root-soil composite increases with increasing confining pressure and VC and decreases with increasing number of freeze‒thaw cycles. Bermuda grass roots and confining pressure jointly improve the durability of soil under freeze‒thaw conditions. However, with an increase in the number of freeze‒thaw cycles, the resistance of root reinforcement to freeze‒thaw action gradually decreases. The observed effect of freeze‒thaw cycles on soil degradation was divided into three stages: a significant decrease in strength, a slight decrease in strength and strength stability. Freeze‒thaw cycles and VC mainly affect the cohesion of the soil and have little effect on the internal friction angle. Compared with that of a bare soil slope, the safety factor of a slope covered with plants is larger, the maximum displacement of a landslide is smaller, and it is less affected by freezing and thawing. These findings can provide a reference for research on ecological slope protection technology.


Subject(s)
Freezing , Plant Roots , Soil , Soil/chemistry , Plant Roots/physiology , Landslides
6.
PeerJ ; 12: e16985, 2024.
Article in English | MEDLINE | ID: mdl-38436009

ABSTRACT

Tillering/branching pattern plays a significant role in determining the structure and diversity of grass, and trimming has been found to induce tillering in turfgrass. Recently, it has been reported that hydrogen peroxide (H2O2) regulates axillary bud development. However, the role of H2O2 in trimming-induced tillering in bermudagrass, a kind of turfgrass, remains unclear. Our study unveils the significant impact of trimming on promoting the sprouting and growth of tiller buds in stolon nodes, along with an increase in the number of tillers in the main stem. This effect is accompanied by spatial-temporal changes in cytokinin and sucrose content, as well as relevant gene expression in axillary buds. In addition, the partial trimming of new-born tillers results in an increase in sucrose and starch reserves in their leaves, which can be attributed to the enhanced photosynthesis capacity. Importantly, trimming promotes a rapid H2O2 burst in the leaves of new-born tillers and axillary stolon buds. Furthermore, exogenous application of H2O2 significantly increases the number of tillers after trimming by affecting the expression of cytokinin-related genes, bolstering photosynthesis potential, energy reserves and antioxidant enzyme activity. Taken together, these results indicate that both endogenous production and exogenous addition of H2O2 enhance the inductive effects of trimming on the tillering process in bermudagrass, thus helping boost energy supply and maintain the redox state in newly formed tillers.


Subject(s)
Cynodon , Hydrogen Peroxide , Oxidation-Reduction , Antioxidants , Cytokinins , Sucrose
7.
Environ Sci Pollut Res Int ; 31(17): 25059-25075, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462565

ABSTRACT

A field trial was performed to carry out an enhanced phytoremediation technique for multi-metal contaminated copper tailings by Sudan grass (Sorghum Sudanese), ryegrass (Lolium perenne L.), and Bermuda grass (Cynodon dactylon), using conditioner (TH-LZ01) and straw combination into composite amendments as soil amendments, aimed to obtain the maximum of phytoremediation effect. The results showed that compared with untreated herbaceous plants, the application of conditioner and straw planted with herbaceous plants reduced the pH and conductivity and increased the organic matter and water content of the copper tailings to different degrees. With the addition of conditioner and straw, the DTPA-Cd, DTPA-Cu, DTPA-Pb, and DTPA-Zn contents in the copper tailings showed a decreasing trend compared with the untreated group. The herbaceous plants were promoted to reduce the percentage contents of acid soluble fractions Cd, Cu, Pb, and Zn and to increase the percentage contents of reducible, oxidizable, and residual fractions heavy metals (Cd, Cu, Pb, and Zn) in the copper tailings to different degrees. The contents of Cd, Cu, Pb, and Zn in the underground part of herbaceous plants were higher than those in the aboveground part, and the contents of Cd, Cu, Pb, and Zn in the aboveground part and underground part decreased after adding conditioner and straw, which indicated that the conditioner and straw inhibited the transport of heavy metals in the plant. Furthermore, the principal component analysis showed that the application of conditioner and straw with planting ryegrass had more potential for improving the physicochemical properties of copper tailings and reducing heavy metal toxicity, followed by Bermuda grass and Sudan grass.


Subject(s)
Metals, Heavy , Soil Pollutants , Copper/analysis , Biodegradation, Environmental , Cadmium/analysis , Ponds , Lead/analysis , Soil Pollutants/analysis , Metals, Heavy/analysis , Plants , China , Soil/chemistry , Pentetic Acid
8.
Mol Ecol ; : e17336, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38553993

ABSTRACT

Recent work indicates that feralisation is not a simple reversal of domestication, and therefore raises questions about the predictability of evolution across replicated feral populations. In the present study we compare genes and traits of two independently established feral populations of chickens (Gallus gallus) that inhabit archipelagos within the Pacific and Atlantic regions to test for evolutionary parallelism and/or divergence. We find that feral populations from each region are genetically closer to one another than other domestic breeds, despite their geographical isolation and divergent colonisation histories. Next, we used genome scans to identify genomic regions selected during feralisation (selective sweeps) in two independently feral populations from Bermuda and Hawaii. Three selective sweep regions (each identified by multiple detection methods) were shared between feral populations, and this overlap is inconsistent with a null model in which selection targets are randomly distributed throughout the genome. In the case of the Bermudian population, many of the genes present within the selective sweeps were either not annotated or of unknown function. Of the nine genes that were identifiable, five were related to behaviour, with the remaining genes involved in bone metabolism, eye development and the immune system. Our findings suggest that a subset of feralisation loci (i.e. genomic targets of recent selection in feral populations) are shared across independently established populations, raising the possibility that feralisation involves some degree of parallelism or convergence and the potential for a shared feralisation 'syndrome'.

9.
Sci Total Environ ; 926: 172106, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38556015

ABSTRACT

Sewage sludge land application is recognized as a strategy for recycling resource and replenishing soil nutrients. However, the subsequent greenhouse gas emissions following this practice are not yet fully understood, and the lack of quantitative research and field experiments monitoring these emissions hampers the establishment of reliable emission factors. This study investigated the greenhouse gas emission characteristics of sewage sludge land application through a field experiment that monitoring soil greenhouse gas fluxes. Seven nitrogen input treatments were implemented in a typical Bermuda grassland in China, with D and C representing the amendment of digested and composted sludge, respectively, at the nitrogen input rate of 0, 100, 200, and 300 kg N ha-1. Soil CH4, CO2, and N2O fluxes were measured throughout the entire experimental period, and soil samples from different treatments at various growth stages were analyzed. The results revealed that sewage sludge land application significantly increased soil N2O and CO2 emissions while slightly reducing soil CH4 uptake. The increased CO2 emissions were biogenic and carbon-neutral, mainly due to enhanced plant root respiration. The N2O emissions were the primary greenhouse gas emissions of sewage sludge land application, which were mainly concentrated in two 50-day periods following base and topdressing fertilization, respectively. N2O emissions following base fertilization by rotary tillage were substantially lower than those following topdressing fertilization. A logarithmic response relationship between N input rates and increased soil N2O emissions was observed, suggesting lower N2O emissions from sewage sludge land application compared to conventional N fertilizers at the same N input level. Future field experiments and meta-analysis are necessary to develop reliable greenhouse gas emission factors for sewage sludge land application.

10.
PLOS Glob Public Health ; 4(2): e0002837, 2024.
Article in English | MEDLINE | ID: mdl-38346066

ABSTRACT

Compared with other OECD countries, Bermuda ranks third globally in terms of income inequality globally. During the COVID-19 pandemic, anecdotal evidence suggested, significant fluctuations in the food demand and supply. We aimed to examine the impact of the COVID-19 pandemic on food insecurity, with a focus on the availability and affordability of various foods in Bermuda. We utilized a cross-sectional study design to investigate potential drivers of food insecurity within the local population. To gauge the level of household food insecurity we relied on the Bermuda Omnibus survey (N = 400) undertaken by Total Research Associates Ltd via telephone. To assess changes in food availability and affordability we conducted semi-structured interviews with key stakeholders who played pivotal roles in shaping food accessibility availability and affordability of food in Bermuda. These interviews were systematically analysed using the framework method. We performed analyses of food retail and import data to evaluate fluctuations in food prices and their impact on food availability and affordability. We found statistically significant associations between changes in food consumption, household income, and government aid. Food aid beneficiaries ate fewer fruits and vegetables by 50% [95% CI:17%-83%] and less fresh meat and fish by 39% [95 CI:3%-75%] compared with residents who did not receive any aid during the COVID-19 period from March 2020 to March 2021. Although we did not identify statistically significant food price increases feeding programmes played a pivotal role in preventing food insecurity during the pandemic in Bermuda. However, a lack of monitoring regarding the nutritional quality within the programmes, allowed a wide availability of foods high in sugar, salts, and fats, disproportionately affected low-income populations. In conclusion, food availability in Bermuda remained largely unaffected during the pandemic. Nevertheless, the surge in demand for feeding programs underscores underlying food security challenges in Bermuda and warrants further attention.

11.
Microbiol Spectr ; 12(4): e0339523, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38380912

ABSTRACT

Fruit bodies (sporocarps) of wild mushrooms growing in natural environments play a substantial role in the preservation of microbial communities, for example, clinical and food-poisoning bacteria. However, the role of wild mushrooms as natural reservoirs of plant pathogenic bacteria remains almost entirely unknown. Furthermore, bacterial transmission from a mushroom species to agricultural plants has rarely been recorded in the literature. In September 2021, a creamy-white Gram-negative bacterial strain was isolated from the sporocarp of Suillus luteus (slippery jack) growing in Bermuda grass (Cynodon dactylon) lawn in Southern Iran. A similar strain was isolated from the same fungus in the same area in September 2022. Both strains were identified as Burkholderia gladioli based on phenotypic features as well as phylogeny of 16S rRNA and three housekeeping genes. The strains were not only pathogenic on white button mushrooms (Agaricus bisporus) but also induced hypersensitive reaction (HR) on tobacco and common bean leaves and caused soft rot on a set of diverse plant species, that is, chili pepper, common bean pod, cucumber, eggplant, garlic, gladiolus, narcissus, onion, potato, spring onion, okra, kohlrabi, mango, and watermelon. Isolation of plant pathogenic B. gladioli strains from sporocarp of S. luteus in two consecutive years in the same area could be indicative of the role of this fungus in the preservation of the bacterium in the natural environment. B. gladioli associated with naturally growing S. luteus could potentially invade neighboring agricultural crops, for example, vegetables and ornamentals. The potential role of wild mushrooms as natural reservoirs of phytopathogenic bacteria is further discussed.IMPORTANCEThe bacterial genus Burkholderia contains biologically heterogeneous strains that can be isolated from diverse habitats, that is, soil, water, diseased plant material, and clinical specimens. In this study, two Gram-negative pectinolytic bacterial strains were isolated from the sporocarps of Suillus luteus in September 2021 and 2022. Molecular phylogenetic analyses revealed that both strains belonged to the complex species Burkholderia gladioli, while the pathovar status of the strains remained undetermined. Biological investigations accomplished with pathogenicity and host range assays showed that B. gladioli strains isolated from S. luteus in two consecutive years were pathogenic on a set of diverse plant species ranging from ornamentals to both monocotyledonous and dicotyledonous vegetables. Thus, B. gladioli could be considered an infectious pathogen capable of being transmitted from wild mushrooms to annual crops. Our results raise a hypothesis that wild mushrooms could be considered as potential reservoirs for phytopathogenic B. gladioli.


Subject(s)
Agaricus , Basidiomycota , Burkholderia gladioli , Burkholderia , Burkholderia gladioli/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Agaricus/genetics , Burkholderia/genetics , Vegetables
12.
Environ Sci Pollut Res Int ; 31(13): 19871-19885, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368297

ABSTRACT

This study aimed to access the impact of soil polluted with petroleum (5, 10 g petroleum kg-1 soil) on Bermuda grass (Cynodon dactylon L.) with and without applied bacterial inoculants (Arthrobacter oxydans ITRH49 and Pseudomonas sp. MixRI75). Both soil and seed were given bacterial inoculation. The evaluated morphological parameters of Bermuda grass were fresh and dry weight. The results demonstrated that applied bacterial inoculants enhanced 5.4%, 20%, 28% and 6.4%, 21%, and 29% shoot and root fresh/dry weights in Bermuda grass under controlled environment. The biochemical analysis of shoot and root was affected deleteriously by the 10 g petroleum kg-1 soil pollution. Microbial inoculants enhanced the activities of enzymatic (catalase, peroxidase, glutathione reductase, ascorbate peroxidase, superoxide dismutase) and non-enzymatic (ɑ-tocopherols, proline, reduced glutathione, ascorbic acid) antioxidant to mitigate the toxic effects of ROS (H2O2) under hydrocarbon stressed condition. The maximum hydrocarbon degradation (75%) was recorded by Bermuda grass at 5 g petroleum kg-1 soil contamination. Moreover, bacterial persistence and alkane hydroxylase gene (alkB) abundance and expression were observed more in the root interior than in the rhizosphere and shoot interior of Bermuda grass. Subsequently, the microbe used a biological tool to propose that the application of plant growth-promoting bacteria would be the most favorable choice in petroleum hydrocarbon polluted soil to conquer the abiotic stress in plants and the effective removal of polyaromatic hydrocarbons in polluted soil.


Subject(s)
Agricultural Inoculants , Petroleum , Soil Pollutants , Cynodon , Hydrogen Peroxide/metabolism , Biodegradation, Environmental , Hydrocarbons/metabolism , Bacteria/metabolism , Petroleum/analysis , Agricultural Inoculants/metabolism , Soil , Gene Expression , Soil Pollutants/analysis
13.
Neotrop Entomol ; 53(2): 455-459, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38194154

ABSTRACT

Bermudagrass (Cynodon dactylon (L.) Pers., Poaceae) is one of the most important pasture grasses used in milk production systems in southern Brazil, with an increasing expansion of cultivated areas in recent years. Here, we report the first occurrence of the planthopper Metadelphax propinqua (Fieber) (Hemiptera: Delphacidae) feeding on bermudagrass in Brazil. Population outbreaks of this species were observed in January/February 2023 in a commercial hay production farm in the municipality of Chapecó, Santa Catarina State, southern Brazil. Metadelphax propinqua was found in association with three cultivars of C. dactylon (Tifton 85, Jiggs, and Vaquero). The infested plants showed leaf chlorosis and a reduced plant growth rate due to sap sucking and toxin injection as well as honeydew deposition on the leaves, which led to the development of sooty mold. In addition, this delphacid species has been reported as a vector of important pathogens to bermudagrass species and other row crops. Thus, M. propinqua is a potential pest of bermudagrass in Brazil and should be monitored to assess its establishment and behavior in Brazilian pasturelands.


Subject(s)
Cynodon , Hemiptera , Animals , Brazil , Poaceae , Crops, Agricultural
14.
Int J Biometeorol ; 68(1): 57-67, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37880506

ABSTRACT

Crop irrigation requirements are usually estimated based on crop evapotranspiration (ETc) as determined by the reference evapotranspiration (ETo) and crop coefficient (Kc). There is a lack of knowledge on the irrigation requirements of tropical forage crops in Brazil, contrasting with the increasing use of irrigation in pastures. The effort of this study was to investigate what would be the water needs of tropical forages in Southern Brazil, based on a robust experimental database. The study was carried out in São Paulo State-Brazil using different forages species and their combinations [Guinea grass (GG); Guinea grass + black oat + ryegrass (GOR); Bermuda grass (BG), and Bermuda + black oat + ryegrass (BOR)]. The experimental fields were fully irrigated, and the Kc values were derived from ETc measurements on lysimeters; ETo was estimated using daily data from a nearby weather station and the standard FAO56 parameterization. Mean daily ETc values for GG, GOR, BG and BOR were 4.1, 2.9, 3.6, and 3.4 mm, respectively, and respective mean Kc values were 0.99, 0.90, 1.0, and 0.94. Average Kc values for all plots decreased as ETo increased, producing a negative Kc-ETo relationship, mainly when ETo reached values greater than 5 mm d-1. This was most likely due to internal plant stomatal resistance to vapor release from the leaves diffusing to the atmosphere at high ETo. So, the time-based Kc curves described by FAO 56 manual should be adjusted for the analyzed crops considering different ranges of ETo to improve the required irrigation depth.


Subject(s)
Agricultural Irrigation , Crops, Agricultural , Brazil , Weather , Water
15.
Phytopathology ; 114(1): 155-163, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37335121

ABSTRACT

Spring dead spot (SDS) (Ophiosphaerella spp.) is a soilborne disease of warm-season turfgrasses grown where winter dormancy occurs. The edaphic factors that influence where SDS epidemics occur are not well defined. A study was conducted during the spring of 2020 and repeated in the spring of 2021 on four 'TifSport' hybrid bermudagrass (Cynodon dactylon × transvaalensis) golf course fairways expressing SDS symptoms in Cape Charles, VA, U.S.A. SDS within each fairway was mapped from aerial imagery collected in the spring of 2019 with a 20 MP CMOS 4k true color sensor mounted on a DJI Phantom 4 Pro drone. Three disease intensity zones were designated from the maps (low, moderate, high) based on the density of SDS patches in an area. Disease incidence and severity, soil samples, surface firmness, thatch depth, and organic matter measurements were taken from 10 plots within each disease intensity zone from each of the four fairways (n = 120). Multivariate pairwise correlation analyses (P < 0.1) and best subset stepwise regression analyses were conducted to determine which edaphic factors most influenced the SDS epidemic within each fairway and each year. Edaphic factors that correlated with an increase in SDS or were selected for the best fitting model varied across holes and years. However, in certain cases, soil pH and thatch depth were predictors for an increase in SDS. No factors were consistently associated with SDS occurrence, but results from this foundational study of SDS epidemics can guide future research to relate edaphic factors to SDS disease development.


Subject(s)
Ascomycota , Plant Diseases , Seasons , Cynodon , Soil
16.
Mol Ecol Resour ; 24(2): e13907, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38037519

ABSTRACT

Mesozooplankton is a very diverse group of small animals ranging in size from 0.2 to 20 mm not able to swim against ocean currents. It is a key component of pelagic ecosystems through its roles in the trophic networks and the biological carbon pump. Traditionally studied through microscopes, recent methods have been however developed to rapidly acquire large amounts of data (morphological, molecular) at the individual scale, making it possible to study mesozooplankton using a trait-based approach. Here, combining quantitative imaging with metabarcoding time-series data obtained in the Sargasso Sea at the Bermuda Atlantic Time-series Study (BATS) site, we showed that organisms' transparency might be an important trait to also consider regarding mesozooplankton impact on carbon export, contrary to the common assumption that just size is the master trait directing most mesozooplankton-linked processes. Three distinct communities were defined based on taxonomic composition, and succeeded one another throughout the study period, with changing levels of transparency among the community. A co-occurrences' network was built from metabarcoding data revealing six groups of taxa. These were related to changes in the functioning of the ecosystem and/or in the community's morphology. The importance of Diel Vertical Migration at BATS was confirmed by the existence of a group made of taxa known to be strong migrators. Finally, we assessed if metabarcoding can provide a quantitative approach to biomass and/or abundance of certain taxa. Knowing more about mesozooplankton diversity and its impact on ecosystem functioning would allow to better represent them in biogeochemical models.


Subject(s)
Ecosystem , Zooplankton , Animals , Biomass , Oceans and Seas
17.
Pest Manag Sci ; 80(4): 2162-2169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148292

ABSTRACT

BACKGROUND: Using cover crops in organic vineyards can provide many advantages, including weed suppression. However, their effectiveness may depend on the weed community, the cover crop species and the termination method. The most common practice for cover crop termination is shredding, but rapid residue decomposition can allow noxious species like Cynodon dactylon to proliferate during summer and compete with the vines. The use of roller-crimpers as an alternative method can be effective in some cropping systems, but no studies have focused on their use in the inter-row of vineyards. The objective of this study was to evaluate the effectiveness of seven cover crops (spontaneous, Avena strigosa, Hordeum vulgare, Lolium multiflorum, Phacelia tanacetifolia, Sinapis alba and X Triticosecale) and two termination methods (shredding or roller-crimper) in managing C. dactylon during summer. RESULTS: In 2020, rolled A. strigosa, P. tanacetifolia and the spontaneous flora limited the coverage of C. dactylon more than shredding (increases of 3% and 18% in C. dactylon cover from July to September in rolled and shredded cover crops, respectively), while in 2021, rolling was better than shredding for all cover crop species in September (5% and 18% increases, respectively). CONCLUSION: Roller-crimping cover crops was an effective method to control C. dactylon in vineyard inter-rows but it did not consistently work for all cover crops in both years. Our study is one of the first to test the efficacy of roller-crimpers to manage summer weeds in vineyards. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Cynodon , Plant Weeds , Farms , Seasons , Crops, Agricultural
18.
Mar Environ Res ; 193: 106295, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38118377

ABSTRACT

Ocean warming of the North Atlantic Subtropical Gyre (NASG) induced oligotrophication and a decrease in integrated net primary production during the 2010s, potentially affecting higher trophic levels. We analyzed long-term records (1994-2019) of daytime and nighttime zooplankton biomass in five size classes from the NASG. Daytime biomass decreased in the three largest size classes during the 2010s, while decrease in nighttime biomass was less evident due to the relative stability in diel vertical migrator biomass. We used the normalized biomass size spectrum (NBSS) to estimate the relative transfer efficiency between trophic levels. The steepness of the NBSS slope at the end of the time series increased by 14% (daytime) and 24% (nighttime) from the maximum observed annual average values (2011 and 2009, respectively). This suggests oligotrophication during the 2010s led to a significant reduction in the transfer of biomass across trophic levels, with negative impacts on the NASG planktonic food web.


Subject(s)
Phytoplankton , Zooplankton , Animals , Biomass , Plankton , Food Chain
19.
Sci Total Environ ; 914: 169693, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38160845

ABSTRACT

San Antonio has been designated as ozone nonattainment under the current National Ambient Air Quality Standards (NAAQS). Ozone events in the city typically occur in two peaks, characterized by a pronounced spring peak followed by a late summer peak. Despite higher ozone levels, the spring peak has received less attention than the summer peak. To address this research gap, we used the Weather Research and Forecasting (WRF)-driven GEOS-Chem (WRF-GC) model to simulate San Antonio's ozone changes in the spring month of May from 2017 to 2021 and quantified the respective contributions from changes in anthropogenic emissions and meteorology. In addition to modeling, observations from the San Antonio Field Studies (SAFS), the Texas Commission on Environmental Quality (TCEQ) Continuous Ambient Monitoring Stations (CAMS), and the spaceborne TROPOspheric Monitoring Instrument (TROPOMI) are used to examine and validate changes in ozone and precursors. Results show that the simulated daytime mean surface ozone in May 2021 is 3.8 ± 0.6 ppbv lower than in May 2017, which is slightly less than the observed average differences of -5.3 ppbv at CAMS sites. The model predicted that the anthropogenic emission-induced changes contribute to a 1.4 ± 0.5 ppbv reduction in daytime ozone levels, while the meteorology-induced changes account for a 2.4 ± 0.6 ppbv reduction over 2017-2021. This suggests that meteorology plays a relatively more important role than anthropogenic emissions in explaining the spring ozone differences between the two years. We additionally identified (1) reduced NO2 and HCHO concentrations as chemical reasons, and (2) lower temperature, higher humidity, increased wind speed, and a stronger Bermuda High as meteorological reasons for lower ozone levels in 2021 compared to 2017. The quantification of the different roles of meteorology and ozone precursor concentrations helps understand the cause and variation of ozone changes in San Antonio over recent years.

20.
Org Divers Evol ; 23(4): 811-832, 2023.
Article in English | MEDLINE | ID: mdl-38046836

ABSTRACT

Molecular genetic analyses of Caribbean populations of the supposedly widespread intertidal oribatid mite Alismobates inexpectatus revealed the existence of a cryptic species. The new species, Alismobates piratus sp. n., shows considerable COI and 18S rRNA gene sequence divergences and although morphometric analyses indicate considerable variation between the taxa, no distinguishing morphological feature could be detected. The extreme intertidal environment is suggested to be responsible for the observed morphological stasis of the two species and vicariance is supposed to be responsible for their speciation. Alismobates piratus sp. n. was found on Hispaniola, Guadeloupe, Barbados and Curaçao indicating a predominant distribution on the Greater and Lesser Antilles, whereas the occurrence of A. inexpectatus is primarily restricted to Central America, the northern Caribbean and the Greater Antilles. Haplotype network analyses indicate distinct geographic structuring and the absence of recent gene flow among the Antillean A. piratus sp. n. populations. Central American and Antillean populations of A. inexpectatus show similar patterns but populations from Bermuda and the Bahamas are characterized by a common origin and subsequent expansion. Genetic landscape analysis demonstrates that vast stretches of open ocean, like the Caribbean Basin and the Western Atlantic, act as rather effective barriers, whereas the continuous continental coastline of Central and North America may facilitate dispersal. Genetic data also indicates that the Gulf Stream plays an important role for the biogeography of intertidal oribatid mites as it may be responsible for the strong link between Central and North American populations as well as for the colonization of Bermuda. Supplementary Information: The online version contains supplementary material available at 10.1007/s13127-023-00624-9.

SELECTION OF CITATIONS
SEARCH DETAIL
...